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1. INTRODUCTION.

In [1-4] a method has been discovered for the study of functional differential
equations whose argument deviations are involutions. Important in their own right,
they have applications in the investigation of stability of differential-difference
equations. Differential equations with involutions can be transformed by differen-
tiation to higher order ordinary differential equations and, hence, admit of point
data initial or boundary conditions. Initial value problems for such equations have
been studied in numerous papers. However, boundary value problems even for differ-
ential equations with reflection of the argument have not been considered yet.

The purpose of this paper is to discuss existence and uniqueness of solutions
of

y"' = f(x, y(x), y(-x)), (1.1)
where f € C[[-a, alxRxR, R], a > 0, with the following types of boundary conditions

y(-a) = Yo+ y(a) = ¥y (1.2)

or

y'(-a) - hy(-a) = 0, y'(a) + ky(a)

(]
o

(1.3)

where h, k -~ 0, h + k > 0.
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2. PRELIMINARY RESULTS.

First, we prove a sequence of lemmas for the linear case,
y'(x) = a(x)y(x) + b(x)y(-x) + c(x),
which are needed in order to prove our results for the general equations of the form
(1.1).
Before we proceed further, we present some results without proof, which help to
simplify the proofs of our results.
LEMMA 2.1. [5, pp.182]. If y(0) = y(1) = 0 and y(x) € C'[0, 1], then
jl yz(x)dx < 13 jl [y'(x)]zdx.
0 1r 0
LEMMA 2.2. [6]. 1If f(t, x, y) is continuous and has continuous first partials
with respect to x and y on [a, b]xP where P is an open convex set, then for
(t, %, y),(t, x, y) ¢ [a, blxp,
£(t,x,y) - £(t,%,y) = £,(t,r(0), s(E))(x - x) + f3(t,§(t),§(t))(y -y,

where

0

1
fz(t,r(t),s(t)) “J fz(t, ™+ (1 - Dx, 1y + (1 - T)y)dT,
0

and

rl _ _
J f3(t, =+ (1 - O)x, 1y + (1 - 1)y)dr,
0

f3(t,§(t) ,s(t))

are continuous functions on [a, b]xP with s(t), s(t) between y and y, r(t), r(t)
between x and x, and 0 < T < 1.

LEMMA 2.3. The homogeneous boundary value problem

together with
u(a) = u(b) = 0,

has the Green's function G(x, t), defined by
(b-x)(t-a), a <t <x<b

6lx, ©) = -
(b-t)(x-a), a < x <t <b,

and the following estimates hold true:

b 2 b
(b-a) b-a
L le(x, t)|dt S Jalcx(x, t) |dt <50

Now consider the second order linear differential equation
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y" = a(x)y + b(x) (2.1)

with
y'(a) - hy(a) = 0, y'(b) + ky(b) = 0, h, k>0, h + k > 0,
where a(x), b(x) € c[[a, bl, R]. Then
LEMMA 2.4. [7]. Suppose a(x) >m > 0 on [a, b], then boundary value problem

(2.1) has a unique solution satisfying
sup|y(x) | 5_% sup|b(x)|, =x ¢ [a, bl.

3. MAIN RESULTS.

We are now in a position to state our results.

LEMMA 3.1. If y(a) = y(b) =0, and y(x) € Clla, b], then
b 2 b
J yz(x)dx 5,12—2%— J [y'(x)]zdx.
a m a

PROOF. This follows easily from Lemma 2.1.

LEMMA 3.2. If y(a) = y(b) = 0 and y € C1[a, b], then

5a (b 1
suply(x)| < za [J [y'(x)]zdx] 2 a<x<b.
a

PROOF. Since y(a) = y(b) = 0, then one has

X b
2y(x) = [ y'(t)dt - J y'(t)de,
Ja X

or

X b b
2]y | iJ [y'(e) |de + J fy'(e)lae = J ly' (o) |dt,
a X a
or

b
sup |y (x) | 5% J ly'(t) |dt, a < x < b.
a

Using the Cauchy-Schwartz inequality we have

b 1. b 1
sup |y (x) | S.%[ J ae] 2 [J [y'(t:)]zdt:]/2 ,a<x<hb.
a a

Thus

- b 1/
2 ([t 0r%a 2, s < x <,

a

suply(x) | <

LEMMA 3.3. Consider equation (2.1) with the boundary condition

y(a) = y(b) = 0, (3.1)
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jul )2

where a(x) > - a, > - (E:; . Then any solution y(x) of (2.1) and (3.1) satisfies

m(b-a)

5 sup|b(x)|, a < x < b. (3.2)
2[n —ao(b—a) ]

suply(x) | <

PROOF. On multiplying (2.1) by y(x), and integrating the result from a to b, we
find, because of (3.,1),

2 b
a(x)y (x)dx - I b(x)y(x)dx,
a a

(b b
| ly'Gol%ax = - J
a

or
b 2 b 2 b
J [y'(x)]1%dx <a, J y (x)dx + sup|b(x)IJ ly(x) |dx.
a a a
Applying Lemma 3.1 and the Cauchy-Schwartz inequality, we get

3/

2
b a,(b-a) b _ 2 b 1/
J [y o1 2ax < 2—— J [y' (ol %ax + =21 qup[b(0)] [J [y' (01 %ax] '
a i a a
or
3
b 1 /2
[J [y'(x)]zdx]/24$ _gﬁkjél___§ sup|b(x)|, a < x <b.
a m -ao(b-a)

Lemma 3.2 and the above inequality then imply inequality (3.2).
LEMMA 3.4. Suppose a(x) and b(x) satisfy all conditions of Lemma 3.3. Then

problem (2.1) with the boundary conditions
v(@ =y, y(b) =y, (3.2)

has a unique solution.
PROOF. First, we show the uniqueness. Suppose u(x) and v(x) are solutions of
(2.1), (3.2). Let R(x) = u(x) - v(x), then
R"(x) = a(x)R(x), R(a) = R(b) = 0.
By Lemma 3.3, R(x) = 0, which implies u(x) = v(x). So problem (2.1), (3.2) has a
unique solution. To prove the existence, let u(x) and v(x) be solutions of the

following initial value problems

(i)  u"(x) = a(x)u(x) + b(x), u(a) vi u'(a) = 0;

(ii) v"(x) = a(x)v(x) , v(a)

0, wv'(a) = 1.
We notice that u(x) and v(x) exist and are unique. Moreover, v(b) # 0, because if
v(b) = 0, then from v(a) = 0, (ii) and Lemma 3.3 we have v(x) = 0 which contradicts
v'(a) = 1. Therefore, by linearity,

yz-u(b)

y(x) = u(x) + ———— v(x)
v(b)
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defines the solution of the problem (2.1), (3.2). Proof is complete.
Let us now, consider the second order linear functional differential equation
y'(x) = a(x)y(x) + b(x)y(-x) + c(x) (3.3)
where a(x), b(x), c(x) € C[-a, al, a > 0. We shall show that, under certain condi-
tions on a(x) and b(x), equation (3.3) with a boundary condition has a unique solu-
tion on [~a, al and obtain an estimate for such solution.
LEMMA 3.5. Suppose that a(x) > -m, |b(x)| < n, b(x) # 0, x ¢ [-a, a], and

baz(m+n) < nz. Then any solution of equation (3.3) with the boundary conditions

y(a) = y(-a) = 0, (3.4)
satisfies
21Ta2
sup |y (x) | N DN suplc(x)|, -a < x < a. (3.5)
m -4a” (m+n)

PROOF. On multiplying (3.3) by y(x) and integrating the result from -a to a we

have

a 2 a 2 a a
J [y'(x)]1%dx = - J a(x)y“(x)dx - J b(x)y(x)y(-x)dx - J c(x)y(x)dx,

a -a -a a

or

In

a 2 a 4 a a
J [y'(x)]1%ax mJ. vy (x)dx + HJ lyx) |y (~x) |dx + sup|c(xﬂ[ ly(x) |dx.
-a -a -a _a

Now, using Lemma 3.1, the Cauchy-Schwartz inequality, and the facts that

lyeollyo| < 2y%m + y -0l

and
a a
J y2(x)dx =J y2(-x)ax,
-a -a
we obtain
3/
a 1 2
[J [y'Gollax] 2 T2 plcm|, -a < x<a. (3.6)
-a T -4a” (m+n)

Applying Lemma (3.2) and inequality (3.6) we get inequality (3.5).

Having Lemma 3.5, we can prove the following theorem.

THEOREM 3.1. 1In addition to the assumptions of Lemma 3,5, suppose that a(x) and
b(x) are even functions on [-a, al. Then equation (3.3) with the boundary conditions

y(-a) = ¥y y(a) = Y, (3.7)

has a unique solution.
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PROOF. Uniqueness follows from the fact that if u(x) and v(x) are two solutions
of (3.3), (3.7), then R(x) = u(x) - v(x) implies

Rll(x)

a(x)R(x) + b(x)R(-x),
R{-a) = R(a) = O.
Hence, from Lemma 3.5, R(x) = 0 and u(x) = v(x).
Now, we show that problem (3.3), (3.7) in fact has a solution. Let
u(x) = y(x) - y(-x). (3.8)
Then
u"(x) = y"(x) - y"(-x). (3.9)
From (3.3) and (3.9) we have
u"(x) = a(x)y(x) + b(x)y(-x) - a(-x)y(-x)-b(-x)y(x) + c(x) - c(-x).
Since a(x) and b(x) are even, then
u"(x) = a(®) [y(x) - y(-x)] - b)) [y(x) - y(-x)] + c(x) - c(-x),

or by (3.8),

u'(x) [a(x) - b(x)]u(x) + c(x) - c(-x), (3.10)
and

u(-a) = Yy = Yoo u(a) = Yy - ¥y - (3.11)
Problem (3.10), (3.11) is a form of (2.1), (3.2), then by Lemma 3.4, it has a unique
solution u(x). Hence y(-x) is given by

y(-x) = y(x) - u(x).
This implies that
y"(x) = [a(x) + b(x)1y(x) + c(x) - B(x)u(x) (3.12)

and

y(-a) = ¥ y(a) = Yy (3.13)

Again by Lemma 3.4, Problem (3.12), (3.13) has a unique solution which is the solu-
tion of (3.3), (3.7). Proof is complete,
Now consider the following second order linear functional differential equation
y"(x) = a(x)y(-x) + b(x) (3.14)
where a(x) # 0 on [-a, a]. By differentiation and algebraic elimination this equa-

tion can be reduced to the fourth order differential equation

P ) =AY (0 + B (x) + C()y(x) + D), x € [-a, al, (3.15)

where
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A Al A
B(x) = {aag;] - [aag;]z = -;— a'(x) - % az(X),
C(x) = a(x)a(-x),
D) = alx) [b(-x) + X277,

a(x)
By a solution of (3.14) we mean a solution that is four times differentiable.
We shall show that equation (3.15) with the boundary conditions
(3.16)

y(-a) = A, y(a) = Ay, y"(-a) = B, y"(a) = B

1° 2
has a unique solution. We use the method given by R. A. Usmani [8]. First we need
the following Lemma.

LEMMA 3.6. Consider the fourth order linear differential equation (3.15) with
the boundary condition

y(-a) = y(a) = y"(-a) = y"(a) = 0, (3.17)

where A(x) € Cl[—a, al], B(x), Cc(x), D(x) € C[-a, a], % A'(x) - B(x) <m and
lex)| <n. 1f
4mn?a® + 1éna” < 1, (3.18)

then any solution of (3.15), (3.17) satisfies

8“84

sup|y(x)] < 3 sup|D(x) |, -a < x < a. (3.19)

7 -4mm a" -16na
PROOF. Let
y"' = z. (3.20)
On multiplying (3.20) by y(x) and integrating the result from -a to a, we have
a 2 a

J [y'(x)]%dx = -J yzdx,

-a -a
or

a a 1/, a 1,

I [y'(x)]zdx 5[J yz(x)dx] 2 [J zz(x)dx] 2
-a -a -a
Applying Lemma 3.1, we obtain

a 2
[J [y' ()] 2dx}17,2 < o
-a '"2

a 1
[J Iz'(x)]2dx]/2 . (3.21)
-a

Also, from (3,20) and (3.15)
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z" = A(x)z' + B(x)z + C(x)y + D(x), (3.22)
z(-a) = z(a) = 0.

In a similar manner,

a , 1 2 )3/2
[J [z'(x)]“dx] 5—7——2—9-2—-——7 sup|D(x)|, - a < x < a. (3.23)
-a m ~4ma m ~16na

From Lemma 3.2, (3.21) and (3.23) inequality (3.19) follows.

THEOREM 3.2. Suppose all assumptions of Lemma 3.6 hold true. Then problem
(3.15), (3.16) has a unique solution,

PROOF. Assume that there exist two distinct functions u(x) and v(x) satisfying

(3.15) and (3.16). Then it is easily seen that Y(x) = u(x) - v(x) satisfies

(0 = AGIY" OBV (OHCEIU(K) , Y(-a) = y(a) = ¥"(-a) = y"(a) = 0. (3.24)

"
o

Now, from Lemma 3.6 and (3.24) it follows that sup|y(x)| < 0, which proves Y(x) =
and u(x) = v(x) on [-a, a]. This shows that problem (3,15), (3.16) has at most one
solution.

In order to prove that (3.15), (3.16) indeed has a solution, we define functions

y,(x), 1 =1, ..., 4, as solutions of the respective initial value problems:
i

3P eaGy B0y DG, v (ca)=AL, ] (-a)=yl(-a) =yl (-a)=0;
1 y{Peatyy meoyety,, yy(-a)=l, y,(-a)=y}(-a)=y}' (-a)=0;
(111) yga)ﬂA(x)y;'+B(x)yg+c(x)y3, yg(—a)=31, y3(-a)-y5(-a)=y§'(-a)=0;
(1) y{P a0y Gy HC 0y, yy' (-a)=1, y,(-a)=y}(-a)=y}(~a)=0.

From the continuity of A(x), B(x), C(x), and D(x) we are assured that unique solu-
tions of these initial value problems exist on [-a, a]. Furthermore, the function

z(x) = yl(x) + syz(x) + y3(x) + tyA(x),
s, t being scalars, satisfies the initial value problem
2 an(0 2" 4B (02" HC (0 24D(0), 2(-a) = Ay, 2'(-a) = s, 2"(-a) = By, 2" (-a) = t.

The function z(x) will be a solution of (3.15), (3.16) provided s, t satisfy

syz(a) + tyb(a) = A, - yl(a) - y3(a),
sy"(a) + tyZ(a) = BZ - y;(a) - y;(a).

If A = yz(a)y"a(a) - y;(a)ya(a) # 0, a unique solution of the preceding linear
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system can be found, and the corresponding function z(x) then is the unique solution

of (3.15), (3.16). However, if A = 0, then

yz(a) y,‘(a)
y—;(—a)- = ;,.4.—(5 = p (constant).

We can assume that p # 0, because if p = 0, then yz(a) = 0 and by means of Taylor's
formula it can be shown that the solution of

(4) - " n I 1] PN TT) - =
y, = A(x)y2 + B(x)y2 + C(x)yz, y2(a) = yz(-a) =¥y (-a) = yz(-a) =0
has the property yé(-a) = 0, contradicting the original assumption yé(—a) =1,

Similarly, p cannot be unbounded. Thus it follows that

yz(a) = py'z'(a), p < =, (3.25)
Now using (ii), and the Taylor formula, we obtain

v = 22 + 2 a*[A()y} (@ + Bl@yj(e) + Clady,(@], -a<a<a,
(3.26)

y'z'(a) = 2a2[A(B)y;' (B) + B(B)y'z'(B) + C(B)yz(B)], -ac<B<a.
On combining (3.25) and (3.26) we get
ap[A(B)y}' (B)+B(R)y (B)+C(B)y, ()] - -;- aB[A(a)y'z" (@)+B(a)yj(a)+C(a)y, (a) ]=1,
for all A(x), B(x), C(x) € C[-a, al. In an attempt to determine yz(a), yz(C), y'z'(a),

yg(B), y;'(a) and y;'(B), we choose

A(x) =1, B(x) =1, C(x)

]
o
-

A(x) = 1, B(x)

1, C(x) = -1,

]

A(x) = -1, B(x) = -1, C(x) =1,

A(x) = -1, B(x)

-1, C(x) = -1,

A(x) =1, B(x) = -1, C(x)

]
-
-

A(x) = 1, B(x) = -1, C(x)

[
|
—

-

giving the system

aplyy' (8) + y3(8) +y,(B)] - 3 2°ly)' (@) + yj(@ + y,(@] =

[
-

ap[y;' (B + yy(8) - yZ(B)] - % aa[y'z" (@ + yh(w) - yz(a)] =

(=
™

ap[—y'z"(B) - yy(8) + yz(B)] - % a3[-y'2" (@) - yh(a) + yz(a)] =1,

]
-
-

aplyy (B) - ¥3(®) - 7, )] - 5 a’l-yy (@ - y3(@ - y, ()]

ap[y;'(ﬂ) - y;(B) + yZ(B)] - % a3[y;'(a) - y;(“) + yz(a)] =1,



160 J. WIENER AND A. R. AFTABIZADEH

ap[y"'(B) - yy(8) - yz(B)] - —'a Iy"‘(a) -y - yz(a)]

But this latter system in the unknowns yz(a), yZ(B), ... is inconsistent. We thus
conclude that A cannot vanish and the proof of the theorem 1s completed.

Now, it is easy to show that problem (3.14) with y(-a) = y(a) = O has a unique

solution.
THEOREM 3.3. Consider equation (3,14). Suppose a(x) € C(z)[-a, a] b(x) €
c[-a, al, b(-a) = b(a) = 0, [a(i¥) <m and |a(x)a(-x)| < n.
If
4mn2a2 + 16na4 < "A’
then equation (3.14) with
y(-a) = y(a) = 0, (3.27)

has a unique solution.

PROOF. Since equation (3.14) can be reduced to equation (3.15), then by theorem
3.2, problem (3.14), (3.27) has a unique solution.

Now, we consider the general equation (1.1) and prove the following theorems.

THEOREM 3.4. Suppose f is bounded on |-a, a] xRxR, Then problem (1.1), (1.2)
has a solution.

PROOF. Problem (1.1), (1.2) is equivalent to
a
y(x) = (y1+y0) + == (yl-yo)x +J G(x,t) f(t,y(t), y(-t))de, (3.28)
-a

where G(x,t) is given by Lemma 2.3. Let M be the bound of [fl on [-a, al xRxR.
Define a mapping T:E - E by

a
Ty(x) = %(y1+y0) +~£;(y1—y0)x +:La G(x,t)f(t,y(t), y(-t))dt, (3.29)

where E = C[[-a, al, R] is a Banach space with the norm

lyllg = max lyGol, - a<x<a.
Then from (3.29) and the estimates on G(x,t) and Gx(x,t), it follows that

2

Ty ] < 3 Iytygl + 5 o 1yymvel + 3 a2y, (3.30)
and

IT'ye | < 5= lyy-y,l +

y = 7a Yl Yo aM, (3.31)

Hence, T maps the closed, bounded, and convex set

2

=y lyw| <y Iyl + 2 2s vyl + 1 &%
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into itself. Moreover, since T'y(x) verifies (3.31), T is completely continuous on
cl[-a, al, R] by Ascoli's theorem. The Schauder's fixed point theorem then yields
a fixed point of T, which is a solution of (1.1), (1.2), thus completing the proof of
the theorem.

THEOREM 3.5. Suppose f is continuous and for (x,y,z), (x,y,z) € [-a, a] xRxR,
it satisfies a Lipschitz condition

|£(x,y,2) - £(x,5,2)] < Llly-ﬂ +L, |z-z], (3.32)

where L1 and L2 > 0. Then the boundary value problem (1.1), (1.2) has a unique solu-

tion, provided
(L + 1) < 2. (3.33)
PROOF. Let B be the Banach space of functions y € C[[-a, al, R] with the norm

HY|IB=mx]y(x)|’ -a <x £ a.

Define the operator T:B > B by (3.29). Then for yl(x) and yz(x) € B, we have
a
|Ty1(x) - Tyz(x)l ij |G(x,t)[|f(t,yl(t), yl(-t))—f(t.yz(t),yz(—t))ldt-
-a

Using the Lipschitz condition (3.32) we obtain

a
lTyl(x) - Tyz(x)l jj |G(x,t)l[L1]y1(t)-y2(t)| + Lzlyl(—t)—yz(-t)]]dt,

-a
or
2
a (L1+L2)
|Ty1(x) - Tyz(x)l L max]yl(x) - yz(x)|, -a<x<a,
or
2
a (L1+L2)
| lTyl(x) - Ty, (x) | IB < | lyl(x) - y,(x) | g
Also,

HT'y G = Ty, () g < al#L) |y, (0 -y, |-

All of these considerations and inequality (3.33) show that T is a contraction
mapping and thus has a unique fixed point which is the solution of (1.1), (1.2).
Proof is complete.

THEOREM 3.6. Assume that there exist positive numbers m and r such that

2 2
mo-4
(1)  sup|f(x,0,y)| 5_————E§— r, for x £ [-a, a], |y| < r,

2ma
(i1) £(x,y,z) has a continuous partial derivative with respect to y on

[-a, alxRxR and
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2
fz(x,y,z) >-m> :15 , for x € [-a, al, yeR, |z] <r.

ba
Then equation (1.1) with the boundary conditions
y(-a) = y(a) = 0, (3.34)
has a solution.
PROOF. Let B_ = {y € cl-a, al:|y] < r}. Forye B and x € [-a, a], define

a mapping T:C[-a, a] » C[-a, a] by (Ty)(x) = v(x), where

v'"(x) f(x,v(x),y(-x)), (3.35)

and

v(-a) = v(a) = 0. (3.36)

Equation (3.35) is equivalent to
v'(x) = £(x,v(x),y(-x)) - £(x,0,y(-x)) + £(x,0,y(-x)).

Then from Lemma 2.2, it follows that

1
v'"(x) = ( J fz[x,Tv(x),y(-x)]dT)v(x) + £(x,0,y(-x)). (3.37)
0

Applying Lemma 3.3 and condition (ii) we have

2
sup]v(x)l 5.-%33——3 suplf(x,O,y(-x))I, -a<x¥<a,
. T -4ma
or from (i)
sup|lv(x)| <r, -a<x<a. (3.38)

Hence, T maps the closed, bounded, and convex set Br into itself, Moreover, from

(3.35), (3.36) and Lemma 2.3

a
v(x) =J G(x,t)f(t,v(t),y(-t))dt,
-a

or

a
v'(x) =J Gx(x,t)f(t,v(t),y(—t))dt. (3.39)
-a

Since If(x,v(x),y(-x))l <k, for x € [-a, a], Iv(x)] <r, Iy(-x)l < r, then

[v'(x)] < ak.
All of these considerations show that T is completely continuous by Ascoli's theorem.
Schauder's fixed point theorem then yields a fixed point of T, which is a solution

of (1.1), (3.34).

THEOREM 3.7. Assume that there exist positive numbers m and r such that

(i) SUP‘f(X,O,y)I ﬁmr, for x ¢ [—a,, a]’ ,yl < r,

(ii) f(x,y,z) has a continuous partial derivative with respect to y on [-a, a]xRxR and
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fz(x,y,z) >m >0, for x € [-a, al, y € R, |z] < r.

Then the boundary value problem (1.1), (1.3) has a solution.
PROOF. Let B = {y € cl[-a, a):|y| < r}. Forye B, define a mapping

T:C[-a, a] + C[-a, a] by (Ty)(x) = v(x), where
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v"' = f(x,v(x),y(-x)) (3.40)

v'(-a) - hv(-a) = 0, v'(a) + kv(a) = 0. (3.41)

Equation (3.40) is equivalent to
1
v o= (J fZ[x,Tv(x),y(—x)]dT)v(x) + £(x,0,y(-x)).
0
Using Lemma 3.3 and conditions (i), (ii) we obtain
suplv(x)| <r, -a<x<a.

This shows that T maps Br into itself. Also from (3,40) we have

X
v'(x) = v'(-a) +J’ fle,v(t),y(-t)]dt.
-a

Since v'(-a) = hv(-a), then |v'(-a)| < h|v(-a)| < hr. Moreover, If(x,y,z)[ < k for

x € [-a, al, |yl <r, |z| < r, then

[v'(x)| < hr + 2ak.

Thus, T is completely continuous by Ascoli's theorem. Schauder's fixed point theorem

then yields a fixed point of T, which is a solution of (1.1), (1.3).
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