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ABSTRACT. Let S be a convex, weakly compact subset of a locally convex Hausdorff

space (E, ) and f: S E be a continuous multifunction from its weak topology m to

let p be a continuous seminorm on (E, ) and for subsets A B of E let

p(A, B) inf:p(x y): x A, y B} In this paper, sufficient conditions are de-

veloped for the existence of an x S satisfying p(x, fx) p(fx, S) The result

is then used to prove several fixed point theorems.
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I. INTRODUCTION

Let (E, z) be a locally convex Hausdorff topological vector space with topology

and E* (E, )* be its topological dual. Let m m(E, E*) be the weak topo-

logy of E Let P and Q denote the family of continuous semi-norms generating

the topologies and m respectively. For sets A and B of E and a p P,

let p(A, B) inf{p(x y): x A, y B} In this paper, we prove the following

result.

THEOREM Io Let S be a nonempty co,vex, m-compact subset of E and f: (S, m)

(E, r) be a continuous multifunction such that f(x) is convex and -compact for

each x S Then f,r each p P there exists a x S satisfying

p(x, fx) p(fx. S) (1.1)

F.ther if p(x, fx) 0 then x a(S, ,) a(S, ) where denotes the boundary.

It may be remarked the since f in Theorem is also a continuous multi-

f.nction from (S .... (E. ,,) Consequently it follows by Reich (Lemma 1.6 [1]) that

each q Q satisfies (1.1) for some x S However, since Q p the lemma in

[1] is not applicable for arbitrary p P In fact, Theorem contains the above

1emma [1] (see Corollary 2) and it provides a generalization of a well-known result of

Ky Fan [2] for single valued mappings.

2. PRELIMINARY RESULTS.

Recall that if X Y are topological spaces then a multifunction f: X Y

(fx * for each x) is upper (lower) semicontinuous iff for each closed (open) sub-
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set A of y f-1 (A) ,x X: f(x) 0 A } is a closed (open) subset of X It

follows by definition that is 1.s.c. iff fx n U for some open set U of Y

and x in X then fz U for each z in some neighborhood V of X Further,

it is well-known (i) that if is u.s.c, and a net xa x in X and Ya Y in

Y with ya fx then v fx; (ii) if X is compact and f is u.s.c, with compact

values then fX is compact. A mu]tifunction which is both u.s,c, and 1.s,c. is called

cntinuous.

We prove two lemmas that simplify the proof of Theorem 1. Throughout, let E be

as stated in the beginning and S a nonempty subset of E

LEIA 1. Let A, B be ,-compact sets of E and p P Then p(A, B) p(x, B)

p(x y) for some x A, y B

PROOF. Cho,.e sequences {Xn _c A, {yn _c B such that p(x
n yn p(A, B)

We may assume that x x weakly for some x A and Yn y weakly for some y B.

By Hahn Banach Theorem (see [3], Cot. 2, p. 29) there exists a x* E* with x*(x y)

l(x y) and x*(u) -< p(u) for each u E Consequently, since x Ynn

x y weakly,

p(x, B) p(x y) x*(x y) lim[x*(xn p(x
nyn)l -< im p(A, B) -< p(x, B)Yn

LEtA 2. Let S be -compact subset of E and f: (S, m) (E, ) be a l.s.c.

multifunction with weakly compact values. If a net x x weakly in S then for

each p P and O, p(fx S) -< p(fx, S) + eventually.

PROOF. It follows by Lemma that there is a y fx with p(fx, S) p(y, S)

Let U (x E: p(x y) e} Then U is -open and y fx n U. Ilence by l.s.c.,

fx n U eventually. For such c let y fx n U. Then eventually,

p(fx, S) -< P(Ya’ S) <- P(Ya- y) + P(Y’ S) -< p(fx, S)+ e.

3. MAIN RESULTS.

PROOF OF THEOREM I. Let p P. Define a multifunction g: (S, m) (S, m) by

g(x) {y S: p(y, fx) p(fx, S)}.

Then by Lemma 1, g(x) z and is clearly convex. Further, since S is -closed and

fr any y, z g(x), the triangular inequality implies

IP(Y, fx) p(z, fx) <- p(y- z).

It follows g(x) is -closed convex and hence a m-compact subset of S We show

that g is u.s.c. Let C be a weakly closed (hence weakly compact) aubset of S

We show that x g-I (C), that is g(x) n C Choose for each a Ya gxa C

We may asgu..e that Ycz y weakly for some y C. Also since P(Ya’ fx)
p(fxa, S), there exists za fxa with p(ya za) p(fXc S) Further f: (S,

(E, m) being u.s.c., it follows that fS is weakly compact and hence we may assume

that z z weakly for some z fx. Thus ya z y z weakly. Choose as before

a x* E* such that x*(y z) p(y z) and [x*(u) -< p(u) for each E. Let

0 Choose aO A such that p(fxa, S) -< p(fx, S) + e for a -> a O. Conse-

quently, for 0 x*(y z)[ -< p(fx S) p(fx S) + and hence

p(y, fx)
_
p(y- z) limlx*(y z) <- p(fx, S) + c.
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Since e 0 is arbitrary and p(fx, S) -< p(y, fx), we have p(y, fx) p(fx, S) that

is y g(x) n C. Thus g is u.s.c. Hence by Glicksberg [4] there exists a x S

with x g(x) This implies p(x, fx) p(fx, S).

Now, suppose p(x, fx) 0 Then fx n S Choose by Lemma I, a y fx

satisfying p(x y) p(x, fx). Now, if x int(S, m) or int(S, t), then since S

being weakly closed and convex, there is a z (x, y) o S with 0 p(fx, S) -<

p(y z) p(x y) p(fx, S), a contradiction. This proves the result.

As a consequence of Theorem I, we have

COROLLARY I. Let S be a convex and weakly compact set in E and f: (S, m)

(E, ) be a continuous multifunction with convex and u-compact values. Then either

f has a fixed point or there exists a p P and x S satisfying 0 p(x, fx)

p(x, s)

PROOF. For each p P, let x S satisfying (I). If p(Xp, fXp) 0 for
P

each p P, then using the implication that f: (S,m) (S,m) is continuous, it

follows that A {x S: p(x, fx) 0} is nonempty, weakly compact and the family
P

{A p P has finite intersection property. Consequently, there exists x S with
P

p(x, fx) 0 for each p P Now, if x fx, then since x fx is t-closed and

convex and 0 x fx, there exists (see [3], Cot. I, p. 30) a x* E* such that

0 {x*(x y): y fx}. Let p Ix*I. Then p P and p(x, fx) 0 a contra-

diction.

The following corollaries result from Theorem 1.

COROLLARY 2. (Reich [I]). Let S be a compact and convex in (E, t) and f:

(S, ) (E, ) be a continuous mutifunction with convex and compact values. Then

either f has a fixed point or there exists a p P and x S satisfying 0

p(x, fx) p(fx, S).

COROLLARY 3. (Waters [5]). Let S be a compact and convex subset of (E, t)

and f: (S, ) (E, ) be a continuous multifunction with convex and weakly compact

values. Then for each p P there exists a x S satisfying (I.I).

PROOF. It suffices to show that the hypotheses in Corollary 2 and Corollary 3

imply that f: (S, m) (E, T) is a continuous multifunction. Let A be r-closed

n E Ten f-I (A) is T-compact subset of S. Since S is weakly closed, it

follows that f-I (A) is weakly closed. Thus is u.s.c. Similarly if A is t-open

set in E then S\f-I (A) f-I(E\A) is m-closed and hence f-I (A) is u-open. Thus

is l.s.c.

In the setting of semi-reflexive locally convex spaces, we have

COROLLARY 4. Let S be a closed, bounded and convex subset of a semi-reflexive

locally convex space E. If f: (S, 0) (E, ) is continuous multifunction with

closed, bounded and convex values then for each p P there exists x S satis-

fying (I.I).

*Theorem of this paper was presented at the summer meeting of the Amer. Math. Society,

|983), Albany, New York.
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