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ABSTRACT. Let E be a compact subset of the complex plane. We denote by R(E) the
algebra consisting of the rational functions with poles off E. The closure of R(E) in
Lp(E), 1 < p <=, is denoted by RP(E). In this paper we consider the case p = 2. In
section 2 we introduce the notion of weak bounded point evaluation of order B and
identify the existence of a weak bounded point evaluation of order B, B > 1, as a
necessary and sufficient condition for RZ2(E) # L2(E). We also construct a compact set
E such that RZ(E) has an isolated bounded point evaluation. In section 3 we examine
the smoothness properties of functions in R2(E) at those points which admit bounded
point evaluations.
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L. INTRODUCTION.
Let E be a compact subset of the complex plane T. For each p, 1 < p < =, let
Lp(E) be the linear space of all complex valued functions f for which Iflp is inte-

grable with the usual norm
P 1/p
{[ | £(z) | dm(z)} , where m denotes the two dimensional
E
Lebesque measure. Denote by R(E) the subspace of all rational functions having no
poles on E and let Rp(E) be the closure of R(E) in Lp(E). A point zy € E is said to

be a bounded point evaluation (BPE) for Rp(E), if there is a constant F such that
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[£(zg)| < F { [£(2)|® dm(z) 1/p, for all f e R(E) . (1.1)
E
In [1] Brennan showed that RP(E) = Lp(E), p # 2, if and only if no point of E
is a BPE for Rp(E) . The theorem is not true for p = 2 (See Fernstrom [2] or
Fernstrom and Polking {3].) 1In this paper we show that if the right hand side of (1)
is made slightly larger a corresponding theorem is true for p = 2. We also show that
this theorem is best possible.
0

f(zo) = J f(z)g(z)dm(z) for all f ¢ R(E). The function g is called a representing
E

1 1
If z_ € E is a BPE for RP(E) there is a function g ¢ Lq(E), B‘+ E‘= 1, such that

function for 20. Let B(z,8) denote the ball with radius 8 and centre at z. Ve say
that a set A, A C €, has full area density at z if 1'n(A(\B(z,d))m(B(z,G))—1 tends to
one when § tends to zero.

Suppose now that zg is a BPE for RP(E), 2 < p, represented by g € Lq(E) and
(z—zO)_S 4>(|z—zo|)-l g € LY(E), where s is a nonnegative integer and ¢ is a non-
decreasing function such that r q>(1:)_-lN 0 when r¥0. Then for every € > O there is a

set E. in E having full area density at zq such that for every f € R(E) and for all

0
T € EO,
| £ (zp) f(S)(zo) s
If(T) - f(zo) - __IT—_(T - ZO) - .. “"i;r““(r - zO)
1/p

s
< |t - zO[ (|t - zol) I if(z)lP dm(z) . This theorem is due to Wolf [8].
E

We shall show that the theorem of Wolf is not true for p = 2. We shall also
show that a slightly weaker result is true and that this result is best possible.
The main tool to show this is to construct a compact set E with exactly one bounded
point derivation for RZ(E). A point z0 ¢ E is a bounded point derivation (BPD) of
order s for RP(E) if the map f - f(s)(zo), f ¢ R(E), extends from R(E) to a bounded
linear functional on Rp(E).
2. BPE'S AND APPROXIMATION IN THE MEAN BY RATIONAL FUNCTIONS.
Denote the Bessel kernel of order one by G where G is defined in terms of its Fourier

transform by
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L

é(z) = (1 + [z|2) 1.
For f ¢ L2(C) we define the potential

uf(2) = IG(z—T) £(1) dm (1).
The Bessel capacity 02 for an arbitrary set X, X< C, is defined by C2(X) = inf
[!f(z)lz dm(z), where the infimum is taken over all f ¢ L2(C) such that f(z) > 0 and
uf(z) > 1 for all z ¢ X. The set function C2 is subadditive, increasing, translation
invariant and

-1
- 1
CZ(B(z,d)) = (log E) , O 5_60 < 1.

For further details about this capacity see Meyers [5].
The BPD's can be described by the Bessel capacity. Let An(zo) denote the annulus

—n- -n
zx; 2 n-1 < [z—zol < 2 s . The following theorem is proved in [3]:

Theorem 2.1 Let E be a compact set. Then z is a BPD of order s for R?(E) if and

only if
" 2n(s+l) _ .
n§= 2 Cr(A (2) - E) <= .

Definition Set

L (z) =

ZO 1
1 for [z—zo| > 5
A point zg € E is called a weak bounded point evaluation (w BPE) of

order 3, 8 > 0, for RZ(E) if there is a constant F such that

1
|f(zo)| < F{ I]f(z)‘z Lso(z) dm(z)
E

for all f € R(E) .
We are now going to generalize theorem 2.1 in two directions.

