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I. INTRODUCTION.

In [1-4] a method has been discovered for the study of functional differential

equations whose argument deviations are involutions. Important in their own right,

they have applications in the investigation of stability of differential-difference

equations. Differential equations with involutions can be transformed by differen-

tiation to higher order ordinary differential equations and, hence, admit of point

data initial or boundary conditions. Initial value problems for such equations have

been studied in numerous papers. However, boundary value problems even for differ-

ential equations with reflection of the argument have not been considered yet.

The purpose of this paper is to discuss existence and uniqueness of solutions

of

y" f(x, y(x), y(-x)), (I.I)

where f e C[[-a, a]xRxR, R], a > O, with the following types of boundary conditions

y(-a) YO" y(a) Yl (1.2)

or

y’(-a) hy(-a) 0, y’(a) + ky(a) 0, (1.3)

where h, k O, h + k O.
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2. PRELIMINARY RESULTS.

First, we prove a sequence of lemmas for the linear case,

y"(x) a(x)y(x) + b(x)y(-x) + c(x),

which are needed in order to prove our results for the general equations of the form

(I.).

Before we proceed further, we present some results without proof, which help to

simplify the proofs of our results.

LEMMA 2.1. [5, pp.182]. If y(O) y(1) 0 and y(x) C I[0, i], then

fl 2
y i

1
(x) dx < [y’ (x) 2dx.

0 0

LEMMA 2.2. [6]. If f(t, x, y) is continuous and has continuous first partials

with respect to x and y on [a, b]xP where P is an open convex set, then for

(t, x, y),(t, , ) [a, b]xP,

f(t,x,y) f(t,,) f2(t,r(t), s(t))(x- ) + f3(t,(t),(t))(y- y),

where

f2(t,r(t),s(t)) f2(t, x + (1 r), y + (I
0

and

fl
f3(t,(t),(t)) f3(t, x + (I ), y + (I ))dT,

are continuous functions on [a, b]xP with s(t), (t) between y and , r(t), (t)

between x and x, and 0 _< Y <_ I.

LEMMA 2.3. The homogeneous boundary value problem

U 0,

together with

u(a) u(b) O,

has the Green’s function G(x, t), defined by

C(x, t) 1
b-a

and the following estimates hold true:

[(b-x)(t-a), a <_ t < x < b

(b-t)(x-a), a <_ x <_ t _< b,

[G(x t) [dt <
(b-a)2 b

8 IGx(X t)[dt < b-a

a a 2

Now consider the second order linear differential equation
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y" a(x)y + b(x) (2.1)

with

y’(a) hy(a) 0, y’(b) + ky(b) O, h, k > O, h + k > 0,

where a(x), b(x) e C[[a, b], R]. Then

LEMMA 2.4. [F]. Suppose a(x) _> m > 0 on [a, b], then boundary value problem

(2.1) has a unique solution satisfying

suply(x) < i suplb(x) x e [a b].
m

3. MAIN RESULTS.

We are now in a position to state our results.

LEMMA 3.1. If y(a) y(b) O, and y(x) e cl[a, b], then

b
y2(x)dx < (b_a)2 Ib-- [Y ’(x)]2dx"

a I a

PROOF. This follows easily from Lemma 2.1.

LEMMA 3.2. If y(a) y(b) 0 and y e cl[a, b], then

PROOF. - fb
suply(x) <-- [J [Y’(X)]2dx] I/2

a <_ x <_ b.
a

Since y(a) y(b) 0, then one has

x iu2y(x) y’(t)dt y’(t)dt,
la x

or

or

21y(x) <--I lY’(t) Idt + lY’(t) Idt ly’(t)
a x a

sup lY(X) <_ ly’ (t)ldt, a < x _< b.
a

Using the Cauchy-Schwartz inequality we have

Thus

LEMMA 3.3.

suply(x) <1/2[ ib ]i/ ib ]1/2dt 2 [y, (t)] 2d t a <_x <_b
a a-- Ib 1/2suply(x) <-- [y’(x)]2dx]

a
a<x<b.

Consider equation (2.1) with the boundary condition

y(a) y(b) O, (3.1)
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where a(x) >_- a
0

> (a)2 Then any solution y(x) of (2.1) and (3.1) satisfies

suply(x) <-- (b-a)2 suplb(x) I, a <_ x <_ b. (3.2)
2 [2-ao(b-a) 2]

PROOF. On multiplying (2.1) by y(x), and integrating the result from a to b, we

find, because of (3.1),

[y’(x)]2dx a(x)y (x)dx b(x)y(x)dx,
a a a

or

[y’(x)]2dx <_ a
0

(x)dx + suplb(x) IY (x) dx"
a a a

Applying Lemma 3.1 and the Cauchy-Schwartz inequality, we get

a
0
(b-a) 2

ib[Y’(X)]2dx --< 2
[Y’(X)]2dx + (b-a)3/2

a n a Ib 2 1/2
sup lbCx)l [y’Cx)] dx]

a

or

2
dx]I/[y’ (x) 2 <

n(b-a/2
2

a -ao (b-a) 2 suplbCx) I, a<x<_b.

Lemma 3.2 and the above inequality then imply inequality (3.2),

LEMMA 3.4. Suppose a(x) and b(x) satisfy all conditions of Lemma 3.3. Then

problem (2.1) with the boundary conditions

y(a) YI’ y(b) Y2
has a unique solution.

(3.2)

PROOF. First, we show the uniqueness. Suppose u(x) and v(x) are solutions of

(2.1), (3.2). Let R(x) u(x) v(x), then

R"(x) a(x)R(x), R(a) R(b) O.

By Lemma 3.3, R(x) O, which implies u(x) v(x). So problem (2.1), (3.2) has a

unique solution. To prove the existence, let u(x) and v(x) be solutions of the

following initial value problems

(i)

(ii)

u"(x) a(x)u(x) + b(x),

v"(x) a(x)v(x)

u(a) YI’ u’(a) 0;

v(a) O, v’(a) I.

We notice that u(x) and v(x) exist and are unique. Moreover, v(b) O, because if

v(b) O, then from v(a) O, (ii) and Lemma 3.3 we have v(x) 0 which contradicts

v’(a) i. Therefore, by linearity,

Y2-u(b)
y(x) u(x) + v(x)

v(b)
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defines the solution of the problem (2.1), (3.2). Proof is complete.

Let us now, consider the second order linear functional differential equation

y"(x) a(x)y(x) + b(x)y(-x) + c(x) (3.3)

where a(x), b(x), c(x) C[-a, a], a > O. We shall show that, under certain condi-

tions on a(x) and b(x), equation (3.3) with a boundary condition has a unique solu-

tion on [-a, a] and obtain an estimate for such solution.

LEMMA 3.5. Suppose that a(x) >-m, Ib(x) < n, b(x) # O, x e [-a, a], and

4a2(m+n) < 2. Then any solution of equation (3.3) with the boundary conditions

y(a) y(-a) O, (3.4)

satisfies

2a
2

suply(x) <
2_4a2

suplc(x) -a < x < a. (3.5)
(m+n)

have

or

PROOF. On multiplying (3.3) by y(x) and integrating the result from -a to a we

[y’(x)]2dx a(x) (x)dx b(x)y(x)y(-x)dx c(x)y(x)dx,
-a -a a a

and

2 I_ ay (x)dx y2(-x)dx,
-a a

we obtain

a
[y’(x)]2dx]I/2 n(2a)3/2

[| _< sup[c(x) I, -a <_ x<a. (3.6)
a 2-4a2(m+n)J_

Applying Lemma (3.2) and inequality (3.6) we get inequality (3.5).

Having Lemma 3.5, we can prove the following theorem.

THEOREM 3.1. In addition to the assumptions of Lemma 3.5, suppose that a(x) and

b(x) are even functions on [-a, a]. Then equation (3.3) with the boundary conditions

y(-a) YI’ y(a) Y2 (3.7)

has a unique solution.

