

FIBONACCI POLYNOMIALS OF ORDER K, MULTINOMIAL EXPANSIONS AND PROBABILITY

ANDREAS N. PHILIPPOU

Department of Mathematics
University of Patras
Patras, Greece

COSTAS GEORGHIOU

School of Engineering
University of Patras
Patras, Greece

GEORGE N. PHILIPPOU

Department of General Studies
Higher Technical Institute
Nicosia, Cyprus

(Received October 31, 1982)

ABSTRACT. The Fibonacci polynomials of order k are introduced and two expansions of them are obtained, in terms of the multinomial and binomial coefficients, respectively. A relation between them and probability is also established. The present work generalizes results of [2] - [4] and [5].

KEY WORDS AND PHRASES. Fibonacci polynomials of order k , expansions, multinomial and binomial coefficients, probability.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 10A40.

1. INTRODUCTION.

In the sequel, k is a fixed integer greater than or equal to 2, x is a positive and finite real number, and n is a nonnegative integer unless otherwise specified. Motivated introduced the Fibonacci polynomials of order k , to be denoted by $f_n^{(k)}(x)$, and study some of their properties. First we observe that $f_n^{(k)}(x)$ are generalized polynomials, appropriate extensions for the Fibonacci and Pell numbers of order k [3], [4], and identical to the r -bonacci polynomials $R_n(x)$ ($n \geq -(r-2)$) of [1] for $k=r$ and $n \geq 0$. Then we state and prove a theorem, which provides two expansions of $f_n^{(k)}(x)$ ($n \geq 1$) in terms of the multinomial and binomial coefficients, respectively. Hoggatt and Bicknell [1], among other results, give another expansion of $f_n^{(k)}(x)$, in terms of the

elements of the left - justified k -nomial triangle. The latter, however, are less widely known and used than the multinomial and binomial coefficients, and on this account our expansions may be considered better. As a corollary to our theorem, we derive several results of [2]-[4] and [5]. We also obtain a relation between $f_n^{(k)}(x)$ ($n \geq 1$) and probability.

2. THE FIBONACCI POLYNOMIALS OF ORDER K AND MULTINOMIAL COEFFICIENTS.

In this section, we introduce the Fibonacci polynomials of order k and derive two expansions of them in terms of the multinomial and binomial coefficients, respectively. The proof is along the lines of [2] and [4].

DEFINITION. The sequence of polynomials $\{f_n^{(k)}(x)\}_{n=0}^{\infty}$ is said to be the sequel of Fibonacci polynomials of order k if $f_0^{(k)}(x)=0$, $f_1^{(k)}(x)=1$, and

$$f_n^{(k)}(x) = \begin{cases} \sum_{i=1}^n x^{k-i} f_{n-i}^{(k)}(x) & \text{if } 2 \leq n \leq k \\ \sum_{i=1}^k x^{k-i} f_{n-i}^{(k)}(x) & \text{if } n \geq k+1. \end{cases} \quad (2.1)$$

If $f_n^{(r)}(x)=0$ for $-(r-2) \leq n \leq -1$, Hoggatt and Bicknell [1] call $R_n(x)=f_n^{(r)}(x)$ ($n \geq -(r-2)$) r -bonacci polynomials.

Denoting by $F_n(x)$, $f_n^{(k)}$ and $P_n^{(k)}$, respectively, the Fibonacci polynomials [5], the Fibonacci numbers of order k [3], and the Pell numbers of order k [4], it follows from (2.1) that

$$f_n^{(2)}(x) = F_n(x), \quad f_n^{(k)}(1) = f_n^{(k)} \quad \text{and} \quad f_n^{(k)}(2) = P_n^{(k)}. \quad (2.2)$$

We now proceed to show the following lemma.

LEMMA. Let $\{f_n^{(k)}(x)\}_{n=0}^{\infty}$ be the sequence of Fibonacci polynomials of order k , and denote its generating function by $g_k(s;x)$. Then, for $|s| < x/(1+x^k)$,

$$g_k(s;x) = \frac{s(1-\frac{s}{x})}{1-\frac{s}{x}(1+x^k-s^k)} = \frac{s}{1-x^k[\frac{s}{x}+(\frac{s}{x})^2+\dots+(\frac{s}{x})^k]}.$$

PROOF. We see from the definition that $f_2^{(k)}(x)=x^{k-1}$, $xf_n^{(k)}(x)-f_{n-1}^{(k)}(x)=x^k f_{n-1}^{(k)}(x)$ for $3 \leq n \leq k+1$, and $xf_n^{(k)}(x)-f_{n-1}^{(k)}(x)=x^k f_{n-1}^{(k)}(x)-f_{n-1-k}^{(k)}(x)$ for $n \geq k+2$. Therefore,

$$f_n^{(k)}(x) = \begin{cases} \frac{1}{x}(1+x^k)f_{n-1}^{(k)}(x), & 3 \leq n \leq k+1 \\ \frac{1}{x}(1+x^k)f_{n-1}^{(k)}(x) - \frac{1}{x}f_{n-1-k}^{(k)}(x), & n \geq k+2 \end{cases}$$

$$= \begin{cases} \left[\frac{1}{x}(1+x^k)\right]^{n-2}x^{k-1}, & 2 \leq n \leq k+1 \\ \frac{1}{x}(1+x^k)f_{n-1}^{(k)}(x) - \frac{1}{x}f_{n-1-k}^{(k)}(x), & n \geq k+2. \end{cases} \quad (2.3)$$

It may be seen, by means of (2.3) and induction on n , that

$$f_n^{(k)}(x) \leq \left[\frac{1}{x}(1+x^k)\right]^{n-2}x^{k-1}, \quad n \geq 2, \quad (2.4)$$

which implies the convergence of $g_k(s;x)$ for $|s| < x/(1+x^k)$. Next, by means of (2.3), we observe that

$$g_k(s;x) = \sum_{n=0}^{\infty} s^n f_n^{(k)}(x)$$

$$= s + \sum_{n=2}^{k+1} s^n \left[\frac{1}{x}(1+x^k)\right]^{n-2} x^{k-1} + \sum_{n=k+2}^{\infty} s^n f_n^{(k)}(x), \quad (2.5)$$

and

$$\sum_{n=k+2}^{\infty} s^n f_n^{(k)}(x) = \frac{1}{x}(1+x^k) \sum_{n=k+2}^{\infty} s^n f_{n-1}^{(k)}(x) - \frac{1}{x} \sum_{n=k+2}^{\infty} s^n f_{n-1-k}^{(k)}(x)$$

$$= \frac{s}{x}(1+x^k) \left\{ \sum_{n=0}^{\infty} s^n f_n^{(k)}(x) - s - \sum_{n=2}^{\infty} s^n \left[\frac{1}{x}(1+x^k)\right]^{n-2} x^{k-1} \right\} - \frac{1}{x} s^{k+1} \sum_{n=1}^{\infty} s^n f_n^{(k)}(x)$$

$$= \left[\frac{s}{x}(1+x^k) - \frac{s^{k+1}}{x} \right] g_k(s;x) - \frac{s^2}{x} - \sum_{n=2}^{k+1} s^n \left[\frac{1}{x}(1+x^k)\right]^{n-2} x^{k-1}. \quad (2.6)$$

The last two relations give

$$g_k(s;x) = s + \frac{s}{x}(1+x^k - s^k) g_k(s;x) - \frac{s^2}{x},$$

so that

$$g_k(s;x) = \frac{s(1-\frac{s}{x})}{1-\frac{s}{x}(1+x^k - s^k)} = \frac{s}{1-x^k[\frac{s}{x} + (\frac{s}{x})^2 + \dots + (\frac{s}{x})^k]}.$$

We will employ the above lemma to establish the following expansions of $f_n^{(k)}(x)$ ($n \geq 1$).

THEOREM. Let $\{f_n^{(k)}(x)\}_{n=0}^{\infty}$ be the Fibonacci polynomials of order k . Then

$$(a) \quad f_{n+1}^{(k)}(x) = \sum_{n_1, \dots, n_k} \binom{n_1 + \dots + n_k}{n_1, \dots, n_k} x^{k(n_1 + \dots + n_k) - n}, \quad n \geq 0,$$

where the summation is over all non-negative integers n_1, \dots, n_k such that $n_1 + 2n_2 + \dots + kn_k = n$;

$$(b) \quad f_{n+1}^{(k)}(x) = \left(\frac{1+x^k}{x} \right)^n \sum_{i=0}^{[n/(k+1)]} (-1)^i \binom{n-ki}{i} x^{ki} (1+x^k)^{-(k+1)i} - \frac{1}{x} \left(\frac{1+x^k}{x} \right)^{n-1} \sum_{i=0}^{[(n-1)/k+1]} (-1)^i \binom{n-1-ki}{i} x^{ki} (1+x^k)^{-(k+1)i}, \quad n \geq 1,$$

where, as usual, $[x]$ denotes the greatest integer in x .

PROOF. First we show (a). Let $|s| < x/(1+x^k)$, so that $|x^k [\frac{s}{x} + (\frac{s}{x})^2 + \dots + (\frac{s}{x})^k]| < 1$.

Let n_i ($1 \leq i \leq k$) be non-negative integers as specified below. Then, using the lemma and the

multinomial theorem, and replacing n by $n - \sum_{i=1}^k (i-1)n_i$, we get,

$$\begin{aligned} \sum_{n=0}^{\infty} s^n f_{n+1}^{(k)}(x) &= \{1-x^k [\frac{s}{x} + (\frac{s}{x})^2 + \dots + (\frac{s}{x})^k]\}^{-1} \\ &= \sum_{n=0}^{\infty} \{x^k [\frac{s}{x} + (\frac{s}{x})^2 + \dots + (\frac{s}{x})^k]\}^n \\ &= \sum_{n=0}^{\infty} x^{kn} \sum_{\substack{n_1, \dots, n_k \in \mathbb{N} \\ n_1 + \dots + n_k = n}} \binom{n}{n_1, \dots, n_k} \left(\frac{s}{x}\right)^{n_1+2n_2+\dots+kn_k} \\ &= \sum_{n=0}^{\infty} s^n \sum_{\substack{n_1, \dots, n_k \in \mathbb{N} \\ n_1+2n_2+\dots+kn_k=n}} \binom{n_1+\dots+n_k}{n_1, \dots, n_k} x^{k(n_1+\dots+n_k)-n}, \end{aligned} \quad (2.8)$$

from which (a) follows.

We now proceed to establish (b). Let $0 < s < x/(1+x^k)$, so that $|\frac{s}{x}(1+x^k-s^k)| < 1$.

Then, using the lemma and the binomial theorem, replacing n by $n-ki$, and setting

$$B_n^{(k)}(x) = \left(\frac{1+x^k}{x} \right)^n \sum_{i=0}^{[n/(k+1)]} (-1)^i \binom{n-ki}{i} x^{ki} (1+x^k)^{-(k+1)i}, \quad n \geq 0, \quad (2.9)$$

we get

$$\begin{aligned} \sum_{n=0}^{\infty} s^n f_{n+1}^{(k)}(x) &= (1 - \frac{s}{x}) [1 - \frac{s}{x}(1+x^k-s^k)]^{-1} \\ &= (1 - \frac{s}{x}) \sum_{n=0}^{\infty} [\frac{s}{x}(1+x^k-s^k)]^n \end{aligned}$$

$$\begin{aligned}
&= \left(1 - \frac{s}{x}\right)^n \sum_{\mathbf{k}=\mathbf{0}}^{\infty} \left(\frac{s}{x}\right)^n \sum_{i=0}^{\infty} (-1)^i \binom{n}{i} (1+x^k)^{n-i} s^{ki} \\
&= \left(1 - \frac{s}{x}\right)^n \sum_{n=0}^{\infty} s^n \sum_{\mathbf{i}=\mathbf{0}}^{\lfloor n/(k+1) \rfloor} (-1)^i \binom{n-ki}{i} (1+x^k)^{n-(k+1)i} x^{-(n-ki)} \\
&= \left(1 - \frac{s}{x}\right)^n \sum_{n=0}^{\infty} s^n B_n^{(k)}(x), \text{ by (2.9)} \\
&= 1 + \sum_{n=1}^{\infty} s^n [B_n^{(k)}(x) - \frac{1}{x} B_{n-1}^{(k)}(x)], \tag{2.10}
\end{aligned}$$

since $B_0^{(k)}(x) = 1$ from (2.9). The last two relations show part (b) of the theorem.

We have the following obvious corollary to the theorem, by means of relation (2.2).

COROLLARY 2.1. Let $F_n(x)$, $f_n^{(k)}$ and $P_n^{(k)}$ denote the Fibonacci polynomials, the Fibonacci numbers of order k and the Pell numbers of order k , respectively. Then,

$$\begin{aligned}
(a) \quad F_{n+1}(x) &= \sum_{i=0}^{\lfloor n/2 \rfloor} \binom{n-i}{i} x^{n-2i}, \quad n \geq 0; \\
(b) (i) \quad f_{n+1}^{(k)} &= \sum_{\substack{n_1, \dots, n_k \geq 0 \\ n_1+2n_2+\dots+kn_k=n}} \binom{n_1+\dots+n_k}{n_1, \dots, n_k}, \quad n \geq 0; \\
(b) (ii) \quad f_{n+1}^{(k)} &= 2^n \sum_{i=0}^{\lfloor n/(k+1) \rfloor} (-1)^i \binom{n-ki}{i} 2^{-(k+1)i} \\
&\quad - 2^{n-1} \sum_{i=0}^{\lfloor (n-1)/(k+1) \rfloor} (-1)^i \binom{n-1-ki}{i} 2^{-(k+1)i}, \quad n \geq 1; \\
(c) (i) \quad P_{n+1}^{(k)} &= \sum_{\substack{n_1, \dots, n_k \geq 0 \\ n_1+2n_2+\dots+kn_k=n}} \binom{n_1+\dots+n_k}{n_1, \dots, n_k} 2^{k(n_1+\dots+n_k)-n}, \quad n \geq 0; \\
(c) (ii) \quad P_{n+1}^{(k)} &= \left(\frac{1+2^k}{2}\right)^n \sum_{i=0}^{\lfloor n/(k+1) \rfloor} (-1)^i \binom{n-ki}{i} 2^{ki} (1+2^k)^{-(k+1)i} \\
&\quad - \frac{1}{2} \left(\frac{1+2^k}{2}\right)^{n-1} \sum_{i=0}^{\lfloor (n-1)/(k+1) \rfloor} (-1)^i \binom{n-1-ki}{i} 2^{ki} (1+2^k)^{-(k+1)i}, \quad n \geq 1.
\end{aligned}$$

REMARK. Part (a) of Corollary 2.1 was proposed by Swamy [5], who appears to be the first to introduce the Fibonacci polynomials. Part (b)(i) was first shown in [3], while (b) and (c), respectively, were later proved by a different method in [2] and [4].

The following corollary relates the Fibonacci polynomials of order k to probability.

COROLLARY 2.2. Let $\{f_n^{(k)}(x)\}_{n=0}^{\infty}$ be the sequence of Fibonacci polynomials of order k , and denote by N_k the number of trials until the occurrence of the k th consecutive success in independent trials with success probability p ($0 < p < 1$). Then,

$$P(N_k = n+k) = p^{n+k} \left(\frac{1-p}{p}\right)^{n/k} f_{n+1}^{(k)} \left(\left(\frac{1-p}{p}\right)^{1/k}\right), \quad n \geq 0.$$

PROOF. It follows directly from Theorem 3.1 of [3] and part (a) of the present theorem.

In particular, Corollary 2.2. reduces to the following results of [2] and [4], respectively, by means of (2.2).

Let N_k be as above, and set $p = (1+2^k)^{-1}$. Then,

$$P(N_k = n+k) = \frac{2^n}{(1+2^k)^{n+k}} p_{n+1}^{(k)}, \quad n \geq 0. \quad (2.11)$$

Let N_k be as above, and set $p = 1/2$. Then,

$$P(N_k = n+k) = \frac{1}{2^{n+k}} f_{n+1}^{(k)}, \quad n \geq 0. \quad (2.12)$$

REFERENCES

1. HOGGATT, V.E. and BICKNELL, MARGORIE. Generalized Fibonacci Polynomials, The Fibonacci Quarterly 11 (1973), 457-465.
2. PHILIPPOU, A.N. A Note On the Fibonacci Sequence of Order k and Multinomial Coefficients, The Fibonacci Quarterly 21 (1983), in press.
3. PHILIPPOU, A.N. and MUWAFI, A.A. Waiting for the k th Consecutive Success and the Fibonacci Sequence of Order k , The Fibonacci Quarterly 20 (1982), 28-32.
4. PHILIPPOU, A.N. and PHILIPPOU, G.N. The Pell Sequence of Order k , Multinomial Coefficients, and Probability, Submitted for publication (1982).
5. SWAMY, M.N.S. Problem B - 74, The Fibonacci Quarterly 3 (1965), 236.

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	February 1, 2009
First Round of Reviews	May 1, 2009
Publication Date	August 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk