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ABSTRACT. Two new characterizations of the Stieltjes transform for distribution are

developed, using two transformations on the space of distributions viz., ditlation
Un and exponential shifts TP . The standard theorem on analyticity, uniqueness and

invertibility of the Stieltjes transform are proved, using the new characterization as

the definition of the Stieltjes transform.
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1. INTRODUCTION.
Widder ([1], p. 325) introduced the Stieltjes transform as an iteration of the

Laplace transform as follows:

f(x) = J(;w ¥t 4 (t)de (1.1)
where $(x) = é“’ et y(t)de , (1.2)
so that £ = 7 "éxﬁi—dg—) (1.3)

More generally, (1.3) can be replaced by Stieltjes integral

_ » da(t)
FO={ &vo

(1.4)
The integral (l.4) was originally considered by Stieltjes[2]. Various generalizations
of Stieltjes transform have been given by various authors viz., Widder[3], Pollard[4],
Sumner[5], Mishral[6], Pathak([7]-[8]), Rao[9], Varmal10], Arya([11]-[15]), Ghosh([16]-
[187), Boas & Widder[19], and Dube[20].

The present paper is concerned with two new characterizations of Stieltjes trans-
formation for distributions by the help of dilation Yy and exponential shifts

TP introduced earlier by Gesztelyil[21]. It is interesting to note here that

Gestzelyi considered two transformations viz., dilation Yo and exponential shifts TP

which are defined for ordinary fuanctions £, complex number p, and positive integer n
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by:

un f(t)

n f(nt) (1.5)

TPe(e) = e Pt £(1) (1.6)

Gesztelyi proves that if f is a function which has a Laplace transform at p , then
the sequence function {Un T PE(e)) converges (in Mikusinski sense) as n » = to the

classical Laplace transform of f at p . He then defines the Laplace transform of a

Mikusinski operator x as the limit (whenever it exist in the sense of Mikusinski-
convergence) of the sequence {Un TP x} , and shows that his definition generalizes

the previous formulation of the Laplace transform of Mikusinski operators of G. Doetsch

[23) and V. A. Ditkin ([243-[25]). Price[26] defined the Laplace transformation of a
distribution f wusing sequences of the form {un TP £} and shows that the new defi-

nition is equivalent to Schwartz's extension of the transform to distributions. He

also introduced spaces B and B0 and their duals B' and Bé and shows that each
distribution f in Bé has a unique extension f in B' . He also shows that the
sequence {Uj f} converges to £ f,1»8 whenever f is in BJ . Recently, working

on the same lines the present author has given two new characterizations of the
Weierstrass, Mellin, Hankel and K-transform for distributions([281, [29], [30] & [311).
2. TWO NEW CHARACTERIZATIONS OF THE STIELTJES TRANSFORMS.

In the present section we give two new characterizations of Stieltjes transforms
for one-dimensional distributions.

We will say that a distribution f 1is Stieltjes transformable if there is an open

interval (a,B) such that whenever p = o + it is a complex number with real part
in (a,B); T Pf is a distribution in Bé , where Bé is the dual space of BO , a

subspsace ofw ' as defined in [27].
If (a,B) 1is the largest such open interval then the set Q = {p: Re pe(a,B)}
is called the domain of definition of the Stieltjes transform for f.
If f 1is a Stieltjes transformable distribution, where transform has domain defi-

nition Q, then for p ¢ @, we define the Stieltjes transform S[f]l(p) of f at p by

-1 : ~p
SLENP) = o5y :!lm<Jj TPE, ), (2.1)
J—)@
where f(t) = S[yl(p) , 0 <t <R for every positive R, ¢ 1is a test function in

& with ¢(0) # 0 and ¥ is another distribution.
{NOTE: For the existence of limit in (2.1) and its meaning one could focus his atten-
tion on Theorem 3.1, p. 24 [26] or [27].}

Thus we have another characterization also as

SE1(p) =<TPF , 1> (2.2)
where f(t) = S[y1(p) , 0 < t < R for every positive R and ¢ 1is another distribu-

tion.
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From (2.2) we see that S[f](p) is a complex valued function of the complex vari-
able p with domain Q. 1In fact, the mapping S 1is linear. For, if f and g
are distributions that are transformable at p and a and b are complex numbers

then (af + bg) 1is Stieltjes transformable at p and
Slaf + bgl(p) =<I-p[af + bgl, l>

a1™Pt ,17+ b(17Pg ,1>

a S[f1(p) + b S[gl(p).

[}

THEOREM 2.1. 1f f 1is a distribution that is Stieltjes transformable in Q, then
S' f1(p) 1is analytic function of p in Q and

_d
dp

PROOF. The proof is analogous to that for Laplace transformation as given in [26]
[271.
3. TREATMENT OF THE CONVOLUTION OF TWO DISTRIBUTIONS.

S[f1(p) = Sl-t £(t)I(p) .

Much of the usefulness of the Stieltjes transform is a result of the way it treats
the convolution of two distributions. We give here this important property of the
transformation by the following theorem:

THEOREM 3.1, If f and g are Stieltjes transformable distributions such that the
domain of their respective transforms have intersection @ , then f*g is Stieltjes

transformable in Q and for every p in Q SCE * gl(p) = S[£1(p) Slgl(p).
PROOF, For p in @ , T Pf and T—pg are both in B; . Therefore, f*g is

Stieltjes transformable at p , and from (2.2) and the definition of convolution we get

S[E * gl(p) =<TP(f *g) ,1>
={17Pf % 1Pg 1>
{1 PE)® T Pg(r) L1(t + 1))
=1 PE()Y® T Pg(r) , 1(t) 1(1)>
={17Pe )@ Pg ,1>
= S[f1(p) slgl(p) . Q.E.D.

4. INVERSION AND UNIQUENESS THEOREMS FOR THE STIELTJES TRANSFORM.

No theory of Stieltjes transform would be useful without the inverison and unique-
ness theorems. We give Theorem 4.1 which includes both inversion and uniqueness
theorems as its corollary.

In what follows we will have as independent variables at various times the real
variable t and real and imaginary parts of complex variable p . For reason we will
sometime indicate the particular independent variable for the space or an operation by

. -iwt P .
a subscript T e.g., {f(1), e , where f(1t) is in B' and w 1is a parameter.
B} T o
T
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THEOREM 4.1, If f 1is a distribution in Bé , then
t
£() = —— in /7 eMKe(m), D aw 4.1)
m ~r T
T
’
where the limit is taken in e

PROOF. The proof is same as that of Laplace transform as given in [27].
COROLLARY 4.1 (a): (Inversion theorem).
If f 1is Stieltjes transformable in © = {p: o < Re p < B}. Then, as long as

a <o < B

_ 140 1 cotir pt
f(t) = 1lim i é-ir e’ s[fl(p) dp,

where the limit is taken in I’t .

COROLLARY 4.1(b): (Uniqueness theorem).
If f and g are Stieltjes transformable distributions such that S[fl(p) =
S[gl(p) on some vertical line in the common domain of transforms of f and g , then

f = g as distributions.
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