Now, using Lemma 3.1, the Cauchy-Schwartz inequality, and the facts that

1 2 y2ly(x) IIy(-x)l < [y (x) + (-x)],

[y’ (x) ]2dx < m (x)dx + n lY(X) lY(-X) Idx + suplc(x)l ly(x)
a -a -a -a
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PROOF. Uniqueness follows from the fact that if u(x) and v(x) are two solutions

of (3.3), (3.7), then R(x) u(x) v(x) implies

R"(x) a(x)R(x) + b(x)R(-x),

R-a) R(a) 0.

Hence, from Lemma 3.5, R(x) 0 and u(x) v(x).

Now, we show that problem (3.3), (3.7) in fact has a solution. Let

u(x) y(x) y(-x). (3.8)

Then

u"(x) y"(x) y"(-x).

From (3.3) and (3.9) we have

u"(x) a(x)y(x) + b(x)y(-x) a(-x)y(-x)-b(-x)y(x) + c(x) c(-x).

Since a(x) and b(x) are even, then

u"(x) a(x)[y(x) y(-x)] b(x)[y(x) y(-x)] + c(x) c(-x),

or by (3.8),

and

u"(x) [a(x) b(x)]u(x) + c(x) c(-x),

(3.9)

(3.10)

u(-a) Yl Y2’ u(a) Y2 Yl
Problem (3.10), (3.11) is a form of (2.1), (3.2), then by Lemma 3.4, it has a unique

solution u(x). Hence y(-x) is given by

y(-x) y(x) u(x).

y"(x) [a(x) + b(x)]y(x) + c(x) b(x)u(x)

(3.11)

y(-a) YI’ y(a) Y2" (3.13)

Again by Lemma 3.4, Problem (3.12), (3.13) has a unique solution which is the solu-

tion of (3.3), (3.7). Proof is complete.

Now consider the following second order linear functional differential equation

y"(x) a(x)y(-x) + b(x) (3.14)

where a(x) # 0 on [-a, a]. By differentiation and algebraic elimination this equa-

tion can be reduced to the fourth order differential equation

(4)
y (x) A(x)y"’(x) + B(x)y"(x) + C(x)y(x) + D(x), x 6 I-a, a], (3.15)

where

and

This implies that

(3.12)
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A(x) 2a’ (x)
a(x)

ra’ (x)l a’(x) 2B(x) ---, a(x)
1l ’(x) %- ()"" a a2_x_

C(x) a(x)a(-x),

rb(x)O(x) -a(x)[b(-x) + La-,
By a solution of (3.14) we mean a solution that is four times dlfferentiable.

We shall show that equation (3.15) with the boundary conditions

y(-a) AI, y(a) A2, y"(-a) Sl, y"(a) B
2

has a unique solution. We use the method given by R. A. Usmanl [8].

the following Lemma.

LEMMA 3.6. Consider the fourth order linear differential equation (3.15) with

the boundary condltion

y(.-a) y(a) y"(-a) y"(a) O,

1where A(x) e cl[-a, a], B(x), C(x), D(x) e C[-a, a], A’(x) l(x) <_m and

Ic(x)l _< n. If

4m2a2 + 16na
4 < 4

then any solution of (3.15), (3.17) satisfies

4
suply(x) <- 4 4 suplD(x) l, -a <_x_< a.-4m2a2-16na

PROOF. Let

yl! Z.

On multiplying (3,20) by y(x) and integrating the result from -a to a, we have

[y (x) 2dx yzdx,
a

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

First we need

or

_a i_a ]I/2 i_a 2 ]1/2[y’(x)]2dx <[ y2(x)dx z (x)dx
a a a

Applying Lemma 3.1, we obtain

[y,(x)]Zdx 2 _<
n2

[z,(x)]2dx 2

a a
(3.21)

Also, from (3,20) and (3.15)
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z" A(x)z’ + B(x)z + C(x)y + D(x),

z(-a) z(a) O.

(3.22)

In a similar manner,

[z’ (x) ]2dx
a

3

4_4ma 2-16ha4_ suplD(x) a <_ x <_ a.

From Lemma 3.2, (3.21) and (3.23) inequality (3.19) follows.

