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ABSTRACT. Let a= (an), x= (xn) denote nonnegative sequences; x= (x ) denotes

m(n)

the rearranged sequence determined by the permutation 7, a * x denotes the dot product
% anxn; and S(a,x) denotes {a* x 2T is a permuation of the positive integers}. We
examine S(a,x) as a subset of the nonnegative real line in certain special circum-

stances. The main result is that if an%‘n, then S(a,x) = [a* x,*] for every x ¥ O

n #

if and only if a /an is uniformly bounded.

+1
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An elementary classical result of Riemann on infinite series states that a condi-
tionally convergent series that is not absolutely convergent can be rearranged to sum
to any extended real number. A slightly similar group of questions arose in connec-
tion with certain formulas in operator theory [1, p. 181]. Namely, if we let a= (an),

)

K= (xn) denote any two non-negative sequences and X, denote the sequence (xn(n)
where T is any permutation of the positive integers, then what can be said about the
Bet of non-negative real numbers S(a,x) = {a°*x :7 is a permutation of the positive
integers}. More specifically, which subsets of the non-negative real line can be

realized as the form S(a,x) for some such a and x?

Various facts about S(a,x) are obvious
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(1) sS(a,x)C [0,2]. The values 0 and « may be obtained.

(2) If a and x are strictly positive sequences or are at most finitely zero,
then S(a,x) C (0,=].

(3) Not all subsets of [0,~»] are realizable as an S(a,x) set. This follows by
a cardinality argument. If ¢ denotes the cardinality of [0,~], then the
cardinality of the class of subsets of [0,~] is 2¢ , but the cardinality
of the class of sequences a and x is ¢ and thus the cardinality of the
subsets S(a,x) 1is less than or equal to ce+c = c .

(4) If either a or x 1is finitely non-zero then S(a,x) 1is countable.

(5) An example: if a = (0,2,0,2,...) and x = (3_n), then S(a,x) 1is precisely
the Cantor set except for those non-negative real numbers whose ternary expan-
sion consists of a tail of O0's or a tail of 2's (i.e., a subset of the

rational numbers.),

It seems too ambitious to consider the general question at this time. For this
reason we shall restrict our attention to the cases when a 1is a non-decreasing
sequence and X 1is a non-increasing sequence,

If a=0 or x = 0, the problem is trivial and S(a,x) = {0}. If a, #0
and xn7# 0, the problem is trivial and S(a,x) = {=} . If an is bounded by M,
then S(a,x) [0, ME:xn]. In any case, hereafter we shall assume a 4 « and
x v+ 0, unless otherwise specified.

The Lemma that follows is a well-known fact, but we give a proof for complete-
ness and because the proof contains some of the ideas used in the main result.

LEMMA. If an‘r and x v+ then S(a,x)¢ [a-x,~). In addition, a-*x e S(a,x),
and if an 4 o and xn # 0 for all n or if an + and an > 0 for some n and
xn # 0, then © ¢ S(a,x).

PROOF. It suffices to show that for every permutation m of the positive
for

integers, we have a-°x < z anx or, equivalently, a-°x < z a

m(n) 7(n)*n

every m . The rest of the lemma is clear.

Define nl in terms of w as follows. Set
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1 n=1

m () = 4m(1l) n-= i)
m(n) otherwise

It is straightforward to verify that is also a permutation of the positive

1
integers (one-to-one and onto) which fixes 1. We assert that a *x < a *x
1
To see this, note that w(1) > 1 and 1(1) > 1. Hence an(l) - a1 > 0 and
Xl - X 1 > 0. Therefore
™ (1)
XE - a )x_ = (a -a )x. + (a -a ) x
m(n) ﬂl(n) n m(1) nl(l) 1 (n 1(1)) "1(" 1(1)) . 1(1)
= (a -a ) (x -x )
m (1) 1 1 T l(l)
> 0 .

411

Proceeding inductively, we obtain a sequence of permutations 7 that fix 1,2,...,k

k

for which a1r * x < a *x . Hence, for every k,

Letting k - ®, we obtain a-°*x :»an * X .

The main question of this paper is: for which a,x with an 4 © and xn v 0

is S(a,x) = [a* x,]?
The main result of this paper gives a partial answer. Namely, we can char-
acterize which an 4+ » have the property that S(a,x) = [a* x,®] for every x

such that x ¥ O.
n #

On first sight, it might appear that S(a,x) can never be [a* x,*] or that

it is quite rare. The first result in this direction was that if an = n for every

n, then S(a,x) = [a° x,7] for every x such that xn # 0. That S(a,x) may not

be [a *x,7] was first decided by an example due to Robert Young. Namely, let
2n _2n+l
n

and techniques are due to the work of the authors in collaboration with Hugh

Montgomery.

a =2 and xn = 2 . Both results are unpublished. The succeeding results
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THEOREM 1. (The Main Theorem) Let a = (an) where a > 0 for every n and
an > o, Consider the following conditions:

(1) an+l/an is bounded.

