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ABSTRACT. Let A be a commutative semi-simple Banach algebra such that the set consisting
of finite sums of elements from minimal left ideals coincides with that of finite sums
of elements from minimal right ideals. Let S(A) (the socle of A) denote this set.

Let C(A) denote the set of elements x in A such that the map a + xax is compact. It

is shown that C(A) is the norm closure of S(A).
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1. INTRODUCTION

Let A be a Banach algebra. For xeA let T, denote the operator defined by Tx(a)=an.
The compactum of A is defined to be the set {XEA:’I‘x is a compact operator on A}. A
Banach algebra A in which A=C(A) is called a compact Banach algebra. Compact Banach
algebras were first introducted by J. C. Alexander in [1] . The author, in [3],
investigated the properties of the compactum in Banach Algebras. It was shown in [3]
that if A is semi-simple and S(A) denotes the socle of A, then C(A) is non-zero if and
only if S(A) is non-zero, and in this case, S(A) < C(A). Moreover, C(A) is a closed
set, therefore it contains the closure of S(A). A problem of interest is to determine
sufficient conditions on A which imply that C(A) coincides with S(A). In [2], the
author proved that for a primitive B* algebra A, we have C(A) = S(a).

The purpose of this mote is to prove that for a semi-simple commutative Banach
algebra A, we have C(A) = S(A).
2. MAIN RESULT

To prove our theorem we use a result from [3] which states that if x¢C(A) then
the spectrum of x(o(x))is at most countable and o is its only possible accumulation
point. Our terminology and notation is consistent with that of [4] , and our algebras

are over the field of complex numbers.
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THEOREM: Let A be a semi-simple commutative Banach algebra. If C(A) exists,
then C(A)=§?X}.

PROOF: We need to show that C(A) c 5?27, as the other inclusion was already
proven in [3] .

Let ¢ denote the space of multiplicative linear functionals in A, i.e. ¢ is the
carrier space of A.

Let <cC(A). We have, from general theory of commutative Banach algebras,
a(x)= {X( ) :sed}lu{o} where x is the continuous function on ¢ defined by X(@) p(*).

We claim that if ¢ is not an isolated point of ¢, then X(¢)=o.

This is true because if x(+)# - and {¢n} C ¢ with %3& ¢n = ¢, then by the

continuity of X we get ;(¢)= lim x (4% ). But ;(¢ ) and ;(¢) belong to o(x). Therefore,
y n>o n n

<(4) is a non-zero accumulation point of o(x) which is impossible since <¢C(A).

Now since o(x) is countable, let (¢n} be a sequance in ¢ such that G(X)={;(¢n)!

n=1, 2, ..} {o}, where ;(wn)¥ n for all n. Note that each ¢n is an isolated point of +%.
Now, by Silov's idempotent theorem [4] , for each n = 1,2.. there exists an

idempotent eneA such that en(¢)n = 1 and e, (¢) = o if ¢ # bn' It is evident that e

is a minimal idempotent for each n.
For each m, let x_ = ; §(¢i) e;. Then by the minimality of e > we have X, €S(A).
i=1 . ~ A
Now, if {¢n} is a finite set, then x=x_ for some n and therefore X=xn€S(A).
Otherwise, by the compactness of o5(x) and the fact that o is the only possible

accumulation point of o(x), we have lim X(¢n)=0-

Now, if $#¢n for any n, then ‘($)=o and en(¢) = o for all n, thus ;n(w) = o for
all n. Moreover, Xn(¢m)=x(¢m) if n > m and o if n < m. Therefore, H XE % ]I,@gg
e (6)-%(s) | = sgp | % (6)-%(4.) | , and we get Lim || x= < || = lim syo | x(¢) |= O.

Therefore, l%m ;n = x and since the representation of A as an algebra of

continuous functions on ¢ is a homeomorphism, we get l%m X, = x.

Therefore, xeS(A).
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