(3.23)

THEOREM 3.2. Suppose all assumptions of Lemma 3.6 hold true. Then problem

(3.15), (3.16) has a unique solution.

PROOF. Assume that there exist two distinct functions u(x) and v(x) satisfying

(3.15) and (3.16). Then it is easily seen that (x) u(x) -v(x) satisfies

4
(4) (x) A(x)"’ (x)+B(x)"(x)+C(x)(x), (-a) (a) "(-a) "(a) O. (3.24)

Now, from Lemma 3.6 and (3.24) it follows that supl(x) <_ O, which proves (x) 0

and u(x) v(x) on [-a, a]. This shows that problem (3.15), (3.16) has at most one

solution.

In order to prove that (3.15), (3.16) indeed has a solution, we define functions

Yi(X), i i, 4, as solutions of the respective initial value problems:

(1) yI(4) A(x)Y’ +B (x) Y’+C(x) Yl+D(x) Yl (-a) =AI YI’ (-a) yl (-a)Y[ (-a)0

(ii) y =A(x) +B (x) Y2 "(-a)fy (-a)=0;Y2’(-a)=l’ y2(-a)-Y2

(ill) y4)=A(x)y’ +B (x) y+C(x) y3, Y(-a)B1 Y3(-a)ffiy (-a)y’ (-a)O

(iv)
(4)

A(x)"’+B(x)y2+C(x)y4Y4 Y4 -Y4"’ (-a) 1 Y4 (-a)Y (-a)--y4’’ (-a)0

From the continuity of A(x), B(x), C(x), and D(x) we are assured that unique solu-

tions of these initial value problems exist on [-a, a]. Furthermore, the function

z(x) Yl(X) + sy2(x) + Y3(X) + ty4(x),

s, t being scalars, satisfies the initial value problem

z(4)=A(x)z"’+B(x)z"+C(x)z+D(x), z(-a) AI, z’(-a) s, z"(-a) BI, z"’(-a) t.

The function z(x) will be a solution of (3.15), (3.16) provided s, t satisfy

sY2(a) + tY4(a) A
2 Yl(a) Y3(a),

If A Y2(a)Y"4(a) Y2(a)Y4(a) # O, a unique solution of the preceding linear
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system can be found, and the corresponding function z(x) then is the unique solution

of (3.15), (3.16). However, if A O, then

Y2(a) Y4(a)
y(a) y(a) p (constant).

We can assume that p # O, because if p O, then Y2(a) 0 and by means of Taylor’s

formula it can be shown that the solution of

(4) A(x)-"’+ B(x) + C(x)y
2 Y2(a) "(-a) (-a) y2(-a) 0Y2 Y2 Y2 Y2 Y2

has the property Y2’(-a) 0, contradicting the original assumption y(-a) i.

Similarly, p cannot be unbounded. Thus it follows that

Y2(a) py(a), p < oo. (3.25)

Now using (ii), and the Taylor formula, we obtain

2
a
4 y yY2(a) 2a + [A(a) ’(a) + B() () + C()y2(a)] a < a < a,

(3.26)

y(a) 2a2[A(8)y (8) + B(B)y2(8) + C(8)y2(8)] a < 8 < a.

On combining (3.25) and (3.26) we get

i
a
3 y, (a) +C (a) y2 (a) ]=i,ap[A(8)y (8)+B(8)y2(8)+C(8)y2(8)] [A() ()+B()y

2

for all A(x), B(x), C(x) C[-a, a]. In an attempt to determine y2(a), y2(), y2(a),

Y2"(8)’ Y2"’ (a) and y’(8), we choose

A(x) I, B(x) i, C(x) i,

A(x) i, B(x) I, C(x) =-I,

A(x) =-I, B(x) =-I, C(x) I,

A(x) =-I, B(x) =-i, C(x) =-i,

A(X) I, B(x) =-I, C(x) I,

A(x) i, B(x) =-i, C(x) =-i,

giving the system

"(8) + y2(8)] I 3
() + "() + y2(e)] 1ap[Y2 (B) + Y2 a [Y2 Y2

"(8) y2(8)] i 3 ......
ap[y2

(8) + Y2 a [Y2 () + Y2() Y2 (a)] I,

y(8) I a3f[_y2,,, Y Y2(a)] i,ap[-y
2

(8) + y2(8)] (e) () +

y2(),, -i 3[ y, () Y Y2(a)] Iap[-y’ () Y2(8)] a ()

I
a
3 yap[y

2
(8) y(8) + y2(8)] [Y2 () () + Y2 ()] i
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y i 3 (a) Y2 (a) Iap[y2
() () y2(8)] - a [Y2’ (a) Y2

But this latter system in the unknowns y2(a), y2(8), is inconsistent. We thus

conclude that A cannot vanish and the proof of the theorem is completed.

Now, it is easy to show that problem (3.14) with y(-a) y(a) 0 has a unique

solution.

THEOREM 3.3. Consider equation (3.14). Suppose a(x) g C

C[-a a], b(-a) b(a) O, [a’(x) 2
a(x) <- m and la(x)a(-x) _< n.

If

44m’n’2a2 + 16ha
4

< l

then equation (3.14) with

(2)[-a, a] b(x)

has a unique solution.

PROOF. Since equation (3.14) can be reduced to equation (3.15), then by theorem

3.2, problem (3.14), (3.27) has a unique solution.

Now, we consider the general equation (i.I) and prove the following theorems.

THEOREM 3.4. Suppose f is bounded on [-a, a] xRxR. Then problem (I.i), (1.2)

has a solution.

PROOF. Problem (I.I), (1.2) is equivalent to

y(x) =- (yl+Yo) + (yl-Yo)X + C(x,t)f(t,y(t), y(-t))dt,

where G(x,t) is given by Lemma 2.3. Let M be the bound of Ifl on [-a, a] xRxR.

Define a mapping T:E E by

I i I_aTy(x) (yl+Yo + a(Yl-Yo)X + G(x,t)f(t,y(t), y(-t))dt,
a

(3.28)

(3.29)

where E C[[-a, a], R] is a Banach space with the norm

lYl E max ly(x)I, a < x < a.

Then from (3.29) and the estimates on G(x,t) and G (x,t), it follows thatx

1 1 1lTy(x)[ i lyl+Y01 +a IYl-Y01 +7 azM’
and

IT’y(x) I-< a IYl-Y01 + aM.

(3.30)

(3.31)

Hence, T maps the closed, bounded, and convex set

i 1 1 2
MB {y e E: ly(x) _< lyl+Yol + a IYl-Yol + a

y(-a) y(a) O, (3.27)



BOUNDARY VALUE PROBLEMS FOR DIFFERENTIAL EQUATIONS 161

into itself. Moreover, since T’y(x) verifies (3.31), T is completely continuous on

C[[-a, a], R] by Ascoli’s theorem. The Schauder’s fixed point theorem then yields

a fixed point of T, which is a solution of (I.i), (1.2), thus completing the proof of

the theorem.

THEOREM 3.5. Suppose f is continuous and for (x,y,z), (x,y,z) [-a, a] xRxR,

it satisfies a Lipschitz condition

If(x,y,z) f(x,,)I < el IY-l + e
2 Iz-l, (3.32)

where L
I and L

2
> O. Then the boundary value problem (i.i), (1.2) has a unique solu-

tion, provided

2
a (L

I + L2) < 2. (3.33)

PROOF. Let B be the Banach space of functions y C[[-a, a], R] with the norm

[IY[ B max[y(x)I, -a < x <_ a.

Define the operator T:B B by (3.29), Then for Yl(X) and Y2(X) g B, we have

ITYI(X) TyZ(x) < IC(x’t) [If(t’Yl(t)’ Yl(-t))-f(t’Y2
a

(t) ,y2(-t)

Using the Lipschitz condition (3.32) we obtain

a

ITYl(X) TY2(X) < IG(x,t) l[LiIYl(t)-Y2(t) + L21Yl(-t)-Y2(-t) l]dt,

or

a2 (LI+L2
ITYI(X) TY2(X) <

2 maxlYl(X) Y2 (x) I, a < x < a,

or

a2(LI+L2
[Iryl(x) Ty2(x)[] B _< 2 [[yI(x) y2(x)

Also,

IT’Yl(X) T’Y2(X) ll B < a(Ll+L2) llyl(x)

All of these considerations and inequality (3.33) show that T is a contraction

mapping and thus has a unique fixed point which is the solution of (i.i), (1.2).

Proof is complete.

THEOREM 3.6. Assume that there exist positive numbers m and r such that

(i) sup f(x,0,y) <_
2_4ma2

2
2a

r, for x E [-a, a], lyl <_ ,
(ii) f(x,y,z) has a continuous partial derivative with respect to y on

[-a, a]xRxR and
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2

f2(x,y,z) > m > -____n for x g [-a a], y g R, Izl < r
4a

2

Then equation (i.i) with the boundary conditions

y(-a) y(a) 0, (3.34)

or

or from (i)

sup lv(x) <__ r, a < x_< a.

Hence, T maps the closed, bounded, and convex set B
r

(3.35), (3.36) and Lemma 2.3

and

v(-a) v(a) O.

Equation (3.35) is equivalent to

v"(x) f(x,v(x),y(-x))- f(x,O,y(-x)) + f(x,O,y(-x)).

Then from Lemma 2.2, it follows that

v"(x) f2[x,Tv(x),y(-x)ld’r)v(x) + f(x,O,y(-x)).
0

Applying Lemma 3.3 and condition (ii) we have

sup ]vCx) <- 2a
2

n2_4ma2
suplf(x,O,y(-x))I, a <_ x < a,

into itself. Moreover, from

a
v(x) G(x,t)f(t,v(t),y(-t))dt,

a

a
v’(x) Gx(X,t)f(t,v(t),y(-t))dt. (3.39)

-a

Since If(x,v(x),y(-x)) <_ k, for x e [-a, a], Iv(x) _< r, ly(-x) <_ r, then

Iv’(x) <-- de.

All of these considerations show that T is completely continuous by Ascoli’s theorem.

Schauder’s fixed point theorem then yields a fixed point of T, which is a solution

of (I.i), (3.34).

EEOR 3.7. Assume that there exist positive numbers m and r such that

(i) suplf(x,0,y) <_ mr, for x e [-a, a], [Yl <_ r,

(ii) f(x,y,z) has a continuous partial derivative with respect to y on [-a, a]xRxR and

(3.35)

(3.36)

(3.37)

(3.38)

has a solution.

PROOF. Let B {y C[-a, a]:ly _< r}. For y B and x [-a, a], define
r r

a mapping T:C[-a, a] C[-a, a] by (Ty)(x) v(x), where

v"(x) f(x,v(x),y(-x)),
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f2(x,y,z) _> m > 0, for x e [-a, a], y e R, Izl <_ r.

Then the boundary value problem (i.i), (1.3) has a solution.

PROOF. Let B {y E C[-a, a]: IYl <-- r}. For y E B define a mappingr r

T:C[-a, C[-a, a] by (Ty)(x) v(x), where

v" f(x,v(x),y(-x)) (3.40)

v’(-a) hv(-a) 0, v’(a) + kv(a) 0. (3.41)

Equation (3.40) is equivalent to

v" f2[x,Tv(x),y(-x)]dT)v(x) + f(x,0,y(-x)).
0

Using Lemma 3.3 and conditions (i), (ii) we obtain

sup lv(x) <__ r, a <_ x < a.

This shows that T maps B into itself. Also from (3,40) we haver

I_xv’(x) v’(-a) + f[t,v(t),y(-t)]dt.
a

Since v’(-a) hv(-a), then Iv’(-a) _< hlv(-a) < hr. Moreover, If(x,y,z) <_ k for

x [-a, a], Yl --< r, zl < r, then

Iv’(x) _< hr + 2ak.

Thus, T is completely continuous by Ascoli’s theorem. Schauder’s fixed point theorem

then yields a fixed point of T, which is a solution of (1.1), (1.3).
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