

COINCIDENCE THEOREMS FOR SOME MULTIVALUED MAPPINGS

B.E. RHOADES

Department of Mathematics
Indiana University

S.L. SINGH and CHITRA KULSHRESTHA

Department of Mathematics
L.M.S. Government Postgraduate College
Rishikesh, Dehra Dun 249201 INDIA

(Received September 2, 1983)

ABSTRACT. Two coincidence theorems in a metric space are proved for a multi-valued mapping that commutes with a single-valued mapping and satisfies a general multi-valued contraction type condition.

KEY WORDS AND PHRASES. *Coincidence point, commuting mappings, multi-valued contraction.*

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 54H25

1. INTRODUCTION.

Following the Banach contraction mapping, Nadler [1] introduced the concept of multi-valued contraction mappings and established that a multi-valued contraction mapping possesses a fixed point in a complete metric space. Subsequently a number of fixed point theorems in metric spaces have been proved for multi-valued mappings satisfying contractive type conditions; e.g. see [2]-[10], [11-17] and [18-20].

Jungck [21] generalized the Banach contraction principle by introducing a contraction condition for a pair of commuting mappings in a metric space. He also pointed out the potential of commuting mappings for generalizing fixed point theorems in [22] and [23]. One of the most general fixed point theorems for a generalized multi-valued contraction mapping appears in Cirić [4]. In this paper we combine the ideas of Cirić and Jungck to obtain two coincidence theorems for a multi-valued mapping.

Let (X, d) be a metric space. We shall follow the following notations and definitions.

$CL(X) = \{A : A \text{ is a nonempty closed subset of } X\}$,

$CB(X) = \{A : A \text{ is a nonempty closed and bounded subset of } X\}$,

$N(\varepsilon, A) = \{x \in X : d(x, a) < \varepsilon \text{ for some } a \in A, \varepsilon > 0\}$, $A \in CL(X)$,

and

$$H(A, B) = \begin{cases} \inf\{\epsilon > 0 : A \subseteq N(\epsilon, B) \text{ and } B \subseteq N(\epsilon, A)\}, & \text{if the infimum exists} \\ \infty, & \text{otherwise} \end{cases}$$

for each $A, B \in CL(X)$.

H is called the generalized Hausdorff distance function for $CL(X)$ induced by d . If $H(A, B)$ is defined for $A, B \in CB(X)$ then the pair (X, H) is a metric space and H is called the Hausdorff metric induced by d . $D(x, A)$ will denote the ordinary distance between $x \in X$ and A , a nonempty subset of X . Let f be a single-valued mapping from X to X and T a multi-valued mapping from X to the nonempty subsets of X .

Definition 1. ([10]). T and f are said to commute if for each $x \in X$, $f(T(x)) = fTx \subseteq Tf(x) = T(f(x))$.

Definition 2. ([21], [4]). An orbit for T at a point x_0 is a sequence $\{x_n : x_n \in Tx_{n-1}\}$.

Definition 3. ([4]). A space X is said to be T -orbitally complete iff every Cauchy sequence of the form $\{(x_{n_i} : x_{n_i} \in Tx_{n_{i-1}})\}$ converges in X .

Definition 4. If for a point $x_0 \in X$ there exists a sequence $\{x_n\}$ such that $fx_{n+1} \in Tx_n$, $n = 0, 1, 2, \dots$, then $O_f(x_0) = \{fx_n : n = 1, 2, \dots\}$ is the orbit for (T, f) at x_0 . We shall use $O_f(x_0)$ as a set and as a sequence as the situation demands. Further $O_f(x_0)$ is called a regular orbit for (T, f) if for each n ,

$$d(fx_{n+1}, fx_{n+2}) \leq H(Tx_n, Tx_{n+1}).$$

Definition 5. A space X is called (T, f) -orbitally complete iff every Cauchy sequence of the form $\{fx_{n_i} : fx_{n_i} \in Tx_{n_{i-1}}\}$ converges in X .

An immediate consequence of this definition is that if the space X is complete then it is (T, f) -orbitally complete for any T and f . However, simple examples can be constructed to show that, if for some T and f , X is (T, f) -orbitally complete then X need not be complete. It is also obvious from the fact that Definitions 2 and 3 are obtained from Definitions 4 and 5 when f is an identity mapping, and it is known that T -orbital completeness need not imply the completeness of X .

Definition 6. If for a point $x_0 \in X$ there exists a sequence $\{x_n\}$ such that the sequence $O_f(x_0)$ converges in X then X is called (T, f) -orbitally complete with respect to x_0 or simply (T, f, x_0) -orbitally complete.

Definition 7. A multivalued mapping $T : X \rightarrow CL(X)$ is said to be asymptotically regular at x_0 if, for each sequence $\{x_n\}$, $x_n \in Tx_{n-1}$, $\lim d(x_n, x_{n+1}) = 0$

Let $\psi = \{\phi : R_+ \rightarrow R_+ \mid \phi \text{ is upper semicontinuous and nondecreasing}\}$.
 2. MAIN THEOREMS.

THEOREM 1. Let T be a multi-valued mapping from a metric space X to $CL(X)$. If there exist a mapping $f : X \rightarrow X$ such that $TX \subseteq fX$, for each $x, y \in X$,

$$H(Tx, Ty) \leq \phi(\max\{d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx), d(fx, fy)\}), \quad (2.1)$$

$$\phi(t) < qt \text{ for each } t > 0, \text{ for some fixed} \quad (2.2)$$

$$0 < q < 1, \phi \in \psi,$$

$$\text{there exists an } x_0 \in X \text{ such that } T \text{ is asymptotically} \\ \text{regular at } x_0, \quad (2.3)$$

and

$$X \text{ is } (T, f, x_0)\text{-orbitally complete}, \quad (2.4)$$

then T and F have a coincidence point.

PROOF. Pick $x_0 \in X$ satisfying (2.3). We shall construct two sequences $\{x_n\}$ and $\{y_n\}$ as follows. Since $TX \subseteq fX$, choose $y_1 = fx_1 \in Tx_0$. If $Tx_0 = Tx_1$, choose $y_2 = fx_2 \in Tx_1$ such that $y_1 = y_2$. If $Tx_0 \neq Tx_1$, from the definition of H one can choose $y_2 = fx_2 \in Tx_1$ such that $d(y_1, y_2) \leq q^{-1}H(Tx_0, Tx_1)$. In general, choose $y_{n+2} = fx_{n+2} \in Tx_{n+1}$ such that $y_{n+1} = y_{n+2}$ if $Tx_n = Tx_{n+1}$, and $d(y_{n+1}, y_{n+2}) \leq q^{-1}H(Tx_n, Tx_{n+1})$ otherwise.

From (2.3), $\lim d(y_n, y_{n+1}) = 0$. We wish to show that $\{y_n\}$ is Cauchy. It is sufficient to show that $\{y_{2n}\}$ is Cauchy. Suppose $\{y_{2n}\}$ is not Cauchy. Then there exists a positive ϵ such that, for each integer $2k$, there exist integers $2n(k), 2m(k)$ satisfying $2k \leq 2n(k) < 2m(k)$, such that

$$d(y_{2n(k)}, y_{2m(k)}) > \epsilon. \quad (2.5)$$

For each integer $2k$, let $2m(k)$ denote the smallest integer exceeding $2n(k)$ for which (2.5) is satisfied. Thus

$$d(y_{2n(k)}, y_{2m(k)-2}) \leq \epsilon. \quad (2.6)$$

For each integer $2k$, with $d_i = d(y_i, y_{i+1})$,

$$\epsilon < d(y_{2n(k)}, y_{2m(k)}) \leq d(y_{2n(k)}, y_{2m(k)-2}) + d_{2m(k)-2} + d_{2m(k)-1}.$$

Using (2.3) and (2.6) it follows that

$$\lim_k d(y_{2n(k)}, y_{2m(k)}) = \epsilon. \quad (2.7)$$

Using the triangular inequality,

$$|d(y_{2n(k)}, y_{2m(k)-1}) - d(y_{2n(k)}, y_{2m(k)})| \leq d_{2m(k)-1} ,$$

and

$$|d(y_{2n(k)+1}, y_{2m(k)-1}) - d(y_{2n(k)}, y_{2m(k)})| \leq d_{2n(k)} + d_{2m(k)-1} .$$

