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ABSTRACT. The family UBC(R) of meromorphic functions of uniformly bounded characte-
ristic in a Riemann surface R is defined in terms of the Shimizu-Ahlfors characte-
ristic function. There are some natural parallels between UBC(R) and BMOA(R), the
family of holomorrhic functions of bounded mean oscillation in R. After a survey

some open problems are proposed in contrast with BMOA(R).
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1. INTRODUCTION:

In a series _[ papers [19] ~ [21], [23] ~ [25] I have been studying functions
of uniformly bounded characteristic. After a survey I propose some questions which I
have been unable to answer. The adjective "unsolved" in the present title, therefore,
means more precisely "unsolved by the present author".

Let R Dbe a Riemann surface which has the Green functions gR(z,w) with poles
w in R. As usual, each point of R is identified with its local-parametric image
in the complex plane. By D we always mean a subdomain of R such that the closure
DU 3D 1is compact and the boundary 9D consists of a finite number of mutually dis-
joint, analytic, simple and closed curves in R. For a point w of D we set

r = exp{lim(gD(z,w) + loglz - w|)},

zW

where 2z > w within the parametric disk of center w.

Let D = {z € D; gD(z,w) 2 log(r/t)}, #0 <2t <r. For f# meromorphic in 2R
we consider the second-order differential f'(z)“dxdy, where f" = [£'|/(1 + |f]|%).
The Shimizu-Ahlfors charactericstic function of f 1is defined for a pair w, D with
w €D by

T
T(D,w,f) = n'lj t'l[jf e (2)2axaylat.
0 D,
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In the case % = A= {|z] <1}, w=0,D={|z] <r}, 0 <r <1, we _btoin
T(r,f) = T(D,w,f),

the usual Shimizu-Ahlfors characteristic function of f. Returning to general R we

now set

T(R,w,f) = 1im T(D,w,f) ;
weD4R
this means that given € > 0 we may find a compact set K < R (w € K) such that
[T(R) - T(D)| <& for all D DK with the obvious change in case T(R) = . It is

rnown that

T(R,w,f) = n-lfj f#(z)2gR(z,w)dxdy, w € R,
R

.. Green potential of the measure n_lf#(z)zdxdy in R.

If T(R,w,f) < for a w€ R, then T(R,w,f) <o for all w € R. We call f
to be of bounded characteristic, £ € BC = BC(R) in notation, if T(R,w,f) < © for
4 (hence for each) w € R. Thus, f € BC if and only if f 1is Lindel8fian and mero-
morphic in R in the sense of Maurice Heins.

By definition, f is of uniformly bounded characteristic, f € UBC = UBC(R) in
notation, if

T(R,f) = sup T(R,w,f) < o,

wER

Each meromorphic f in R can be expressed as a quotient f = fl/f of holomorphic

2
functions fl and f2 with no common zero in R. Therefore,
2 2
¢ = log(|ry|® + [£,]9)
is a finite-valued subharmonic function in R because A®(z)dxdy = bf”(z)gdxdy. If
f € BC, then

cpg(w) - &(w) = 2T(R,w,f), w € R, (1)

where ¢§ is the least harmonic majorant of ¢ in R, the smallest among all the
harmonic majorants of ¢ in R. Therefore, the function T(R,w,f) of w is the
potential part of the F. Riesz decomposition of ¢ in R. Apparently, f € UBC if
and only if ¢§ exists (namely, f € BC) and the potential part is bounded in R.

In the special case R = A we can choose as D the non-Euclidean disks
Alw,r) = {]z - w|/]1 - wz| < r}
of center w € A and the radii tanh—l r, 0O <r <1, so that
T(A(w,r),w,f) = T(r,f ), (2)

where fw(z) = f((z + w)/(1 +wz)), z € A.

It is not difficult to observe that f € UBC(R) & fop € UBC(A),

where p: A > R is the universal covering projection. Actually, T(R,p(a),f) =
T(A, a,fop). This fact reduces many problems on UBC(R) to those on UBC(A), yet,
in some cases, there are subtle differences; see the problem (I) below, for example.

Hitherto we have been concerned with meromorphic functions f in R. If f is
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- . . . #
role~tree further. ther we can propose cimilar considerations on renlacing f by

If'l. Thus, beginning with

| 2
T*(D,w,f) =7 [ tT[ff |f£'(z)|%dxaylat,
Dt
we obtain T*(R,w,f) and others. If T*(R,w,f) <o fora we€R, then f € H2(R),
that is, |f|2 has the least harmonic majorant (|f|2)g in R, so that, T*(R,w,f) is
finite for all w € R. The converse is also true. To observe these we remember that

if £ € H°(R), then
(e300 - |£[20w) = 2T%(B,w,0),  w € R, (3)
an analogue of (1) , holds [21], [23]. The left-hand side of (3) coincides with
(It - £ [2)3),  wer.
The obvious analogue of (2), together with (3), yields in A the identity
(Ie, - £(n]?)3(0) = 21*(a,r, ). ()

A holomorphic function f in R is called BMOA, f £ BMOA = BMOA(R) in notation,
if
T*(R,f) = sup T*(R,w,f) < =

wER
the notion of BMOA(R) was first introduced by Thomas A. Metzger, and the present au-

thor extended it to many-valued functions [23]. 1In case R = A, this coincides with
the known class BMOA(A). The inclusion formula BMOA(R) < UBCA(R) is obvious,
where UBCA(R) 1is the family of all the holomorphic functions in UBC(R). This is a

consequence of the obvious inequality T(R,f) < T*(R,f), yet a better estimate
T(R,f) £ 2-1103{2T*(R,f) +1}

can be proved. There exists f € UBCA(A) ~ BMOA(A).

It is known that if f € BMOA(A), then f is Bloch, f & B(A) in notation, in
the sense that

sup(1 - |z|2)|f'(z)| < o

z€EA
Similarly, it is known [19] that if f € UBC(A), then f is normal in the sense of

011i Lehto and Kaarlo I. Virtanen, f € N(A) in notation, that is,
sup(l - |z|2)f#(z) <
z€A
Both B(A) and N(A) can be extended to B(R) and N(R) because R has the hyper-
bolic metric. The inclusion formulae BMOA(R) < B(R) and UBC(R) < N(R)
per in the case R = A. (See the papers [1] ~ [18],[22],
functions and the related topics.) Algebraically, BMOA(R)
while UBC(R) 1is not; UBC resembles N at this point.

are pro-
[25], on normal meromorphic

is closed for summation,

2. PROBLEMS:

Now, the problems:

(I) For a € C* = {|z] < «} we let n(a,f) be the number of the roots of the

equation f = o in R. Suppose that there exists an integer k 2 0 such that
cap{a € €*; n(a,f) < k} > 0,

where "cap" denotes the elliptic capacity. Is it true that f € UBC(R) ? This is
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valid for R in case k = 0, and is valid for R =A and k 2 0. The prut 2m is
unsolved for k > O on general R. Earlier and well-known conclusion is that f €
BC(R).

(II) Let A(R,f) be the spherical area of the image f(R) of R, that is, the
projection to C€* of the Riemannian image of R by f. Is there a constant k > 0O
such that

T(R,f) < kA(R,f) ? (5)

Since A(R,f) <w always holds if the sphere €* 1is considered to have the radius
1/2, the answer is "no" in general. We must therefore add the condition that A(R,f)
< 7; in this case T(R,f) < o is obvious; see (I). The celebrated Herbert J.
Alexander-B. A. Taylor-Joseph L. Ullman inequality teaches us that for holomorphic f,

-1

T*(R,f) < (2m) "A*(R,f),

where, in this case, A*(R,f) is the Euclidean area of f(R). See the problem (VII)

below.
(III) As usual, let Oy be the family of open Riemann surfaces R of class O,
or of those which are hyperbolic with X(R) = T* ~ {«} . It is easy to observe that
0, c O

UBCA BMOA ~
To prove that the inclusion is proper we make a few modifications to the argument in
[23]. Let E be a compact set of linear measure zero, yet of positive capacity, ly-
ing on the real axis. Let a € E and let h(z) = 1/(z - a), z € C* . We show that
R = C* N~ h(E) 1is of 0,2 (hence of OBMOA)’ yet R ¢ 0UBCA
z 1is of UBCA(R) because it omits the set h(E) of positive capacity, so that R

Next, let f € H (R) Then foh € H2(E* ~ E). Since E 1is removable for

. First, the function

¥ Oygca -
H™, foh, and hence f must be a constant. Therefore, R € OH2 . The problem is to

find a reasonable X for which OUBCA : OX : OBMOA .

(Iv) Ir r e UBC(R), then f € UBC(R ) for each subdomain R. of R.
the converse in the special case R = A. Let §(w,r)

Consider
=40 {|z - v| <r}l, w € 34,
such that for each w € 3A we may choose

0 <r <1 such that f € UBC(&(w,r)). Is 7t true that f € UBC(A) ?
ing problem for BMOA

0 <r <1. Let f be meromorphic in A

The correspond-
is solved in the positive in [21]; the extensions to the border-
ed Riemann surfaces under the obvious technical conditions are now easy.

(V) Each f € UBC(A) has, as a member of BC(A), the expression: f = (B, /B, )F

where Bl and B2 are Blaschke products with no common zero and F

and zero-free in A. We observe that F € UBC(A).

is holomorphic
Conversely suppose that F € UBC(A)
for f € BC(A). 1Is it true that f € UBC(A) ? The answer is "no" [19]. Actually
there exists a nonnormal Blaschke quotient B /B ,

is a reasonable condition for B

5 Wwe have only to let F = 1. What

l/B2 € UBC(A) ? An attempt is proposed in [25] in
terms of uniformly separated sequences.

(VI) For w €W we set

Ew) = {z € 85 |v| slz| <1, Jarg(z/w)| <m(1 - W)}, if w # 03

A,

if w = 0.
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The length of the arc 3A N 3Z(w) is &(w) = 2m(1 - |v|). A measure p 20 in A
is called a Carleson measure if sup u(Z(w))/&(w) < «, where w ranges over A. It
is known that f € BMOA(A) if and only if ( 1 - ]zla)lf'(z)ladxdy is a Carleson

measure (in the differential form). I proved [24] that if f € UBC(A), then
Qug(z) = (1 - |2|?)2%(2)%axay

is a Carleson measure, and gave a partial answer for the converse. The problem is:
duf is a Carleson measure. = f € UBC(A) ? I note that a difficulty lies in the

fact that f‘#2 is not subharmonic in general.

(VII) Let UBCO(R) be the family of meromorphic functions f in R such that
T(R,w,f) + 0 as w + R, namely, given € > 0 we may find a compact K < R such
that T(R,w,f) <& for w € R~ K ; this can be read in case R = A, T(1,f ) + 0
as |w| + 1 ; the holomorphic analogue is VMOA(R) obtained on replacing ; by T*
in the above. It is not difficult to prove that UBCO(R) < UBC(R) and VMOA(R) <
BMOA(R). Furthermore, we see

fop € UBCO(A) = f € UBCO(R) ; and fop € VMOA(A) = £ € VMOA(R),

because the projection of a closed disk in A is compact in R. Are the converses

valid ? We remark that the following are known:
2
IIAf#(z) dxdy < e« = f € UBCO(A); and ffAlf'(Z)ledxdy <o = f € VMOA(A);

see [19] and [2L4]. Are the extensions true for R ? Metzger, in a communication,
informed me some partial answers on the VMOA part. I do not know further information.
Finally we note that the hyperbolic analogue of UBC(R) is possible; see [21],

[26], and a forthcoming paper [27]. Let f be holomorphic and bounded, |f| <1, in
R, and let Y= - log(l - lf]2). Then V¥ is subharmonic with AY¥(z)dxdy =
hlf'(z)lzl(l - If(z)]z)zdxdy. The analogue of (1), and others, are true on replacing
by the hyperbolic derivative |f'|/(1 - |f|2). We note that o(f,0) = tanh'llfl
is the non-Euclidean hyperbolic distance of f and O, and o(f,0) is subharmonic
with V¥ < 20(f,0) £ ¥+ log b. It is a future task to find some problems on this
family.

The present article depends on the lecture on February L4, 1985, at Mie University,
Tsu, Mie, Japan, where slightly abstract treatment beginning with the F. Riesz decompo-

sition of subharmonic function was discussed.
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