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ABSTRACT. 1In this paper 1 prove a theorem to obtain new n-dimensional Laplace

transform pairs.
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l. INTRODUCTION.

The generalization of the well-known Laplace transform

L{f(t) ; s} = [ exp(-st)f(t)de (1.1)
o

to n-dimensional Laplace transform is represented as follows:

Ln{f(tl,tz,...Ln;sl,sz,...,sn) = Ln{f}

o o o n
=[ [ o[ exp(- ] st ) f dt dt,...dt . (1.2)
o o ° k=1 k k 1772 n

In this paper I consider a method of computing Laplace transform pairs of n-
dimensions from known one-dimensional Laplace transforms. The multi-dimensional

Laplace transform pairs are useful in the solution of partial differential equations
(see [1], [3]) and [4]).

2. THEOREM. Let
(i) Ll{f(t);s} = ¢(s)
(11) L /T o)ss) = B(s)

(11) L ()8

G(s)

(iv) LI{LAf(L“);s}

H(s)
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and let f(t), /E'¢(%9, t3f(t4), taf(ta) be continuous and absolutely integrable in

(0,°). Then

‘(IL +oeot %—)3
1 n 1, 1 1,2
Fl=(— +eeet —) ]38, ,000e,8
n l(tl"'L )1/2 64 t th 1 n

L e Lt IV
10 2 1 n 9 2 1 n — —
=2"n + 270 ———————— H(/S, +.e.+ V5 ),
(s s )1/2 (s s )1/2 1 n
LS, 1o Sn
n=2,3,4... (2.1)

provided the integral on the left exists as an absolutely convergent in each of the

variables.
PROOF: From (i), we have

ody = [ eSe(erar = [ e/ 5E(u)du,
s 4 !

7Cody = [ VT ™ Pe(wrau. (2.2)
o

Let us multiply both sides of (2.2) by e-SL, Re(s) > 0, and integrate between

the limits (0,»). Then on changing the order of integrations on the resulting

right hand integral (permissible by Fubini's theorem, on account of absolute
convergence), we obtain

[T o Bar = [ £ [ /T e at)au.
o o

o

We then evaluate the inner integral on the right (see [5], page 22) and use (ii) on

the left to get the following result:

F(s) = ﬂz’-f (1 + 2/;)5'3/29"2‘/“%(“)@,
o
s/ 2k(s) = '/—’z'f (1 + 2/as)e 2 "5 (u)du. (2.3)
[o]
Next let us write (2.3) in the form
1 1311 1,2
(Ll +eaot T ) F[gz(t Foeot E—) ]
n 1 n
Yug 1 Ju o 1
e Ty . -l
- 2567 [ e £(u)du + 6477 [ (& +..0+ —Dye L. /at (u)du
o o t'1 t
n
_o? j L u?
— AT A -2 1 “wly
= 10247/w f e u f(u )du+256vn f (t_ +ooot zl)e iusf(ua)du
o o 1 n
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/2

We multiply both sides by (tl...'.n)_l exp(- Z siti), integrate with respect

to ty between the limits (0,») and then change the order of integrations in the
resulting integral on the right, permissible by Fubini's theorem, on account of

absolute convergence.

This gives
1
- - (_t + .ot —-Ll)3
1 n 1, 1 1,2
[ oo oexp(-)s.t,)) — ———— F[{— #eeo+ —) 1dt ...dt
5 5 ii (‘1'~-‘n)1/2 64 t ta 1 n

- "3 4 [, u? " u?
= 1024/ f u f(u’) f —_ exp(—sltl— T)dtl...f - exp(-sntn— 4_t.n_)dtn] du

o o /El 1 o Vt,
Hase e [I"'I [3/2 e T 3/2]
o o o le"Wegeaet Ve e et Yteest to
u2 1
* exp(-s;t, - =] -q)dtl...dt.n du. (2.4)

Evaluating the inner integrals on the right by (see [5], page 22, results 6 and

7)
o 2 L — o 2 — -

1 u T -u's -3/2 u 2/n -u/s
[ —exp (-st——)dL = V= e t exp(-st- —-)dt = — e
o VT 4t s ’ £ 4 u
we get

1
R
Ly =7 Fl 4ot DHs s (2.5)
(t)eeet) 64 1 n “’

n+1]
- ® o 3., 4
= 1024 © 2 (sl...sn) 172 [ exp(-u } /si)u £(u )du
)

o+l (/5] +eoet Vs ) =

— . b, b
+512m 2 1 B exp(-u} /s )u f(u )du.

1/2
(sl...sn) o

The proof is complete if we use (iii) and ((iv) on the right hand side of

(2.5).
3. APPLICATIONS: n-dimensional Laplace transform pairs.

v
Let £(t) = t'; so that LI{L s} = =551 <

v+3/2;s} - T(v+1)T(v+5/2) _ F(s),

L UT o (@8} = L (TGt w572
X
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4v+3 T (4v+4)

306y, L - -
Ll{L £(t7);s) = Lt ;s} = Rz G(s),
b by dvts o T(AvHt) _
Ll{t f(t');s} = LI{L ;s} = sav+5 = H(s). Hence from (2.1), we get
-1/2, 1 1, -2v-2,
Ln{(tl...tn) (t— +ooot t—-) ,sl,...,sn}
1 n
ntl
2
= Lo ) (sl...sn)-l/?'(v’sl T N
8 I (v+1)T(v+5/2)
o+l
2
b gt Tavd) (s oees )T 20ET e TV
8 r(v+1)r(v+5/2)

Similarly if we take f to be the following

tc-l °F3(a,b,c;kt.)
ey exp(- vt)
f(t) =
v
v

a (a);
t F ’t
P ql(b); ]
in the theorem, then we obtain the following n-dimensional Laplace transform pairs:

-1/2

L ‘ (t.l...t.n) . lc+ 3/2; 64k

n l(fl et ?l)Zc 1 2la, b
1 n

; § 8. 4000,
R —l)2] 1 n
t t
1 n

n+l

2n 2 T(4c) (sl...s.n)“l/2
4be 473

BZCI‘(C)F(C+3/2)(/; oot VD)

2¢,2c+1/2,2c+1,2c42; 256k ]

a,b,c; (/?1’ oot /i)“

n+1

w 2 I‘(4c+l)(sl...sn)-l/2

+

2c+1/2,2¢c+1,2c+3/2,2c+2; 256k ]

be 4 3[ a,b,c; —

82cf‘(c)1‘(c+3/2)(/§_l_ et Va0 (/5] +ewur /5"

Re(c) > 0. (3.2)
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1 1
(t ...tn) 1 tn 4 1 — teeot —

1 n_, 1,1 _Ly2_ 1,-v=3/2, -2v-3 4 s auils
Ly 1/2-(-67(t teeet ) ) *71°° %0
tl t

n

n/2 . J— —_
o T T(hves) V2o (AvsT 4uuv /55D (/5T 4eeat VD))
e e e A n

721 (4y+5) (/5] #euut /50

n
+
2721 (2945) (s I...s1\1/2

1, — — 2 1 —_
cxp(g(/sl teoot /sn) )D_AV_S(;g(/sl +eoot /sn)),

Re(v) > - 1. (3.3)
R e T T
. L Y G Y U 1S U N s
L cee 38,5000
" ( (6—;(—l foout B2 v-1/27647t ta 1’
t t
1 n
n
—+1
— —v/2
w2 sin(v43/2)1(/s | +oo ot /sn)"/
= v
Y9 1/2
28 sin(v—l/Z)n(sl...sn)
'Gg(’i[\aﬁ—z-l' -y —1—12+X2.’~!
(/s +euot /q)z O T2 Tt el
T+ 1 v+3
n sin(v+3/2)ﬂ(/§:'+...+ /E;) 2
3v_73/851n(v-l/2)n(sl...sn)l/z

1 3 7 9 4
e ‘Z‘h*%»z*z] (3.4)

&0

03 /2
%50 = =y’
( S| oot sn)

-1/2
(tl...%)

L F l<a)»°+1»0+5/2;_¢_
n 2a+2 p+2 q (b); 2
1 1 1 1
(— 4ot —)
t t
1 n
o+l

n? r(4a+4)(sl...sn)"/2
4(8)2a+l

T(a+1)T(a¥5/2) (/5| +.0ut /5 ) 0%

F [(a)’2°+2’2°+5/2,20+3,2a+7/2;
* ptdq )

(b); Tﬁ%l:}
(/sl +ooot /sn)
a+l
2 r(4a+5)(sl...sn)‘l/2
+
82u+21‘(a+1)r(u+5/2)(/;l_ oot /i)‘“”‘
. " [(a),2a+3,2a+7/2,2a+4,2u+9/2; 256
pta a [ (b); (/;l_ ot /'s_n)"

Re(a) > 1. (3.5)
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