

SOME REMARKS ON THE SPACE $R^2(E)$

CLAES FERNSTRÖM

Department of Mathematics
University of Stockholm
SWEDEN

(Received on April 26, 1982 and in revised form on September 28, 1982)

ABSTRACT. Let E be a compact subset of the complex plane. We denote by $R(E)$ the algebra consisting of the rational functions with poles off E . The closure of $R(E)$ in $L^p(E)$, $1 \leq p < \infty$, is denoted by $R^p(E)$. In this paper we consider the case $p = 2$. In section 2 we introduce the notion of weak bounded point evaluation of order β and identify the existence of a weak bounded point evaluation of order β , $\beta > 1$, as a necessary and sufficient condition for $R^2(E) \neq L^2(E)$. We also construct a compact set E such that $R^2(E)$ has an isolated bounded point evaluation. In section 3 we examine the smoothness properties of functions in $R^2(E)$ at those points which admit bounded point evaluations.

KEY WORDS AND PHRASES. Rational functions, compact set, L^p -spaces, bounded point evaluation, weak bounded point evaluation, Bessel capacity.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 30A98.

L. INTRODUCTION.

Let E be a compact subset of the complex plane \mathbb{C} . For each p , $1 \leq p < \infty$, let $L^p(E)$ be the linear space of all complex valued functions f for which $|f|^p$ is integrable with the usual norm

$$\left\{ \int_E |f(z)|^p dm(z) \right\}^{1/p}, \text{ where } m \text{ denotes the two dimensional}$$

Lebesgue measure. Denote by $R(E)$ the subspace of all rational functions having no poles on E and let $R^p(E)$ be the closure of $R(E)$ in $L^p(E)$. A point $z_0 \in E$ is said to be a bounded point evaluation (BPE) for $R^p(E)$, if there is a constant F such that

$$|f(z_0)| \leq F \left\{ \int_E |f(z)|^p dm(z) \right\}^{1/p}, \text{ for all } f \in R(E) . \quad (1.1)$$

In [1] Brennan showed that $R^p(E) = L^p(E)$, $p \neq 2$, if and only if no point of E is a BPE for $R^p(E)$. The theorem is not true for $p = 2$ (See Fernström [2] or Fernström and Polking [3].) In this paper we show that if the right hand side of (1) is made slightly larger a corresponding theorem is true for $p = 2$. We also show that this theorem is best possible.

If $z_0 \in E$ is a BPE for $R^p(E)$ there is a function $g \in L^q(E)$, $\frac{1}{p} + \frac{1}{q} = 1$, such that $f(z_0) = \int_E f(z)g(z)dm(z)$ for all $f \in R(E)$. The function g is called a representing

function for z_0 . Let $B(z, \delta)$ denote the ball with radius δ and centre at z . We say that a set A , $A \subset E$, has full area density at z if $m(A \cap B(z, \delta))m(B(z, \delta))^{-1}$ tends to one when δ tends to zero.

Suppose now that z_0 is a BPE for $R^p(E)$, $2 < p$, represented by $g \in L^q(E)$ and $(z-z_0)^{-s} \phi(|z-z_0|)^{-1} g \in L^q(E)$, where s is a nonnegative integer and ϕ is a non-decreasing function such that $r \phi(r)^{-1} \rightarrow 0$ when $r \rightarrow 0$. Then for every $\varepsilon > 0$ there is a set E_0 in E having full area density at z_0 such that for every $f \in R(E)$ and for all $\tau \in E_0$,

$$\left| f(\tau) - f(z_0) - \frac{f'(z_0)}{1!}(\tau - z_0) - \dots - \frac{f^{(s)}(z_0)}{s!}(\tau - z_0)^s \right| \leq |\tau - z_0|^s \phi(|\tau - z_0|) \left\{ \int_E |f(z)|^p dm(z) \right\}^{1/p} . \text{ This theorem is due to Wolf [8].}$$

We shall show that the theorem of Wolf is not true for $p = 2$. We shall also show that a slightly weaker result is true and that this result is best possible. The main tool to show this is to construct a compact set E with exactly one bounded point derivation for $R^2(E)$. A point $z_0 \in E$ is a bounded point derivation (BPD) of order s for $R^p(E)$ if the map $f \mapsto f^{(s)}(z_0)$, $f \in R(E)$, extends from $R(E)$ to a bounded linear functional on $R^p(E)$.

2. BPE'S AND APPROXIMATION IN THE MEAN BY RATIONAL FUNCTIONS.

Denote the Bessel kernel of order one by G where G is defined in terms of its Fourier transform by

$$\hat{G}(z) = (1 + |z|^2)^{-\frac{1}{2}}.$$

For $f \in L^2(\mathbb{C})$ we define the potential

$$u^f(z) = \int G(z-\tau) f(\tau) dm(\tau).$$

The Bessel capacity C_2 for an arbitrary set X , $X \subset \mathbb{C}$, is defined by $C_2(X) = \inf \int |f(z)|^2 dm(z)$, where the infimum is taken over all $f \in L^2(\mathbb{C})$ such that $f(z) \geq 0$ and $u^f(z) \geq 1$ for all $z \in X$. The set function C_2 is subadditive, increasing, translation invariant and

$$C_2(B(z, \delta)) \approx \left(\log \frac{1}{\delta} \right)^{-1}, \quad \delta \leq \delta_0 < 1.$$

For further details about this capacity see Meyers [5].

The BPD's can be described by the Bessel capacity. Let $A_n(z_0)$ denote the annulus $\{z; 2^{-n-1} < |z-z_0| \leq 2^{-n}\}$. The following theorem is proved in [3]:

Theorem 2.1 Let E be a compact set. Then z is a BPD of order s for $R^2(E)$ if and

only if

$$\sum_{n=0}^{\infty} 2^{2n(s+1)} C_2(A_n(z) - E) < \infty.$$

Definition Set

$$L_{z_0}(z) = \begin{cases} \log \frac{1}{|z-z_0|} & \text{for } |z-z_0| \leq \frac{1}{e} \\ 1 & \text{for } |z-z_0| > \frac{1}{e}. \end{cases}$$

A point $z_0 \in E$ is called a weak bounded point evaluation (w BPE) of order β , $\beta \geq 0$, for $R^2(E)$ if there is a constant F such that

$$|f(z_0)| \leq F \left\{ \int_E |f(z)|^2 L_{z_0}^\beta(z) dm(z) \right\}^{\frac{1}{2}}$$

for all $f \in R(E)$.

We are now going to generalize theorem 2.1 in two directions.

Theorem 2.2 Let s be a nonnegative integer and E a compact set. Suppose that z_0 is a BPE for $R^2(E)$ represented by $g \in L^2(E)$ and that ϕ is a positive, nondecreasing function defined on $(0, \infty)$ such that $r \phi(r)^{-1}$ is non-decreasing and tends to zero when $r \rightarrow 0^+$. Then z_0 is represented by a function $g \in L^2(E)$ such that

$$\frac{g}{(z-z_0)^s \phi(|z-z_0|)} \in L^2(E)$$

if and only if

$$\sum_{n=0}^{\infty} 2^{2n(s+1)} \phi(2^{-n})^{-2} C_2(A_n(z_0) - E) < \infty.$$

Theorem 2.3 Let E be a compact set. Then z is a w BPE of order β for $R^2(E)$ if and only if

$$\sum_{n=1}^{\infty} n^{-\beta} 2^{2n} C_2(A_n(z) - E) < \infty.$$

The proofs of theorem 2.2 and theorem 2.3 are almost the same as the proof of theorem 2.1. We omit the proofs. Wolf proved in [8] that the condition

$$\sum_{n=0}^{\infty} 2^{2n(s+1)} \phi(2^{-n})^{-2} C_2(A_n(z_0) - E) < \infty \text{ is necessary in theorem 2.2.}$$

The compact sets E for which $R^2(E) = L^2(E)$ can be described in terms of the Bessel Capacity. The following theorem is proved in Hedberg [4] and Polking [6].

Theorem 2.4 Let E be a compact set. Then the following are equivalent.

- (i) $R^2(E) = L^2(E)$.
- (ii) $C_2(B(z, \delta) - E) = C_2(B(z, \delta))$ for all balls $B(z, \delta)$.
- (iii) $\limsup_{\delta \rightarrow 0} \frac{C_2(B(z, \delta) - E)}{\delta^2} > 0$ for all z .

If we combine theorem 2.3 and theorem 2.4 we get the following theorem.

Theorem 2.5 Let $\beta > 1$ and E be a compact set. Then $L^2(E) = R^2(E)$ if and only if E admits no w BPE of order β for $R^2(E)$.

Now we shall show that theorem 2.5 is not true for $\beta \leq 1$. We first need the following theorem.

Theorem 2.6 There is a compact set E such that

- (i) $C_2(B(0, \frac{1}{2}) - E) < C_2(B(0, \frac{1}{2}))$
- (ii) $\sum_{n=1}^{\infty} n^{-1} 2^{2n} C_2(A_n(z) - E) = \infty$ for all z .

The proof is a modification of a proof in [2] or [3], where a weaker theorem is proved. Since we shall need the construction of E later, we give some details.

Proof. There are constants F_1 and F_2 such that

$$F_1 \left(\log \frac{1}{\delta} \right)^{-1} \leq C_2(B(z, \delta)) \leq F_2 \left(\log \frac{1}{\delta} \right)^{-1} \quad \text{for all } \delta, \delta \leq \delta_0 < 1.$$

Choose α , $\alpha \geq 1$, such that

$$\frac{F_2}{\alpha} \sum_{n=2}^{\infty} \frac{1}{n \log^2 n} < C_2(B(0, \frac{1}{2})).$$

Let A_0 be the closed unit square with centre at the origin. Cover A_0 with 4^n squares with side 2^{-n} . Call the squares $A_n^{(i)}$, $i = 1, 2, \dots, 4^n$. In every $A_n^{(i)}$ put an open disc $B_n^{(i)}$ such that $B_n^{(i)}$ and $A_n^{(i)}$ have the same centre and the radius of $B_n^{(i)}$ is $\exp(-\alpha 4^n n \log^2 n)$. Repeat the construction for all n , $n \geq 2$.

Set

$$E = A_0 - \bigcup_{n=2}^{\infty} \bigcup_{i=1}^{4^n} B_n^{(i)}.$$

The subadditivity of C_2 now gives (i).

In order to prove (ii) it is enough to prove

$$C_2(A_n^{(i)} - E) \geq \frac{F_1}{32\alpha 4^n \log n} \quad \text{for all } n, n \geq n_0. \quad (2.1)$$

Consider all $B_k^{(i)}$, $n \leq k \leq n^2$, such that $B_k^{(i)} \subset A_n^{(i)}$.

We get 4^k discs with radius $\exp(-\alpha 4^{n+k} (n+k) \log^2 (n+k))$, $0 \leq k \leq n^2 - n$.

Call the discs

$$D_n^{(r)}, r = 1, 2, \dots, \frac{4^{n^2-n+1}-1}{3}.$$

Thus

$$\frac{F_1}{\alpha 4^n} \sum_{j=n}^{n^2} \frac{1}{j \log^2 j} \leq \sum_r C_2(D_n^{(r)}) \leq \frac{F_2}{\alpha 4^n} \sum_{j=n}^{n^2} \frac{1}{j \log^2 j}.$$

$$\text{Set } D_n = \bigcup_r D_n^{(r)}.$$

Since the distances between the discs are large compared to their radii, it can be shown that

$$C_2(D_n) \geq \frac{1}{8} \sum_r C_2(D_n^{(r)}), \text{ if } n \text{ is large.}$$

(See theorem 2' in [2] or theorem 2 in [3] for a proof.)

Thus if n is large,

$$C_2(A_n^{(i)} - E) \geq C_2(D_n) \geq \frac{F_1}{8\alpha 4^n} \sum_{j=n}^{n^2} \frac{1}{j \log^2 j} \geq \frac{F_1}{16\alpha 4^n \log n},$$

which is (2.1)

q.e.d.

Theorem 2.7 There is a compact set E such that

- (i) $L^2(E) = R^2(E)$
- (ii) E has no w BPE of order one for $R^2(E)$.

Proof The theorem follows immediately from theorem 2.3, 2.4, and 2.6.

3. BPE'S AND SMOOTHNESS PROPERTIES OF FUNCTIONS IN $R^2(E)$.

In this section we treat the theorem of Wolf mentioned in the introduction for the case $p = 2$.

Theorem 3.1 Let ϕ be a positive, nondecreasing function defined on $(0, \infty)$ such that

$r L_0(r) \phi(r)^{-1}$ is nondecreasing and $r L_0(r) \phi(r)^{-1} \rightarrow 0$ when $r \rightarrow 0^+$.

Suppose that z_0 is a BPE for $R^2(E)$ represented by g and

$(z-z_0)^{-s} \phi(|z-z_0|)^{-1} g \in L^2(E)$, where s is a nonnegative integer.

Then for every $\beta > 1$ and $\varepsilon > 0$ there is a set E_0 in E , having full area density at z_0 , such that for every $f \in R(E)$ and every $\tau \in E_0$

$$\left| f(\tau) - f(z_0) - \frac{f'(z_0)}{1!}(\tau-z_0) - \dots - \frac{f^{(s)}(z_0)}{s!}(\tau-z_0)^s \right| \leq \varepsilon |\tau-z_0|^s \phi(|\tau-z_0|) \left\{ \int_E |f(z)|^2 L_{z_0}^\beta(z) \right\}^{1/2}.$$

The proof of theorem 3.1 is only a minor modification of the proof of theorem 4.1 in [8]. Moreover, there is a proof of theorem 3.1 for $\beta = 2$ in Wolf [7]. We omit the proof.

Remark. Let $z_0 \in \partial E$ (the boundary of E) be both a BPE for $R^2(E)$ and the vertex of a sector contained in $\text{Int } E$. Let L be a line which passes through z_0 and bisects the sector. Let $\varepsilon > 0$ and let ϕ be as in theorem 2.2. For those $y \in L \cap E$ that are sufficiently near z_0 Wolf showed in [9] that

$$|f(y) - f(z_0)| \leq \varepsilon \phi(|y-z_0|) \left\{ \int |f(z)|^2 dm(z) \right\}^{1/2} \quad \text{for all } f \in R(E).$$

Our next step is to prove that theorem 3.1 is not true for $\beta = 1$. We first need a theorem, which we think is interesting in itself.

Theorem 3.2 Let s be a nonnegative integer. Then there is a compact set E such that

- (i) $\sum_{n=1}^{\infty} n^{-1} 2^{2n} C_2(A_n(z)-E) = \infty \quad \text{if } z \neq 0.$
- (ii) $\sum_{n=1}^{\infty} 2^{2n(s+1)} C_2(A_n(0)-E) < \infty.$

Proof We shall modify the set constructed in the proof of theorem 2.6. Let $B_j^{(k)}$ denote the same discs as in that proof. Let all $B_j^{(k)}$ which intersect $A_1(0)$ be denoted by $A_{11}, A_{12}, A_{13}, \dots$ so that their diameters are decreasing.

Choose j_1 so that

$$2^{2(s+1)} \sum_{j>j_1} C_2(A_{1j}) < 2^{-1}$$

and

$$\text{diam}(A_{1j_1}) < 2^{-3}.$$

Suppose that we have chosen j_1, \dots, j_n . Let all $B_j^{(k)}$ which intersect $A_{n+1}(0)$ and which do not coincide with $A_{11}, \dots, A_{1j_1}, \dots, A_{n1}, \dots, A_{nj_n}$, be denoted by $A_{n+1,1}, A_{n+1,2}, A_{n+1,3}, \dots$ so that their diameters are decreasing.

Choose j_{n+1} so that

$$2^{2(n+1)(s+1)} \sum_{j>j_{n+1}} C_2(A_{n+1,j}) < 2^{-(n+1)}$$

and $\text{diam}(A_{n+1,j_{n+1}}) < 2^{-(n+3)}$.

Let A_0 be the closed unit square with centre at the origin. Set $E = A_0 - (\text{The union of all } B_j^{(k)} \text{ such that } B_j^{(k)} \neq A_{nm}, 1 \leq n < \infty \text{ and } 1 \leq m \leq j_n)$.

We have

$$\sum_{n=1}^{\infty} 2^{2n(s+1)} C_2(A_n(0) - E) \leq \sum_{n=1}^{\infty} 2^{-n} < \infty.$$

Let $z \neq 0$. If ℓ is large all $B_j^{(k)}$, $B_j^{(k)} \subset A_{\ell}(z)$, differ from A_{nm} , $1 \leq n < \infty$ and $1 \leq m \leq j_n$.

Now exactly as in proof of theorem 2.6 it follows

$$\sum_{n=1}^{\infty} n^{-1} 2^{2n} C_2(A_n(z) - E) = \infty$$

q.e.d.

Corollary 3.3 There is a compact set E with exactly one BPD of order s for $R^2(E)$.

Proof Just combine theorem 3.2 and 2.1.

Remark The situation for $p \neq 2$ is different. In [1] Brennan showed that if almost all points $z \in E$, E compact, are not BPE for $R^p(E)$, E admits no BPE's for $R^2(E)$.

Theorem 3.4 Let s be a nonnegative integer and ϕ be as in theorem 2.2. Then there is a compact set E such that

(i) z_0 is a BPE for $R^2(E)$.

(ii) There is a representing function g for z_0 that satisfies

$$(z-z_0)^{-s} \phi(|z-z_0|)^{-1} g \in L^2(E) .$$

(iii) For every $\tau \in E$, $\tau \neq z_0$, and every positive integer n there is a

function $f \in R(E)$ such that

$$\left| f(\tau) - f(z_0) - \frac{f'(z_0)}{1!}(\tau-z_0) - \dots - \frac{f^{(s)}(z_0)}{s!}(\tau-z_0)^s \right| >$$

$$> n \left\{ \int_E |f(z)|^2 L_{z_0}(z) dm(z) \right\}^{1/2} .$$

Proof Theorem 3.2 gives that there is a compact set E such that

$$\sum_{n=1}^{\infty} n^{-1} 2^{2n} C_2(A_n(z) - E) = \infty, \quad z \neq z_0$$

$$\sum_{n=1}^{\infty} 2^{2n(s+1)} \phi(2^{-n})^{-2} C_2(A_n(z_0) - E) < \infty .$$

Now theorem 2.1 gives (i) and theorem 2.2 gives (ii). Moreover theorem 2.1 gives that z_0 is a BPD of order s for $R^2(E)$ and theorem 2.3 that τ is not a w BPE of order 1 for $R^2(E)$. This gives (iii).

REFERENCES

1. Brennan, J. E., Invariant Subspaces and Rational Approximation, J. Functional Analysis, 7 (1971), 285-310.
2. Fernström, C., Bounded Point Evaluations and Approximation in L^p by Analytic Functions, in "Spaces of Analytic Functions Kristiansand, Norway 1975", 65-68, Lecture Notes in Mathematics No 512, Springer-Verlag, Berlin 1976.
3. Fernström, C and Polking, J. C., Boundee Point Evaluations and Approximation in L^p by Solutions of Elliptic Partial Differential Equations. J. Functional Analysis, 28, 1-20 (1978).
4. Hedberg, L. I., Non Linear Potentials and Approximation in the Mean by Analytic Functions, Math. Z., 129 (1972) 299-319.
5. Meyers, N. G., A Theory of Capacities for Potentials of Functions in Lebesgue Classes, Math. Scand., 26 (1970), 255-292.
6. Polking, J. C. Approximation in L^p by Solutions of Elliptic Partial Differential Equations, Amer. J. Math., 94 (1972), 1231-1244.
7. Wolf, E., Bounded Point Evaluations and Smoothness Properties of Functions in $R^p(X)$, Doctoral Dissertation, Brown University, Providence, R.I., 1976.
8. Wolf, E., Bounded Point Evaluations and Smoothness Properties of Functions in $R^p(X)$, Trans. Amer. Math. Soc. 238 (1978), 71-88.
9. Wolf, E., Smoothness Properties of Functions in $R^2(X)$ at Certain Boundary Points, Internat. J. Math. and Math. Sci., 2 (1979), 415-426.

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	March 1, 2009
First Round of Reviews	June 1, 2009
Publication Date	September 1, 2009

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru