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ABSTRACT. In a sequentially weakly complete Banach space, if the dual

operator of a linear operator A satisfies certain conditions, then the

spectrum of any weakly almost periodic solution of the differential equation

u’ Au + f is identical with the spectrum of f except at the origin,

where f is a weakly almost periodic function.
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1. INTRODUCTION.
Suppose Z is a Banach space and X* is the dual space of X. Let J be the

interval t A continuous function f J X is said to be strongly

almost periodic if, given > O, there is a positive real number ;- () such

that any interval of the real line of length contains at least one point T for

which

supllf(t+T)-f(t)II . (1.1)
tJ

We say that a function f J X is weakly almost periodic if the scalar-

valued function <x*, f(t)> x*f(t) is almost periodic for each x* X*.

It is known that, if X is sequentially weakly complete, f J X is weakly

almost periodic, and is a real number, then the weak limit
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m(e-i}’tf(t)) w-lim e-itf(t)dt
T+ 0

(1.2)

exists in X and is different from the null element c) of X for at most a count-

able set {n}=l called the spectrum of f(t) (see Theorem 6, p. 43, Amerio-Prouse

[I]). We denote by o(f(t)) the spectrum of f(t).
2. RESULTS

Our first result is as follows (see Theorem 9, p. 79, Amerio-Prouse [I] for the

spectrum of an sl-almost periodic function).

THEOREM 1. Suppese X is a sequentially weakly complete Banach space, A is a

densely defined linear operator with domain D(A) and range R(A) in X, and the

dual operator A* is densely defined in X*, with R(i A*) being dense in X*

for all real O. Further, suppose f J X is a weakly almost periodic (or an

sl-almost periodic continuous) function. If a differentiable function u" J D(A)
is a weakly almost periodic solution of the oifferential equation

u’(t) Au(t) + f(t) (1.3)

on J, with u’ being weakly continuous on J, then o(u(t)) \ {0} o(f(t)) \ {0}.

PROOF OF THEOREM I. First we note that u is bounded on J, since u is weakly
almost periodic. Hence, for x* X*, we have

}’tu(t)dt} (2.1)eT
iXx*m(e-itu(t)) as T

So, for x* D(A*), it follows from (1.3) that

lim e-Xtx*Au(t)dt lim e-it(A*x*)u(t)dt
T 0 T+ 0

lim (A’x*) f itu ]e- (t)dt
T T

0

.x*m-u>

Consequently, we have

ixx*m(e-iXtu(t)) x*m(e-iXtf(t)).

x*m(e-itf(t)) (ix A*x*)m(e-itu(t)).

(2.2)

(2.3)

Now suppose that , a(f(t)) \ {0}. Then, since D(A*) is dense in X*, there
exists x e D(A*) such that

. -t . . . -t
0 xlm(e f(t)) (-x A xl)m(e u(t)). (2.4)
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Therefore m (e-iXtu(t)) m 0 and so x o(u(t)) \ {0}.

Thus we have
o(f(t)) \ {0} o(u(t)) \ {0}. (2.5)

Now ssume that x o(u(t) \ {0}. Then, since R(iX-A*) is dense in X*, there

exists x2
e D(A*) such that

-ixt -ixt
0 , (-iXx2 A x2)m(e u(t)) x2m(e f(t)). (2.6)

Therefore m(e-itf(t)) 0 and so o (f(t)) \ {0}.

ConseQuently, we have

o (u(t))\ {0} o (f(t)) \ {0}. (2.7)

It follows from (2.5) and (2.7) that o(u(t)) \ {0} c (f(t)) \ {0}, which com-

pletes the proof of the theorem.

REMARK I. The conclusion of Theorem remains valid if D(A*) is total and

R(i A*) is total for all real O, instead of dense in X*.

We indicate the proof of the following result.

THEOREM 2. In a sequentially weakly complete Banach space X, suppose A is a

densely defined linear operator, the dual operator A* is densely defined in X*,

with R( 2 + A*) being dense in X* for all real x O, and f J X is a weakly

almost periodic (or an S I -almost periodic continuous) function. If a twice differen-

tiable function u J D(A) is a weakly almost periodic solution of the differen-

tial equation

u"(t) Au(t) + f(t) (3.1)
on J, with u" being weakly continuous and u’ bounded on J, then

o(u(t)) \ {0} o(f(t)) \ {0}.

PROOF. For x* D(A*), we have

I_ e-itx*u"(t)dt x* [eT O
ix fe-i Xtuo

T +, ’(tldt}

x* { [e u’(t)] oT +- [e u(t)]oT O u(t)dt}

-2x*m(e-iXtu(t)) as T . (3.2)

Hence it follows from (3.1) that

lim e-itx*Au(t)dt (A*x*)m(e
T+ (}

-itu(t)

2 iLtu i- x*m(e- (t) x*m(e- tf(t)). (3.3)

Thus we have

x*m(e-itf(t) (2x* + A*x*)m(e-iXtu(t)).
Now the rest of the proof parallels that of Theorem I.
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REMARK 2. The conclusion of Theorem 2 also remains valid if D(A*) is total and

R( 2 + A*) is total for all real O, instead of dense in X*.

REEARK 3. If X is a Hilbert space and A is a nonnegative self-adjoint
operator, then the hypotheses on A in Theorem 2 are verified (see Corollary 2, p. 208,
Yosida [2]) and so Theorem 2 is a generalization of a result of Zaidman [3].

NOTE. As a consequence of our Theorem 1, we have the following result:

THEOREM 3. In a Hilbert space H, suppose A is a self-adjoint operator and

f J H is a weakly almost periodic (or an sl-almost periodic continuous) function.

If a differentiable function u J D(A) is a weakly almost periodic solution of

the differential equation

u’(t) Au(t) + f(t)
on J, with u’ being weakly continuous on J, then

(u(t)) \ {0} o(f(t)) \ {0}.

PROOF. By Example 4, p. 210, Yosida [2], R(i A) H for all real , O.
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