(2) For the non-negative sequence x = (xn), there exist subsequences (an )
k
and (x_) of a and x respectively such that

(a) a x -0 as k >« , and
T ™

© Ja x =w.
k "k "k

(3) S(a,x) = [a* x,°]

Then (1) implies (2) for every strictly positive sequence x= (x ) that tends to 0.
n

Also if a 4+ « and xn + 0 where an,xn # 0 for all n, then (2) implies (3).

PROOF. To prove that (1) implies that (2) holds for every strictly positive

sequence X = (xn) that tends to 0, suppose /an <M for all n . We assert

a

n+1

that for every positive integer k, there exist arbitrarily large positive integers
. -1 -1 . .

n and mk for which (k+1) < a X < Mk . If this assertion were true, then

k T oM ™ T

clearly we could choose two strictly increasing subsequences of positive integers

(nk) and (mk) such that a x - 0 as k » » to prove the assertion.

My My
For each fixed positive integer k, (k+l)_1 < anxn < Mk-l if and only if
x € [(an(k+l))-l , M(ank)_l]. All we need show is that there exist arbitrarily

large n,m for which X € [(an(k+l))-l, M(ank)-l].

Suppose to the contrary that there exists a positive integer N for which

X 4 [(an(k+l))-l, M(ank)-l] for every n,m > N. In other words, for every m > N,

X 4 kj [(an(k+l))_l, M(ank)_l]. (Note: This would imply that \_} [(an(k+l))_l,

n>N n>N

M(ank)—ll cannot contain any interval of the form (0,e) for some € > 0, since
xm >0 as m~> o . However, this is not the case. 1Indeed, the proof below can be

used to show that for every N, there exists € > 0 such that

oere U ta o™, ma ™.

n>N

For each m > N, let no denote the least positive integer n such that

- -1
k) 1 < xm, which exists since an > o as n > < and hence M(an k) >0

M(a +1

n+l



DOT PRODUCT REARRANGEMENTS 413

as n > . For m sufficiently large, we have M(a +lk)-l <X < M(an k)-l.
nm m k
Also, since M(a k)-1 < x and x >0 as m—> o, we have m > « implies
nm+l m m

an 1 -+ © and hence n > «. Therefore n > N for all m sufficiently large,

m
and for these m, xm ¢ [(an (k+1)) 1 R M(an k) 1]. Hence, for infinitely many m,

-1 0 mo-1 -1
we have x_ < M(a k) and x_ ¢ [(a_ (k+1)) , M(a_ k) "]. Therefore, for
m — n m n n
k m m
infinitely many m, we have M(a +lk)-l <X < (an (k+1))~1 . This implies that
1 a “m m
M(an +1k) < (an (k+1)) for infinitely many m, or equivalently,
m m

an +l/an > M(k+1)/k > M for infinitely many m, which contradicts our assumption

m

that a /a_ <M for all n. Hence (2) is proved.
n+l" n —

To prove (2) - (3) whenever an 4 » and x v 0, suppose (2) holds for a

n #

and x, so that there exist subsequences (a ) ‘and (x ) such a x -~ 0 as
"k " "k M
k > », and Xka x = o . We first assert that without loss of generality we may
"k Mk
assume that a-+x = Zanxn < o, To see this suppose a-* x = Zanxn = o . Then by

the lemma we have that S(a,x) = {«} , and hence (3) holds.
Assuming that Zanxn < =, we next assert that without loss of generality we
can assume that n, > mk for every k. To see this, let Z1 denote the set
: : . T
{k n > mk} and let 2 denote the set {k n < mk} hen

2
©w=7)a x = Z a x_ + 7} a x
konm kez, "k "k kez, "k "k
But Z an x = 2 a x i.z anx < ©. Therefore Z an b = o, Let Z1
kez, "k 'x kez, "k "x "% kez, "k "k
2 2 1

determine subsequences of (nk) and (mk), which for simplicity we again call (nk)
and (mk), respectively, by taking only those entries n_ . mk (in increasing order)
for which k ¢ Zl' This gives us subsequences (an ) and (x_ ) of a and x

k
which satisfy conditions a and b in the an condition of the theorem, and in

addition satisfy nk > mk for all k.

Next we assert that without loss of generality we may assume n # mj for all

j i < > d < >
k,j. To see this, note that we have nk > m.k for all k and that nk an mk

are strictly increasing (a property of subsequences). Therefore if n = mj for
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some k,j, then k < j and n # m, for all i # j. That is, n can occur at

most once among the mj's. Put (nl,ml),..., (nkl,mkl) € Sl where kl+1 is the

least positive integer such that mk w1 - ™% for some k < kl + 1. Put
1

(nkl+l, mkl+1),...,(nk2,mk2) € 52 where k2+1 is the least positive integer, if it

Yieoes

exists, such that m ,, =n, for some kl+l <k < kytl. Put
2

n , m

+ +

k2 1 k2 1

(nk ’ mk ) € Sl such that k3+l is the least positive integer, if it exists, such
3 3

that mk3+l = nk for some k :-kl or k2 <k < k3+l. Continuing in this way, 1f

no such least positive integer exists, then either Sl or 52 is finite. Otherwise

both S_,S are infinite. For either case, no n, = m, when both (n ,m ), (n.,m,)
1’72 k 3 k' k J 3

S . S_, i isjoi iti
e s or 52 Then clearly 1 82 is a disjoint partition of the set of all (nk,mk)

and in each set, no nk appears as an m, . Therefore ® = Za X = 5 an X +
J " ks, k Mk
+ Z a X . and so either z a x = or 2 a x = . Choosing S1 or
s, "k " s, "k M s, "k "k

52 accordingly we produce the sequence (nk,mk) with the desired properties, (i.e.,

satisfying a) and b) in Theorem 1 and also satisfying n, # mj for all k,j and

nk > m for every k.).

Now consider the series zk(a -a J)(x -x ). Since n > mo. we have
™ ™ :
0<a -a <a and 0 <x =-x <x , andso O0<<(a =-a )(x - x )
S O 5 T O N
<a x + 0 as k » «. Furthermore, since Zka X =® , a Xx >0, Zka X

"k Mk "k Mk ™ "k "k "k
<a°*x < ®, a x <ae*x <»® , and Za b <
= m “n =

Ean xn < e« ,  we have
k k

Zk(a -a )(x -x_ )= zk(a x +a x =-a X
ko™ ™ kM ™ Mk "k Tk

a X )
T Mk
We shall now show that for every € > 0, there exists a subsequence (kn) of posi-

tive integers such that € = 5 (a - a Y(x_ - X, ). This follows from the
ke {k_} ok x " k
following more general fact.
Suppose (d(k)) 1is a non-negative sequence for which d(k) > 0 as k >« and
Ed(k) = o . We assert that very every e > 0, there exists a subsequence (kn) such

that € = Ed(kn). The proof of this fact proceeds along the same lines as the

proof of Riemann'stheorem on rearrangments of conditionally convergent series. Fix
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€ > 0 and choose nl 3_Nl so that d(k) < e for every k z_Nl, and so that n
n
1
is the greatest integer greater than N1 such that Z d(k) < & . Hence

+ =]
n1 nl 1 k Nl

7 d(k) <e < § dlk). This can be done since d(k) > 0 as k>« and d(k) == .

k=N1 k=N1 nl

Choose N, > n, so that d(k) < (e - ) d(k))/2 for every k > N, and then
k=Nl n,
choose n2 to be the largest integer greater than N2 such that Z d(k) < e -
k=N
nl n2 nl n2+l 2
J  a(k). Hence ) d(k) <e- ) dk) < J d(k). Proceeding inductively

k=Nl k=N2 k=Nl k=N2

1

in this way, we obtain sequences (N ) and (np) of positive integers for which

n
p-1 g p-1
0<dk) < (- ) ¥ d(k)) /2 for every p and every
g=1 k=Nq

p nq nP+l
I odk <e- ) Y aw < ) dk) .
k=N gq=1 k=N k=N
q 1
This implies that
n n

p q p=l1  q _
0<e- ) ¥ 4k <dmn +1 €- ) 7 a2t
gq=1 k=Nq p

=1 k=N
4 q

fA

&:/ZP_l >0 as p > =.

| A

©

Therefore ¢ = Z z d(k). Hence, if we choose (kn) to be the strictly increasing
g=1 k=N
q
sequence of positive integers k, where k 1is taken to range over the set

©
(U k: N_<k<nl, wehave € = Zd(kn) .
p=1 P p

Applying this result to the sequence (a - ), since it is non-

a_ )(x - x
O T
negative, tends to O, and sums to <« , we obtain that for every € > 0, there
exist subsequences of (nk) and (mk), which we shall again denote by (nk) and
(m ), for which ¢ = 2 (a -a )x -x ).
mk k n m m n
Now recall that we wish to show that S(a,x) = [a*x,®]. We already know

a*x and « ¢ S(a,x). Suppose a‘*x <r <o, It suffices to show r e S(a,x).

Let € = r - a+*x and choose subsequences which we again call (nk) and (mk)
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€ = Zk(ank - amk) (xmk - xnk) .

. s . +
We now choose 7, the requisite permutation on 2Z , as follows. Let n(nk) = mk
and 7T(mk) =n. for each k, and let w fix all other integers n (i.e., those
n for which n # nk,mk for every k). The permutation 7 is well-defined since

n, # mj for every 1i,j. Let ZTT denote the set {n: n =n or n = nH( for some

i k
k}. Hence m(n) =n for all n¢ Z . Then
Z axX iy = T oax + Y (a x +a x )
n ngz % ok ™™ ™k
= z anxn+z (a x +a x ) (a a )(x_  =-x))
ngz x "k %k ™ ™ ™
=Y ax + Ya -a )x - )
x "k M %k
= a*x+¢e =r,
and so r ¢ S(a,x), which proves (3). Q.E.D.

THEOREM 2. Let a = (a ) where a, >0 and a * . Then a /a is
n 1 n n+l” n

. +
bounded if and only if, for every x = (xn) for which x 0, S(a,x) = [a*x,>].

n #
¥
PROOF. If a /a is bounded, then by Theorem 1, if x 0, then x = (x)
n+l” n n # n
satisfies condition (2) of the theorem. Also by Theorem 1, since a, 4 © and al > 0,
condition (3) of the theorem is satisfied by x. That is, S(a,x) = [a°*x, > ].
Conversely, if S(a,x) = [a°*x, ] for every x = (xn) for which X ; 0, we

claim that a /a must remain bounded.
n+l" n

Suppose to the contrary that a /an is not bounded. Let h(n) denote the

n+l
least positive integer k for which k > n and ak+1/ak > 4" Clearly h(n) is
- v .
a non-decreasing function of n. Define x = (a 3n) 1 . Then x 0. Letting
n h(n) n #

X = (xn), we claim that S(a,x) # [a*x,>]. In fact, we claim that a*x < 1 but

n -1 -n
1 £ S(a,x). Indeed, a-*x = Ea“xn = Zan(ah(n)3 ) < 23 = 1/2 < 1. Furthermore,

letting m be any permuation of Z+ , 1if Tl’-l(k) > h(k) for some k, then
k,-1
> > = 3
La % i =% -1,k 3 +1% ~ Chao+1Cha )

NN

|

|v



DOT PRODUCT REARRANGEMENTS 417

On the other hand, if n-l(k) < h(k) for every k, then

= = _n_
zanxn(n) B za-n-l *n = ah(n)xn - ;3 =v2<l.

(n)

In any case, Za # 1, hence 1 ¢ S(a,x). Q.BE.D.

nxn(n)

NOTE. In the proof of Theorem 1, each time we constructed a permutation = to

solve the equation Za X = r, it sufficed to use only disjoint 2-cycles. That

n m(n)
is, each such 7 that we constructed was the product of disjoint 2-cycles. This
seems odd and leads us to ask if there are any circumstances in which the use of
infinite-cycles or n-cycles yields more. In other words, is it always true that

. . . + . .
S(a,x) 1is the same as { ZanxTr : T is a permutation of 2 which is a product of

(n)
disjoint 2-cycles} ?
The following question seems likely to have an affirmative answer. If so, this

would give a characterization for those sequences a and x where an 4+ o, a, >0,

1
¥
and xn #

0, which satisfy S(a,x) = [a* x,~]. However, it remains unsolved.
QUESTION 1. If a and x are as above, does (3) == (2) in Theorem 1?

Finally, we wish to point out that Theorems 1 and 2 imply analogous theorems in
which a and x switch roles. Indeed, the proofs of the following two corollaries

follow naturally along the same lines as those of Theorems 1 and 2.

COROLLARY 3. Let x = (xn) where xn >0 for all n, and xn + 0 as n > o,
Zonsider the following conditions.

(1) xn/xn+l is bounded below.

(2) For the non-negative sequence a = (an), there exist subsequences (an )
k
and (x ) of a and x, respectively, such that

a) a x »>0 as k »>=», and
oy Mk

b) Z a x =,

k nk mk

Then (1) implies that (2) holds for every strictly positive sequence a = (an)

that tends to <« .
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COROLLARY 4. Let x = (xn) be a non-negative sequence. Then xn/xn+l is

bounded below if and only if, for every a = (an) for which a 4 « and al > 0,

S(a,x) = [a*x,>].

QUESTION 2. Is there anything to be said about the qualitative nature of

S(a,x)? Is it always a Borel set, measurable, F ,G_ ?
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