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ABSTRACT. A class Tk of analytic functions in the unit disc is defined in which the
concept of close-to-convexity is generalized. A necessary condition for a function f
to belong to Tk’ raduis of convexity problem and a coefficient result are solved in
this paper.
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1. INTRODUCTION.

This paper is directed to mathematical specialists or non-specialists familiar
with multivalent functions [1], and to close~to-convex functions [2].

Let Vk be the class of functions of bounded boundary rotation and K be the class
of close-to-convex functions. We generalize the concept of close-to-convexity in the
following direction.

©

n
Definition. Let f with f(z) = cz + 22 a z be analytic in E = {z:|z|<1}, |c|=1 and
zetinition n=
£'(z) # 0. Then feTy, k>2, if there exist a function geVy such that, for zeE

£'(z) >0

Re gv(z) . (l.l)

It is clear that Ty = K.
Using a method by Kaplan [2], we have

THEOREM 1. Let feTk. Then with z = reie and 6. < 6

6
2 ' '
(2f'(2))" _k
lRe { 7 (2) }de > Eﬂ (1.2)
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REMARK 1. From theorem 1, we can interpret some geometric meaning for the class T-
For simplicity, let us suppose that the image domain is bounded by an analytic curve
C. At a point on C, the outward drawn normal has an angle arg[eief'(eie)]. Then from
(1.2), it follows that the angle of the outward drawn normal turns back at most %ﬁ.
This is a necessary condition for a function f to belong to Tg. It will be inter-
esting to see if this condition is also sufficient.

REMARK 2. Goodman [3] defines the class K(B) of functions as follows.

Let f with f(z) = z +n§2 anzn be analytic in E and f'(z) # 0. Then for B>0, feK(B),

if for z=reie and Bl < 62

%2 g (2))"
Re[{2f{z)) "] -
g e[ £ (z) de > -Bm
1
We note that T c:K(E)

k 2 )°
2. MAIN RESULTS

From remark 2 and results given in [3] for the class K(B), we have at once

THEOREM 2. Let fsTk.
(i) Denote by L(r,f) the length fo the image of the circle |z|= r under f and by
A(r,f) the area of f(]z|=r). Then for O<r<l,

(a) L(r,f) < L(r,F),
(®) A(r,£) < A(T,F),

where F, is defined by, for zecE,

K
L+l
1 1+k
F () = 5oy [(I:Z) ‘1]

=2 +n§2 An(k)zn 2.1)

and clearly Fk € Tk’
(i1) lagl <A (K), n =23, .ooo.. .y k >2

where An(k) is defined by (2.1). This result is sharp for each n > 2.

(iii) For z = reie, 0<r«<l1,
1 1
UD® ey | W
(141) *sk+2 - )‘41(+2

These bounds are sharp, equality being attained for the function Fk defined by (2.1).
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We also need the following result.

Lemma 1 [4]. Let geVy -

for zeE

Then there are two starlike functions sy and Sy such that

skt
(s, (2)/2)

'
g'(2) L

—
(SZ(Z)/Z)*k

THEOREM 3. feTk if and only if

Yk+s
1
C1ED 7k kek

£'(2) 2

(k) (2)) 72

PROOF: From definition 1, we have

£'(z) = g'(2)h(z),

Using lemma 1, we know that there are two starlike functions s

g' (z)

Thus

£'(z)

ger and Re h(z)>0.

Lk+s
(s](Z)/Z)

1 1

Lk—
(SZ(Z)/Z)

and s

ks Lk
(s]<z)/z>&k+5 (s, (Dn(2))/2) "

- — h(z) =
(s, (2)/2) ™"

1
K] (2)) "

] Lﬂk‘%
(k) (2))

1
(s, ()0 () /2) *

k=

where kl and k, are two suitable selected close-to-convex functions.

2

Lemma 2. Let H be analytic and be defined as

k k 1
H(z)g'(z) = (zg'(2))"', ge vy and H(z) = (Z-+ %) hy (2) —(Z - 7) hz(z),

Re hi(z) > 0, i=1,2, h (0)=1
i
Then
2m 2
1 f[H(z)lZde 1+ (k*-1)r (z = rel
27 - 1-12
0
and
2m
1 f , k
— | |H"(2)|d8 <
2m [ [ —1._1-2
0
PROOF:

By the representation formula due to Paatero [5], we can write
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such that zeE,
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LT
1 1+ze
H(z) = 5;—{ I:;gif'du(t),
where 0
2T om
[du(t) = 27, and Ildu(t)l < km
0 0
© n
Let H(z) =1+ c z
n=1 n
Then
2T X
e, = _%.I e _1ntdu(t), and so for n>1,
om
1
el 5;1 ] <
Thus
2 2 2
2 o 22 2 o 2n 1+(k" -1
| H@] a8 = T fe [T < aw 1r )= i_ I
0 n=0 n=1 r
Also m
1 eit
H' (z) = ;—-—'i—t—z-du(t)
(1-ze™")
Thus
am 2m 2m 2T
L fle A1 S K
o

THEORE! 4: Let feTk. Then for n>1,

k-1
2
an+ll - 1% < c(k)n ,
where c(k) is a constant and depends only on k.
PROOF: Since feT, we have for zeE,
£'(z) = g'(z)h(z), geVy and Re h(z)>0
Set
F(z) = z(2£'(2))' = zg'(2)[H(2)h(2) + zh'(2)], (2,2)
where Re h(z) > 0 and H(z)g'(z) = (zg'(z))', with

kK, 1 kK 1 _ -
H(z) {Z +-2-)hl(z) - (Z E)112(z), Re h;(z) > 0, i=1,2, h;(0)=1

Thus, for & ¢ E and n>1;
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2m

2
](n+1)2£an+l-n an|§_;;—E;I£]z g||F(z)]|ds,

and by using lemma 1 and (2.2), we obtain
Ak""l’i

2 _2 1(_]3
| (n+1) a . -n an|§.2nrn+1}|z l‘ - ‘%
0

|H(z)h(z) + zh'(2) |48,

where sl, 32 are starlike functions.

It is well-known [1] that for starlike function seS,

<ls@l= 5
(1+r) (1-1r)
Let O<r<l. Then by a result of Golusin [6,pl62], there exists a zq with
|zll = r such that for all z, {z[ =

21:2
|2y 1oy @] < =55

From (2.3)-(2.5), we have

2 2 A S S
{ r r '
| (a+1)“Ea_,--n"a_|< —) ( )( ) le(z)h(z)+zh (z)|de
n+l n 21rrn+1\r 1-r2 (l_r)z
Now as in [7], we have with z = reie
- : \
5= f‘h(z)lzde <
0 1-r
and
2T
2r where Re h > 0.
E—— leh'(z)lde < 5 ere ()
0 1-r
Also )
2m 2m 2%

*{[lH(z)h(z) + zh'(z)|do < 211r [[]H(z)h(z)|de + Z—i-p h'(z)|de

1 1
aredn)tass®? | o
- l—r2 l—r2

by using Schwarz's inequality, lemma 2 and (2.7).

Hence from (2.6) and (2.8), we have

l(n+1)2§an+l —nzan < —= L [(1+(k -r )1+1]

b4
rn+l )5k+l
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(2.3)

(2.4)

(2.5)

(2.6)

2.7)

(2.8)
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and so choosing |£] = ¢ =(;EI\ , we obtain for n>1

1
n?|| ayl-la|l < [(1+(k2_1) 2y 1] o2 Slekt2 (_g)!skﬂ kL

Thus
k-1
la_,,l-la || < cton™ 1,
The function Fk defined by (2.1) shows that the index (%—- 1) is best possible.
We now evaluate the radius of convexity for the class Tk.
THEOREM 5: Let feTk. Then the radius R of the circle which f maps onto a convex

R = %[(1&2) - Vi +4k) ] .

The function Fk defined by (2.1) shows that this result is best possible. In par-

ticular, when k = 2, R = Z-Néj—which is well known. This result also follows from

domain is given by

the remark in [3,p.23].

PROOF: By definition

zf'(z) = ag'(z)h(z) ger; Re h(z)>0.
Thus
(z£'(2))" _ (2g'(z))' , zh'(2)
£'(z) g'(z) h(z)
and so
(z£'(z))" (zg'(z))' _ (zh'(2)
Re “F@ 2 R IFe |
For ger, it is well known [9] that, for z = reie, O<r<1,
Re (23:(2))' S r?-kr+l
g' (z) - 1-12
Hence
e (2E' @) fmkrtl | 26 _ f=(ed)rv
1 —_
£1(z) 1—r2 l-r2 l-r2

This gives the required result.
REMARKS 3.
(i). We also note that the extremal function Fk(z) defined by (2.1) is the same
function as FB(z) defined by equation (2.6) in [3]. As A. W. Goodman has pointed out

that this function is sometime referred to as the generalized Koebe function.
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(ii). We conjecture that the class Tk is a proper subclass of the class K(B) as

defined in [3], since in the definition of Tk’ ger and we know that ger, 2<k<4, 1is
convex in one direction and all the functions in one direction form a proper subclass

of the class of close-to-convex functions,

(11i). It remains open whether Tk is a linear in variant family.
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