Theorem 2.2 Let s be a nonnegative integer and E a compact set. Suppose that zg
is a BPE for R?(E) represented by g ¢ L2(E) and that ¢ is a positive,
nondecreasing function defined on (0,®) such that r da(r)"l is non-
decreasing and tends to zero when r = 0+. Then 2, is represented by a

function g € LZ(E) such that

g LZ (E)
(Z-ZQ)SV¢([z—z0|) ¢
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if and only if

< -n -2
2 2O @™ o0 g - B <o

n=0

Theorem 2.3 Let E be a compact set. Then z is a w BPE of order B for RZ(E) if and

only if
@
-B 2n
D) n' 2 C(A(z) -E) <w,
n=1

The proofs of theorem 2.2 and theorem 2.3 are almost the same as the proof of theorem
2.1. We omit the proofs. Wolf proved in [8] that the condition
*  2n(s+l -n -2
22 2 ) (2 ) CZ(Ah(ZO - E)) < = is necessary in theorem 2.2.

n=0
The compact sets E for which RZ(E) = L2(E) can be described in terms of the

Bessel Capacity. The following theorem is proved in Hedberg [4] and Polking [6].
Theorem 2.4 Let E be a compact set. Then the following are equivalent.
(1) R*(E) = L%(B).
(ii) CZ(B(Z,G)—E) = CZ(B(z,é)) for all balls B(z,$).
C,(B(z,8) -E)
(iii) lim sup —————— > 0 for all z.
60 82
If we combine theorem 2.3 and theorem 2.4 we get the following theorem.
Theorem 2.5 Let B > 1 and E be a compact set., Then L2(E) = R2(E) if and only if E
admits no w BPE of order 8 for R2(E).
Now we shall show that theorem 2.5 is not true for 8 < 1. We first need the following
theorem,

Theorem 2.6 There is a compact set E such that

(1) C,(B(0,}) - E) < C,y(B(0,%))

1) Y a7t 2P, (a(2) - B) = @ for all z.
n=1

The proof is a modification of a proof in [2] or [3], where a weaker theorem is
proved. Since we shall need the construction of E later, we give some details.
Proof. There are constants Fl and F2 such that
F (log 5 < ¢, (B(2,8)) < F.(log 1y} for all s, § <6, <1
1 5, — 2n Rl = 5 » 0 =% T



REMARKS ON THE SPACE RZ(E) 463

Choose a, o > 1, such that

F2 1 L
= —— < C,(B(0,})).
n= n log“n

Let A, be the closed unit square with centre at the origin. Cover AO with 4" squares

0
. ., -n i . i
with side 2 . Call the squares An( ), is= 1,2,...,4“. In every An( ) put an open
] i .
disc Bn(l) such that Bn( ) and An(i) have the same centre and the radius of Bn(l) is
2
exp(—aén n log n). Repeat the construction for all n, n > 2.
Set
n
o 4 .
E=a,- | Bn(l) .
n=2 i=1
The subadditivity of C2 now gives (i).
In order to prove (ii) it is enough to prove
(1) F1
C,( - E) > ———————— forall n,n>n_. (2.1)
2 An ~ 320 4nlog n =0

Consider all Bk(i), n <k f_nz, such that Bk(i%:: An(l).

2

22 a4y log? (n+2)) , 0 < L < n’ - n.

We get 4* discs with radius exp (-a4

Call the discs

2
5 (1) 40 -n+1 -1,

n b b
3

Thus

2 2
n n

F
= Z —17-<§ Cz(Dn(r))i:Z Z—LT )

a4 j=n j log®j —

_ (r)
set 0, = D",
r
Since the distances between the discs are large compared to their radii, it can be
shown that

1 (r)

) , if n is large.

(See theorem 2' in [2] or theorem 2 in [3] for a proof.)

Thus if n is large, )
n 1 Fl R
>

n -
84" fZH  § 1log’j 16a4"10g n

ca B~y > (0 >

which is (2.1)
q.e.d.
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Theorem 2.7 There is a compact set E such that
. 2 2
(1) L7(E) = R (E)
(ii) E has no w BPE of order one for RZ(E).

Proof The theorem follows immediately from theorem 2.3, 2.4, and 2.6.

3. BPE'S AND SMOOTHNESS PROPERTIES OF FUNCTIONS IN RZ(E).
In this section we treat the theorem of Wolf mentioned in the introduction for the
case p = 2.
Theorem 3.1 Let ¢ be a positive, nondecreasing function defined on (0,>) such that
r Lo(r) (1)(1:)_l is nondecreasing and r Lo(r) <1>(r)-1 -+ 0 when r -~ 0+.
Suppose that zy is a BPE for RZ(E) represented by g and
(z—zu)"s zp(lz-zo|)-1 g € LZ(E), where s is a nonnegative integer.
Then fo; every 8 > 1 and € > O there is a set EO in E, having full area

density at zy» such that for every f ¢ R(E) and every 71 ¢ EO

£ (20) £ (2 .
f(1) - f(zg) - ——ET——(T—ZO) - ee. - ———;:———{r—zo)

B 1
< eltzgl® o (ft-2y) 3[ |£(z)]? LZO(z)fi.
E

The proof of theorem 3.1 is only a minor modification of the proof of theorem 4.1 in
[8]. tioreover, there is a proof of theorem 3.1 for 8 = 2 in Wolf [7]. We omit the
proof.

Remark. Let zg € 3E (the boundary of E) be both a BPE for RZ(E) and the vertex of a
sector contained in Int E. Let L be a line which passes through zg and bisects the
secotr. Let ¢ > 0 and let ¢ be as in theorem 2.2. For those y ¢ L (Y E that are
sufficiently near z( Wolf showed in [9] that

|4

If(y)—f(zo)l <e ¢(:y—zol) Jf I f(z)l2 dm(z)g for all f € R(E).
Our next step is to prove that theorem 3.1 is not true for B = 1. We first need a
theorem, which we think is interesting in itself.
Theorem 3.2 Let s be a nonnegative integer. Then there is a compact set E such that
(i) Z a7l 2% ¢y (A (2)-E) =« if z # 0.
1=l

G 2, 22 oo (0)-E) <= .
u=1
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Proof We shall modify the set constructed in the proof of theorem 2.6. Let
(k)
J

be denoted by A;;, A12’ Al3"" so that their diameters are decreasing.

B8
J

denote the same discs as in that proof. Let all B which intersect Al(O)

Choose j1 so that

2(s+1 -1
22(s%1) 1 cyApy) < 2

j>j1
and diam(A,. ) < 2_3.
l]l
(k)

Suppose that we have chosen jl""jn' Let all Bj which intersect An+l(0)

and which do not coincide with All""’Aljl"'°’Anl""’Anjn’ be denoted by
An+1 1> An+2 29 An+3 3sees SO that their diameters are decreasing.

Choose Jp41 so that

\WWEESEY _
22(n+1,\_ Yoy C, (A Y <2 (n+l)
Lo 2+l j
1>Jn+1
and diam(A y < 2=(n+3)
n+l Jn+l

Let Ay be the closed unit square with centre at the origin. Set E = Ay- (The

; (k) (k) - . .
union of all Bj such that Bj ¥ Anm’ l<n<= and ;jmjgn).

We have
-+ -n
D pnls l)Cz(An(O) B <22 <=,
n=1 n=1
. (k) (k) .
Let z # 0. If % is large all Bj R Bj < Al(z) , differ frow A, ,

l<n<wand 1l <m<j,.

Now exactly as in proof of theorem 2.6 it follows

- -1
2 nt 2% ¢, (A (2)-E)) = =
13
q.e.d.

Corollary 3.3 There is a compact set E with exactly one BPD of order s for RZ(E).
Proof Just combine theorem 3.2 and 2.1.

Remark The situation for p # 2 is different. 1In [1l] Brennan showed that if almost
all points z € E, E compact, are not BPE for RP(E), E admits no BPE's for RZ(E).

Theorem 3.4 Let s be a nonnegative integer and ¢ be as in theorem 2.2. Then there

is a compact set E such that
(i) z, is a BPE for R%(E).

(ii) There is a representing function g for zg that satisfies
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-s -1 2
(z=zg)  ¢(lz—zy) g e L(E) .
(iii) For every t ¢ E, 1 # 2y , and every positive integer n there is a

function f & R(E) such that

£'(z) f(s)(zg) .
’f(T)—f(zO)— ——IT__(T-ZO) - el = st (T—zo) >

>n 3£|f(2)]2 Lzo(z)dm(z) £

Proof Theorem 3.2 gives that there is a compact set E such that

©0
-1 ,2

¥ nt 2%, (A (2) - B) = e, z # 2

n=1

> 2n (s+1) -n,-2 o -

Z 2 $(27) T Cy(a(zp) - E) < @ .

n=1
Now theorem 2.1 gives (i) and theorem 2.2 gives (ii). Moreover theorem 2.1 gives that
) is a BPD of order s for RZ(E) and theorem 2.3 that T is not a w BPE of order 1 for
RZ(E) . This gives (iii).
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