From (2.3), (2.6) and (2.7) it follows that

$$\lim_k d(y_{2n(k)}, y_{2m(k)-1}) = \lim_k d(y_{2n(k)+1}, y_{2m(k)-1}) = \varepsilon .$$

For each integer $2k$ define $p(2k) = d(y_{2n(k)}, y_{2m(k)})$, $q(2k) = d(y_{2n(k)+1}, y_{2m(k)-1})$, and $r(2k) = d(y_{2n(k)}, y_{2m(k)-1})$. Then

$$\begin{aligned} p(2k) &\leq d_{2n(k)} + d(y_{2n(k)+1}, y_{2m(k)}) \\ &\leq d_{2n(k)} + q^{-1} H(Tx_{2n(k)}, Tx_{2m(k)-1}) \\ &\leq d_{2n(k)} + q^{-1} \phi(\max\{D(fx_{2n(k)}, Tx_{2n(k)}), D(fx_{2m(k)-1}, Tx_{2m(k)-1})\}, \\ &\quad D(fx_{2n(k)}, Tx_{2m(k)-1}), D(fx_{2m(k)-1}, Tx_{2n(k)}) , \\ &\quad d(fx_{2n(k)}, fx_{2m(k)-1})) \\ &\leq d_{2n(k)} + q^{-1} \phi(\max\{d_{2n(k)}, d_{2m(k)-1}, p(2k), q(2k), q(2k)\}) . \end{aligned}$$

Since ϕ is upper semicontinuous, taking the limit as $k \rightarrow \infty$ yields

$$\varepsilon \leq q^{-1} \phi(\max\{0, 0, \varepsilon, \varepsilon, \varepsilon\}) = q^{-1} \phi(\varepsilon) < \varepsilon ,$$

a contradiction.

Thus $\{y_n\}$ is Cauchy, and since fX is (T, f, x_0) -orbitally complete, $\{y_n\}$ converges to a point u in X . Hence there exists a point z in fX such that $u = fz$. Then

$$\begin{aligned} D(fz, Tz) &\leq d(fz, fx_{n+1}) + D(fx_{n+1}, Tz) \\ &\leq d(fz, fx_{n+1}) + H(Tx_n, Tz) \\ &\leq d(fz, fx_{n+1}) + \phi(\max\{D(fx_n, Tx_n), D(fz, Tz), \\ &\quad D(fx_n, Tz), D(fz, Tx_n), d(fx_n, fz)\}) \\ &\leq d(fz, fx_{n+1}) + \phi(\max\{d(fx_n, fx_{n+1}), D(fz, Tz), d(fx_n, fz) \\ &\quad + D(fz, Tz), d(fz, fx_{n+1}), d(fx_n, fz)\}) . \end{aligned}$$

Taking the limit as $n \rightarrow \infty$ yields

$$D(fz, Tz) \leq \phi(\max\{0, D(fz, Tz), D(fz, Tz), 0, 0\}) < qD(fz, Tz) ,$$

which implies $fz \subset Tz$.

If, in (2.1) the terms $D(fx, Ty)$, $D(fy, Tx)$ are replaced by $[D(fx, Ty) + D(fy, Tx)]/2$, then $\{fx_n\}$ can be proved to be a Cauchy sequence without the assumption of the asymptotic regularity of T .

Replacing the condition $TX \subseteq fX$ by orbital regularity one obtains the following.

THEOREM 2. Let $T : X \rightarrow CL(X)$. If there exists a selfmap f of X such that (2.1),

$$(2') \quad \psi(t) < t \quad \text{for each } t > 0, \quad \phi \in \psi, \text{ and}$$

$$(3') \quad \text{there exists a sequence } \{x_n\} \text{ such that the orbit } O_f(x_0) \text{ is regular and asymptotically regular, and } X \text{ is } (T, f, x_0)\text{-orbitally complete,}$$

then T and f have a coincidence point.

PROOF. Examining the proof of Theorem 1, the only change is to note that the regularity of the orbit $O_f(x_0)$ allows one to replace the inequality $d(y_n, y_{n+1}) \leq g^{-1}H(Tx_n, Tx_{n+1})$ with the stronger inequality $d(y_n, y_{n+1}) \leq H(Tx_n, Tx_{n+1})$.

If f is not the identity mapping, then a commuting T and f need not have a common fixed point. An example illustrating this fact appears in [19], where the commutativity of T and f is defined by $fTx = Tfx$, X not necessarily a metric space.

The authors thank R.E. Smithson for making [19] available to them.

The theorems of this paper generalize the corresponding results in [21], and the open question of [21] still remains; namely, what additional conditions will guarantee the existence of a common fixed point for T and f ?

REFERENCES

1. Nadler, S.B. Jr. Multi-valued contraction mappings. *Pacific J. Math.*, **30**(1969) 475-488.
2. Assad, N.A., and Kirk, W.A. Fixed point theorems of set-valued mappings of contractive type. *Pacific J. Math.*, **43**(1972) 453-462.
3. Bose, R.K., and Mukherjee, R.N. Common fixed points of some multi-valued mappings. *Tamkang J. Math.*, **8**(1977) 245-249.
4. Čirić, L.B. Fixed points for generalized multivalued contractions. *Mat. Vesnik*, **9**(24)(1972) 265-272.
5. Dube, L.S. A theorem on common fixed points of multi-valued mappings. *Ann. Soc. Sci. Bruxelles Ser. I*, **89**(1975) 463-468.
6. _____, and Singh, S.P. On multivalued contraction mappings. *Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S.)*, **14**(1970) 307-310.
7. Hu, T. Fixed point theorems for multi-valued mappings. *Canad. Math. Bull.*, **23**(1980) 193-197.

8. Iseki, K. Multi-valued contraction mappings in complete metric spaces. Rend. Sem. Mat. Univ. Padova, 53(1975) 15-19.
9. Itoh, S. Multivalued generalized contractions and fixed point theorems. Comment. Math. Univ. Carolina, 18(2)(1977) 247-258.
10. _____, and Takahashi, W. Single-valued mappings, multivalued mappings and fixed-point theorems. J. Math. Anal. Appl., 59(1977) 514-521.
11. Kaulgud, N.N., and Pai, D.V. Fixed point theorems for set-valued mappings. Nieuw Arch. Wisk., (3), 23(1975) 49-66.
12. Kuhfittig, P.K. Fixed points of locally contractive and non-expansive set-valued mappings. Pacific J. Math., 65(1976) 399-403.
13. Ray, B.K. A note on Multi-valued contraction mappings. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), 56(1974) 500-503.
14. _____ Some fixed point theorems. Fund. Math., 92(1976) 79-90.
15. Reich, S. Kannan's fixed point theorem. Boll. Un. Mat. Ital., 4(1971) 1-11.
16. _____ Fixed points of contractive functions. Bull. Un. Mat. Ital., 5(1972) 26-42.
17. Rus, I.A. Fixed point theorems for multi-valued mappings in complete metric spaces. Math. Japonica, 20(1975) 21-24.
18. Smithson, R.E. Fixed points for contractive multi-functions. Proc. Amer. Math. Soc., 27(1971) 192-194.
19. _____ Common fixed points for multifunctions. (Preprint, 1979).
20. Yanagi, K. A common fixed point theorem for a sequence of multivalued mappings. Publ. Res. Inst. Math. Sci., 15(1979) 47-52.
21. Singh, S.L. and Kulshrestha, Chitra, Coincidence theorems in metric spaces, Ind. J. Phy. Nat. Sci., 2, Sect. B (1982) 19-22.
22. Jungck, G. Commuting mappings and fixed points. Amer. Math. Monthly, 83(1976) 261-263.
23. _____ Periodic and fixed points, and commuting mappings. Proc. Amer. Math. Soc., 76(1979) 333-338.

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	February 1, 2009
First Round of Reviews	May 1, 2009
Publication Date	August 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk