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ABSTRACT. A brief survey of recent results on distributional and entire solutionsof
ordinary differential equations (ODE) and functional differential equations (FDE) is
given. Emphasis is made on linear equations with polynomial coefficients. Some work

on generalized-function solutions of integral equations is also mentioned.
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1. INTRODUCTION AND PRELIMINARIES.

This paper may be considered as a continuation of [1] which contains, in parti-
cular, a survey of recent results on entire solutions of ODE with polynomial
coefficients. Integral transformations establish close links between entire and
generalized functions [2]. Therefore, a unified approach may be used in the study
of both distributional and entire solutions to some classes of linear ODE and,
especially, FDE with linear transformations of the argument [3]. It is well known
[4] that normal linear homogeneous systems of ODE with infinitely differentiable

coefficients have no generalized-function solutions other than the classical
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solutions. In contrast to this case, for equations with singularities in the
coefficients, new solutions in generalized functions may appear as well as some
classical solutions may disappear. In Section 2 results on distributional and entire
solutions of ODE are discussed. In Section 3 we study analogous problems for FDE.
Research in this direction, still developed insufficiently, discovers new aspects

and properties in the theory of ODE and FDE. In fact, there are some striking
dissimilarities between the behavior of ODE and FDE which deserve further investi-
gation.

1. Distributional solutions to linear homogeneous FDE may be originated either
by singularities of their coefficients or by deviations of argument. In [5] it has
been proved that the system

x'(t) = Ax(t) + tBx(At), -1 <A <1
has a solution in the class of distributions - an impossible phenomenon for ODE
without singularities.

2. In [6] it was shown that a first-order algebraic ODE has no entire
transcendental solutions of order less than %, whereas even linear first-order FDE
may possesssuch solutions of zero order [3], [7].

3. It is well known [8] that the solution of the initial-value problem for a
normal linear ODE with entire coefficients is an entire function. Let in the linear
FDE

w'(z) = a(z2)w(A(2)) + B(z2), w(0) = Yo
the functions a(z), b(z), A(z) be regular in the disk |z] < 1,and A(0) = O,
[A(z) ] <1 for Izl < 1. Then there is a unique solution of the problem regular in
Iz] < 1[9]. In general, this solution cannot be extended beyond the circle [z] =1,
if even a(z), b(z), and A(z) are entire functions. Thus, the solution of the eguation
w'(2z) = a(z)w(zz),
where a(z) is an entire function with positive coefficients, has the circle |z| =1
as the natural boundary [10], [11].

2. DISTRIBUTIONAL AND ENTIRE SOLUTIONS OF ODE

The number m is called the order of the distribution
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5 g
x =1 ka (t), x 40, (2.1)
k=0
where G(k) denotes the kth derivative of the Dirac § measure, and the variable t is

real. Finite order solutions of linear ODE have been studied mainly for equations
with regular singular points [12 - 16]. 1In [16] for the first time an existence
criterion of solutions (2.1) to any linear ODE was established.

THEOREM 2.1. (Wiener [16]). If the equation

n
z ai(t)x(n-i)(t) -0 (2.2)
i=0

with coefficients ai(t) € C(m+n-i)

in a neighborhood of t = 0 has a solution of order
m concentrated on t = 0, then:

1) a, = o,

(2) m satisfies the relation -(m + n)aa(o) + al(O) =0,

(3) there exists a nontrivial solution (xo, cees xm) of the system
T minéj’ni_1)3‘ia§j‘i)(o)(k +3 -1 =0

§=0 k+j-n 1=0

(k=0,1, ..., m+ n).
THEOREM 2.2, (Wiener [16]). Eq. (2.2) has an m order solution with support
t = 0, if the following hypotheses are satisfied:
(1) For some natural N(O <N<m+ n),

aiN-i)(O) =0,4i=0, ..., min(N, n);

(i1) m is the smallest nonnegative integer root of the relation
M N1 (NH1-1)
I (-1) aj' O)(@m+n -1i)! =0, M =min(N + 1, n),
1=0
where N denotes the greatest number for which (i) holds;
(i1i) there exists a nonzero solution of system (3) in Th. 2.1.

From these theorems it follows that if the equation

i

n
It ai(t)x(i)(t) =0 (2.3)

i=0

with coefficients ai(t) e C" and an(O) # 0 has a solution (2.1) of order m, then
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o i
z (-Dra,(0)@m + 1)! = 0. (2.4)
1=0 i

Conversely, if m is the smallest nonnegative integer root of (2.4), there exists an
m order solution of (2.3) concentrated on t = 0 [16]. This proposition constitutes
the basis for the study of finite order solutions to equations with regular singular
points. The stated results can be used also in the search of polynomial and rational
solutions to linear ODE with polynomial coefficients.

Thus, we formulate

THEOREM 2.3. The equation

n
b (ait + bi)x(n'i) (t) =0

i=0
with constant coefficients ag, Bi and a, = 1, bo = 0 has a finiteorder solution if
all poles s; of the function
i n-i-1 n-i
R(s) = I (ﬁis - (- i)ai)s !/ z a s
i=0 i=0

are real distinct and all residues r, = res R(s) are nonnegative integral.

i s=s
i
This solution is given by the formula
L r
x =C r1 (d/dt - si) iG(t), C = const
=1
and its order is
n
m= I r,.
=11

1f a = 0 there exists also a solution

n
r
x=c | ) @rae -y Ll
1=1 I

Polynomial and rational solutions of ODE have been studied extensively [17 -
25]. 1In [17] the author deals with the equation
n
£ ax®e) =0 2.5)
i=0

where a, = ai(t) have mth order derivatives in [a, b]. Let ay "= ai/a0



ORDINARY AND FUNCTIONAL DIFFERENTIAL EQUATIONS 247

= (a' '
(provided a, # 0) and aij (ai+1,j—1 + ai,j-l) /(al,j-l + aO,j—l)
\ ]
(provided al,j—l + aO,j—l # 0).

v
THEOREM 2.4. (Sapkarev [17]). Eq. (2.5) has a polynomial solution of degree
m if and only if

+ a 0.

M =
31,m-1 " %0,m-1
THEOREM 2.5. (ggpkarev [17]1). Eq. (2.5) has polynomial solutions of degrees m,
m+1l, ..., m+n-141if and only if

' = = —-—
ai+l,m-1 + ai,m—l 0Ofori=0,1, ..., n -1,

Necessary and sufficient conditions for the existence of a maximal number of
polynomial solutions to algebraic differential equations are given in [18] and [19].
Existence of polynomial solutions of an equation of Liénard type is studied in [20].
The equation w' = ao(z) + al(z)w + ...+ an(z)wn with n polynomials as solutions is
considered in [21]. In a number of papers additions to Kamke's treatise are made.
Thus, in [22] it is proved that for the generalization

NG S NE S € (n)
X = iEl(—l) tx /it + £(x7)

of Clairaut's equation the following are two solutions:

1
X = Zcit /i!+f(cn),
i=1
where Cl, «e., € are arbitrary constants, and
n-1 i
x=y+ I Ait .
i=1
where Al, cees Ah-l are arbitrary constants and f'(y(n)) = (-t)" /n!. In [23] and

[24] rational solutions of Painlevé's third and fifth equations are studied.
THEOREM 2.6. (Gromak, [23]). There exists a rational solution of the equation
zww'" = zw'2 - we' + aw3 + Bw + Yzw4 + 6z,
where a§ # 0, y =0 or By # 0, § = 0, if B = 2k, k = 0, *1, *2, ...; this rational
solution has Bz / 4 poles and %; + 1 zeros.
The work [25] concerns the study of properties of solutions to the complex

equation (1) Pf = g, where
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2 k,. k 1
P(z, 9/92) = L P (z) 8 [0z, 3/3z =5 (3/3x - 13/ dy)
=0

and g is a given holomorphic or rational function. Various conditions guaranteeing
that the solutions of (1) are polynomial or rational functions of a certain type are
obtained. In the last part, differential equations of Euler type are considered.

THEROEM 2.7. (Nova[25]). Let Q be a simply connected open set in ¢ and a € Q.
If a is a regular singular point of P and every solution of Pf = g in 0(Q \\ {a}),
with g € Ra(Q), is rational in @ with a pole at a, then P is normal.

Significant contributions to the study of asymptotic properties of the analytic
solutions of algebrafc ordinary and partial differential equations are made in [6].
The main properties are the growth of an entire solution, the order of a meromorphic
solution and its exceptional values. In a certain sense, this book completes the
fundamental monograph [26]. In the second chapter of [6], the author studies the
algebraic DE

P(z, w, w') = 0. (2.6)

It is reduced to the form

n
zw', - zw', n-i
Po(z, w, T) = 120 Qi(z, —;’—)w =0, 2.7

where Qi(z, n) are polynomials in z and n. Let w(2z) be an entire transcendental

solution of (2.6) and let C be a point on the circle |z| = r such that

w(z)| = M(x) = max |w(z2)]|, [z]| = r.
Substituting w = w(z), z = £ in (2.7) and dividing its terms by W' (Z) gives, with
regard toMacintyre's formula [27]

L' (L) /£(T) = ™' (r)/M(x) = K(r),
the equation

n
Q, R(x)) = - I q (&, KEN&@.
i=1

From here it follows that
Q, (%, K(r)) = o(1). (2.8)
The polynomial QO(C, K) is called the principal polynomial of Eq. (2.7), and (2.8)

is called the determining equation.
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THEOREM 2.8. (Strelitz[6]). The order and type of an entire transcendental

solution of (2.6) are equal, respectively, to the positive order p, > 0 and type O

3
of one of the solutions of the determining equation (2.8). Furthermore,

h]

P f3
lim K(x) /r * = ojpj, lim In M(x) /r” =0
T r-¥o

3
The following proposition shows that not all of the numbers Py indicated in Th. 2.8
may be the orders of the entire solutions of first order algebraic DE.

THEOREM 2.9. (Strelitz[6]). Algebraic DE(2.6) cannot have entire transcenden-
tal solutions of order p < -;— . In general, —;-cannot be replaced by a larger number:
there are equations of the form (2.6) that have entire transcendental solutions of
order % .

EXAMPLE 2.1. (Strelitz[6]). The equation

wz + 4zw'2 =1

N

has an entire transcendental solution w = cos ¥z of order p =

The following result is of interest in this connection.

THEOREM 2.10. (Wittich [26]). Let R(z, w) be a rational function of z and w.

A meromorphic solution of the equation w' = R(z, w) which is of order < -;— is a
rational function.

In the second chapter of [6] it is also proved that the order of any meromorphic
solution of a first order algebraic DE is finite. The orders of the transcendental
entire solutions of second order linear DE with polynomial coefficients have been
investigated in [28], [29], [30]. Suppose that P(z) and Q(z) are polynomials of
degree p and q, respectively. Set gg = 1 + max(p, %'q). Let p >q + 1. Then all

transcendental solutions of the equation

w'+ P(z)w' + Q(z)w=0 (2.9)
are of the order 1 + p = 8o+ If p i%q , all transcendental solutions are of the
order 1 + %q = 8;- Deviation from this pattern can occur only if %—q <p<q.

Here g = 1 + p, and there are always solutions of this order; under certain
circumstances, however, a lower order q - p + 1 may also be present.

THEOREM 2.11. (Hille [30]). If in (2.9) either P or Q is an entire
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transcendental function while the other is a polynomial, then every transcendental
solution of (2.9) is an entire function of infinite order. This is not necessarily
true, however, if both P and Q are entire.

THEOREM 2.12. (Wittich [30]). 1In (2.9) suppose that P and Q are entire
functions and suppose that the equation has a fundamental system wl(z), wz(z), where
vy and w, are entire functions of order Py and pz, respectively. Then P and Q are
polynomials.

Th. 2.12 may be regarded as a converse of Th. 2.11.

THEOREM 2.13. (Frei [31]). Suppose that in the equaticn

n
w(n) + I pi(z

i=1

)w(n_i) =0

the coefficients pi(z)(i =1, 2, ..., k) are polynomials, and pk+1(z) is an entire
transcendental function. Under these conditions the equation can have no more than
k linear independent entire transcendental solutions of finite order, whereas all
other solutions of the fundamental system are of infinite order.

The results by Frei, Poschl, and Wittich on the growth of solutions of linear
DE are generalized in the third chapter of [6]. The main tool is the Wiman-Valiron
method, but the case when this method fails is also studied. Nonlinear algebraic
DE of the form P(z, w, w', ..., w(n)) = 0 are investigated, too. A necessary con-
dition for some complex number a to be a defect value of a meromorphic solution of
finite order is P(z, a, 0, ..., 0) = 0. We already know that first order algebraic
DE have no entire transcendental solutions of zero order. In [32] it is shown that
there are algebraic DE of third order that have entire transcendental solutions of
zero order.

THEOREM 2.14. (Zimogliad [33]). A second order algebraic differential equation

P(z, w, w', w') =0

(P is a polynomial of all its variables) cannot have entire transcendental solutions
of zero order.

THEOREM 2.15. (Shah [34]). Let f(z) be an entire solution of an nth order

linear homogeneous equation
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(n) +

Po(z)w R Pn(z)w(z) =0

where P,(0 < j < n) are all polynomials. Write max deg P
] - 0<j<n 3

a<j <n - 1). Then f(z) is of order 1 and

= d and suppose that

deg P, = deg P > max deg P

0

exponential type T where

j’

1
T = Ian/aol /n

and a_ = lim Pp(z) /zd, p = 0, n. For cases when the condition on the degree of P
Z~00
is not satisfied, see ([34, Th. 1.6]).

3

The Bessel function of integer order n, Jn(z), satisfies the ODE
zzw" + zw' + (z2 - n2)w = 0, and the Coulomb wave function FL(n, z) satisfies the
ODE zzw" + (zz— 2nz - L(L + 1))w = 0 (n a real constant, L a nonnegative integer).
For these functions we have log M(r, Jn) ~r ~ log M(r, FL) as r >,

Consider now vector-valued functions F: ¢1 he Cm. Suppose that the components

fk(l <k i_m) are all entire functions. Write

| F(z) || = max {Ifk(z)l, 1<k <m}, M(r, F) = max ||F(2) ||
z|=r

DEFINITION. A vector-valued entire function F is said to be of bounded index

(BI) if there exists an integer N such that

(O W EATON |
i! — k!

max
0<i<N

for all z ¢ ¢1 and k = 0, 1, .... The least such integer N is called the index of F.
THEOREM 2.16. (Roy and Shah [35]). Let F: tl he tm be a vector-valued entire

function of BIN. Then

IFz) || < A exp((v + 1) |z])

(k)
where A = max JLIL——iglEu . The result is sharp.
0<k<N (N + 1)

The function F may be of BI but the components fk may not be of BI. In the next
theorem, it is shown that if F satisfies an ODE then F and each fk are of BI. Let
R denote the class of all rational functions r(z) bounded at infinity and Qi(z)

1 < i < m) denote an m X m matrix with entries in R. Write



252 S.M. SHAH and J. WIENER

Q(2) = (a, ;=) 1‘)1: Iapq’i(z)] = |

A
2 pq,1

and

sup (IAP l,1<p, qg<m = [a]

q,1
THEOREM 2.17. (Roy and Shah [35]). Let F: Cl > tm be a ve~tor-valued function

whose components f fm are all entire functions. Suppose that F satisfies the

1* ccee
ODE

L, 2z, @ 2™ @ + @@V + . 4o @ = g
where g(z) is a vector-valued entire function of BI. Then each fk satisfies an ODE
of this form (with possibly different n and coefficients), and F, fl, cees fm are
all of BI. If the entries of Qi are not in R then F may not be of BI.

THEOREM 2.18. (Roy and Shah [35]). Let w(z) # 0 be a vector-valued entire

function satisfying the ODE

L (w, z, Q) = 0.
Then we have:

n
(i) 1lim sup Lo, f(r w) <max{1l,m Z lAil}
i=1

b ad

where the numbers A, are defined above.

i
(i1) If the elements of Qi(l < i < m) are constant, and p > 0 is any integer
such that
[ |22 [ |
m + + o+ L <1
n+p (m+p)(n+p-1) (m+p) ... G+ =

then the index N, of F(z), is less than or equal ton + p - 1. The bound on N is
best possible.

Next we compare these growth results with the corresponding ones for solutions
of algebraic difference equations.

THEOREM 2.19. (Shah [36]). Let P(t, u, v) be a polynomial with real coeffi-
cients. Let u(t) be a real continuous solution of a first order algebraic difference
equation P(t, u(t), u(t + 1)) = 0 for t 2t Then there exists a positive number

A which depends only on the polynomial P such that

u(t

1lim inf ez(At)

trpo

= 0.
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If u(t) is monotonic for t Z.to’ then

lim O] _ o

tte €2 (AT)

Here ez(x) denotes exp(exp x).

The function ez(At) cannot be replaced by a function of slower rate of growth,
in general.

THEOREM 2.20. (Shah [36]). Let ¢(t) be an arbitrary increasing function which
tends to +® as t *+ ., There exists an equation P(t, u(t), u(t + 1)) = 0 with a

real solution u(t) which is continuous for t >t and which exceeds ¢(t) at each

0
point of a sequence {tn} such that t *+® asn >,
For further results see [37], [38], [39] and [40].

Let £(z) be an entire transcendental function. The (&, x) index is defined as

J(xra, f) = max|C|=er(xra, f),
where vc(r, f) is the central index of the Taylor expansion

£ = 1 £ P 0e -t/

i=0
The author of [41] evaluates the (a, x) indices of entire transcendental solutions
of linear ODE with polynomial coefficients. On the basis of these results some
theorems concerning the distribution of values of these solutions are proved.
TH.uREM 2.21. (Knab [41]). Let w(z) be an entire transcendental solution of

order p and type 0 of an ordinary linear differential equation with polynomials as
coefficients. Let n(r, w - c) be the counting function of the zeros of the function
w - ¢ (c = const). Then

L = lim supramn(r, w - c) /rp < op.

In [42] the author considers the equation

po(z)w" + pl(z)w' + pz(z)w =0, (2.10)
where po(z) 40, pl(z) and pz(z) are entire and have real Taylor coefficients about
any real point.

THEOREM 2,22, (Lopuggns'kii [42]). Oscillatory real solutions of (2.10) have



254 S.M. SHAH and J. WIENER

only real zeros.

THEOREM 2.23. (Lopug;ns'kii [42]). Solutions of (2.10) are oscillatory if and
only if the function ¢(z) = w(z) /w(z) maps the upper half-plane conformally onto the
unit disk, where w(z) = wl(z) + iwz(z) and wj(z)(j = 1, 2) are two indenpendent real
solutions of (2.10), and their Wronskian is positive on the real axis.

The following characterization of the class HB(Hermite-Biehler) of entire
functions having all their zeros within the upper half-plane is given in

THEOREM 2.24. (Lopug%ns'kii [42]). An entire function F(z) is of class HB if
and only if on the real axis it is a complex solution of an oscillatory equation of
the form (2.10).

The ODE w(n)(z) + pn_z(z)w(n-z)(z) + ...+ po(z)w(z) = APw(z) is studied in
[43], where po(z), ooy pn_z(z) are polynomials of degrees My, eees M oy respecti-
vely, and A is a complex parameter. It is proved that the fundamental system of
solutions of the equation, determined by the identity matrix as initial conditions

at z = 0, satisifies the estimates

clz|®

Iwi(z, » | < J)I expc|'Xzi ,

for all sufficiently large values of ]Al and |z|. The value of p is defined by

p= max (m, -1i+n)/(n-1i),
u<i<n-z

and c is some positive constant.
Asymptotic properties of the solutions of linear ODE with entire coefficients
are studied in [44]. Consider the equation

W WO L yaw=o, (2.11)

+ a 0

n-1

where all the coefficients a, = ai(z)(i 0,1, ..., n - 1) are entire functions.

i
Let f(z) be a meromorphic function in the z-plane. Denote: L(r, a, f) =
maxlzl=rln+(lf(z) - al_l) if a # ©, L(xr, a, f) = max‘z‘=rln+|f(z)l if a = =,
The function B(a, f) is defined as
B(a, f) = lim inframL(r, a, £f) /T(x, £),

T(r, f) is the usual Nevanlinna characteristic function of f. The authors call a

solution w(z) of (2.11) a standard solution if B(a, f) = 0 for all complex a#0, .
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THEOREM 2.25. (Boiko and Petrenko [44]). Each fundamental system of solutions
of Eq. (2.11) contains at least one standard solution.
In [45] the author considers the first Painlevé equation w'" = 6w2 + z whose

solutions are meromorphic of the formw =1/ (z - 20)2 - (z0 /10)(z - 20)2 -

l 3 = _ 2 " " _ b n
6 (z - zo) + ...=1/(z zo) - ¢"(z), where $"(z2) = - Zn=0 an+2(z - zo)
She represents w as a quotient of two entire functions:
w = (u'2 - uwu") /uz, (2.12)

where u = exp ( - J dz Iw dz), and then obtains recursion relations for the coeffi-
cients of the power series expansions of the numerator and denominator.

In conclusion, we note that in some recent works [46-50] entire solutions to
DE of infinite order are discussed as well as properties of differential operators
in spaces of entire functions. In [46] the author studies the existence of a

solution to the equation Z:= anw(n)(z) = f(z) whose growth equals that of the right-

0
hand side, in the case when f(z) belongs to the class B¢ " of entire functions g(z)
’

such that |g(x + iy) | < cexp [¢(x) + Y(y)], for any x, y; here the functions d(x),
P(y) satisfy Holder conditions. Let ¥(z) be an entire function on t of exponential
type without multiple roots. Let MW be the operator of convolution with ¥(§), where
8§ is a S§-function. The following result is proved in [47].

THEOREM 2.26. (Napalkov [47]). Each entire solution w(z) of the equation

k-1

M w=0 is representable in the form w(z) = z wl(z) + ...+ wk(z)‘ where

k

- (6)) ~c,lz2|
M\ywi =0(i=1, ..., k), if and only if Wy | + ¥ (=] > cie for all

z € ¢ with some constants cys > 0.

In [48] the author studies the operator

©o
(1) L k
Lw= Zp.(z)w '(2), p,(2) =L a,,z, p >0.
Pt 177 gm0 7

The operator Lp is said to be

(1) applicable to the set H of entire functions at the point z, if the series
i (1) .
Zi=opi(zo)w (zo) converges for any function w from H;

(2) applicable to H in the domain lzl < o if Lp is applicable to H at any

finite point;
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(3) strongly regularly applicable to H inside the domain |z| < @ if, for any
w € Hand R < »,

oo
i=0

W 2 < w

where M(f, R) = sup {|f(z)]:]z| < R}.

Let Q be a bounded simply connected region. In this remarkable paper the
author gives necessary and sufficient conditions for Lp to be applicable to the set
R(Q) of exponential functions whose Borel transforms are regular on C(Q). He proves
that if the operator Lp is applicable to R(Q) at p + 1 distinct points then
Il/n

1lim |a

SUP gck<p Mo 12nk < 1o, (2.12)

where a =sup {|z|: z € Q}. Conversely, if (2.12) holds, thean is strongly regularly
applicable to R(Q) inside |z| < ®  and maps R(Q) into itself.

In [49] the authors investigate the solvability of a class of functional
equations, containing as a particular case differential equations of finite and of
infinite order with constant coefficients, in the Banach space with weight of entire
functions

={w(z) e A, :|lwl = sup [w(z) |exp(-0(x, y)) < =},

B
2(x,y) z=x+1iye

Here ®(x,y) is a locally bounded function in R2 with a certain growth for |z| - =,

The author [50] treats an equation Lw = f with L = I i(z)di /dzi, where

1>0P

the p,(z) are polynomials, deg p; = n;, lim sup(n; / 1) < 1, in a space [p, g(8)]

i
of all entire functions satisfying lim SUP_, (anw(reie)l /rp) < g(B). Here g(8)
is a trigonometrically p-convex function, p > 0. It is proved that L is a Noetherian

operator, its index is found and the space of solutions of the corresponding homo-

geneous equation is investigated.

3. DISTRIBUTIONAL AND ENTIRE SOLUTIONS OF FDE

Finite order distributional solutions (2.1) of linear FDE have been studied in
[15] and [51].
THEOREM 3.1. (Wiener [15]). The criterion for the existence of solutions (2.1)

to the system
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n
tx'(t) = Z A (8)x(X, t)
i=0 * *

with matrices Ai(t) ec®in a neighborhood of t = 0 and constants Xi ¢ 0 is that some

roots Y of the equation
n

det ( I |X
i=0

"
o

|'1x;“ A,(0) + (u+ DE) (3.1

i

be nonpositive integers. If m is the smallest of their absolute values there exists
a solution of order m.
From here it follows that the system
n
tx"(t) = A(t)x(t) + I Ai(t)x()\it)

i=1
has a solution of order m with support t = 0, if Ai(O) = 0(i i_l) and m + 1 is the
smallest modulus of the negative integer eigenvalues of the matrix A(0). This and
similar results were used in [15] to investigate finite order solutions of some im-
portant equations of mathematical physics. For equations with more general argument
delays we have

THEOREM 3.2. (Wiener [15]). The system
n
tx"(t) = I A, (t)x(d,(t)),
i=0 * i

in which Ai(t) € Cm, ¢i(t) € Cl, has a solution (2.1) or order m, if the following
hypotheses are satisfied: (1) the real zeros tij of the functions ¢i(t) are simple
and form a finite or countable set; (2) A(k)(tij) =0k =0, ..., m), for tii # 0;
(3) m is the smallest modulus of the nonpositive integer roots of Eq. (3.1) with
Xi = ¢i(0).

In [52] it was shown that, under certain conditions, the system

x'(t) = I A (t)x(Xt)
=0 i i

has a solution

x(t) = T x 6™ (3.2)
n=0 n

in the generalized-function space (Sg)' conjugate to the space Sg of testing functions
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¢(t) that satisfy the restriction [2]

6™ (o) < ac™™®, 8 > 1.

To ensure the convergence of series (3.2), it is sufficient to require that for n-+®

the vectors X satisfy the inequalities

= [l < ba™ a™™, p>1
since
Iz <x 6™, s>ll=llz D™ ox || <
n=0 " n=0 o=
00 (o]
<5 MO x| <abz e’ ? <w,
n=0 n=0
for B < p. 1If series (3.2) converges, its sum reoresents the general form of a linear

functional in (Sg)' with the support t = 0 [53]. Solutions in (Sg)' of some linear

ODE with polynomial coefficients were studied in [54], [55], [56]. The particular

importance of the system
© @

£ I (A, +tB,
i=0 j=0 1 4

)x(j)(xit) = tx(\t)
which was considered in [15] is that depending on the coefficients it combines either
equations with a singular or regular point at t = 0 and in both cases there exists a
solution of the form (3.2). The equation

tx'(t) = Ax(t) + tBx(At) (3.3)

provides an interesting example of a system that may have two essentially different

solutions in (Sg)' concentrated on t = O, If the matrix A assumes negative integer

eigenvalues, (3.3) has a finite order solution (2.1). At the same time there exists
an infinite order solution (3.2), if A # -nE for all n > 1. 1In [3], [16], [57], and
[58] the foregoing conclusions were extended to comprehensive systems of any order
with countable sets of variable argument deviations. The basic ideas in the method of
proof are applied to investigate entire solutions of lirear FDE.

THEOREM 3.3. (Cooke and Wiener [3]). Let the system

m
2 za @xP o @) =0 (3.4)

i j=0 4
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with a finite number of argument deviations, in which x is an r-vector and A,. are

ij

r X r - matrices, satisfy the following hypotheses.

(i) The coefficients Aij(t) are polynomials in t of degree not exceeding p:

A () = T A t5a (6) = AP, p >
13 oo 1k *700 » P20

(ii) The real-valued functions Aij(t) € Cl in a neighborhood of the origin,

Aij(O) = 0 and

0 < |a00| <1, |aij| >lLi+3> 1, 0, x;j(O).
(iii) The matrix A is nonsingular and
-p-1 -p-1
= A - 2z A > 0.
e = laggl T I = T el g,

Then in the space of generalized functions (Sg)' with arbitrary B > 1 there exists
a solution x(t) supported on t = 0.

In [3] it is also proved that system (3.4) with a countable set of argument
deviations has a solution (3.2) if, in addition to the conditions of Th. 3.3, there

exists a neighborhood of the origin in which each function Ai (t) has the only zero

® 3
t = 0 and the series I a;IAi converges, where
i=1
= = i ¢} j >
Ai max “ Aijkl" oy 1?f | 13 I, i+3>1.

The choice of the coefficients in (3.4) enables us to consider both equations with a
singular or regular point and to show that distributional solutions of FDE may be
originated by deviations of the argument. The authors of [3] also investigate the
system
> 0 ()
Px' () = £ LA (E)x Yo, wn (3.5)
1=0 j=0 H

the particular cases of which

tPx' (t) = A(t)x(t)
and
tPx'(t) = I A, (t)x(A,t)
1=0 i i

have been studied in [56] and [57], respectively.

THEOREM 3.4. (Cooke and Wiener [3]). Suppose that system (3.5), in which x is
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an r-vector and A,, are r X r -matrices, satisfies the following conditions.

i3
(1) The Aij(t) are polynomials in t of degree not exceeding p + j - 2:

A (1) = I A .t ,p>2.

(ii) There exists a neighborhood of the origin in which the real-valued functions

1 . .
Xij € C” have the only zero t = 0 and Iaiol > 1, inf ‘aij‘ >1, for 1 >0, j > 1,

aij = X;j(O).

@

(iii) The series I a-l A, converges, where
i i
i=0
o, = inf |a |, A, = max ” A I.
i . i i . ijk
3 ] Lk M

Then there is a solution of (3.5) in (Sg)' with some B > 1 supported on t = O,

The deep study of narrow classes of FDE, and even individual FDE, continues to
remain one of the main problems. First of all, such equations can have some special,
for example applied, interest. In addition, we can work out on them in the first
instance methods of studying properties that are similar to properties of equations
without deviation of the argument and are essentially new for equations with devia-
tion, and then try to extend these methods, and the results obtained, to a broader
class of FDE. In a number of papers [60-66] various authors have continued the study
(originated in [59]) of the solutions, especially their asymptotic behavior as t +~ 0
or t - », of the equation x'(t) = ax(At) + bx(t), which arises in certain technical
problems, and also of systems and some more general equations of similar form., These
works concern principally real solutions.

The author of [67] attacks complicated equations with elegant analytical tools.
He investigates analytic solutions of the FDE

r s

: za, w =0, 0<q<1,

=0 k=0 J¥
with constant coefficients ajk' Its formal solutions are obtained in the form of
Mellin or Laplace integrals. The functions occuring in the integrands satisfy linear
difference equations of the form 23=0 Pv(qt)G(t +v) =0 (Pv(y) polynomials).

Properties of solutions of such difference equations, in particular the location of
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singularities and the asymptotic behavior for absolutely large values of t, are
studied. Conditions are derived for formal solutions of Mellin integral type to be
actual solutions and these are shown to be often expressible as power or Laurent
series. Solutions of Laplace integral type are shown to be representable as
Dirichlet series under certain conditions. Finally, questions as to when the line
of convergence of the Dirichlet series is the natural boundary of the function re-
presented are discussed. The author asserts that the methods used can be extended

to the case when the coefficients a,, are polynomials in z, and to some more general

ik
equations.
In [68] the growth of entire solutions of the FDE

m

z akaw(Xm_kz) =0, D =4d/dz
k=0

is estimated by means of a suitably constructed comparison function. Furthermore, an
explicit vepresentation of all entire solutions is given which in certain cases
leads to conclusions concerning locations and multiplicity of the zeros of particu-
lar solutions. Finally, the growth of the maximum and minimum modulus of the

solutions is compared which implies an estimate of the number of zeros. The FDE

m
w(z) = I a D™ %) = £(2), (3.6)

k=0 K

where ak are complex numbers, A is a fixed parameter, 0 < A < 1, and the unknown w

and the right member f are entire functions, is considered in [69]. Introducing a

generating function
oo

G(z) = £ Gz, G

n n
n=0

LICS VLI

the author shows that the general solution of (3.6) for f = 0 is given by

w(z) = E%Z IG(tz)G(t) dt,
T

with w(t) = q(t)/A(t), where

m
A(E) = I a A
k=0 ¥

k(2m—k—l)/2tk

q is a polynomial of degree < m - 1 and T is a contour enclosing all the zeros of A.
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A similar integral representation is given for a solution of (3.6) with f # 0 in

terms of the generalized Borel transform

o

¥e)= 5 £ /6 ¢
n n
n=0
when
oo
f(z) = T £z
n=0 "

In [70] the author discusses the system w'(z) = Aw(Az), 0 < A < 1, where A is a com-
plex constant matrix. First, the form of all entire solutions is given. Subsequently,
for z # 0 a special system of particular analytic solutions is constructed tymeans of
which all other solutions may be represented. The asymptotic properties as z > ® of
all solutions are investigated. Furthermore, it is shown that given a specific
asymptotic behavior, there is one and only one solution which possesses that asymp-
totic behavior.

Given the equation

w'(z) + k§lak(z)w'(kkz) + .; bj(z)w(ujz) =0,
= j=1
where ak(z), bj(z) are entire functions of finite order < p and the constants Ak’ uj
are in the set 0 < lzl < 1, the author [71] shows that any solution w(z) is also of
finite order < p. As a special case he discusses the equation w'"(z) + p(z)w(Axz) = O,
where 0 < A < 1 and p(z) is an entire function of finite order taking real values on
the real axis, and derives an estimate on the type of a solution w(z).
The author of [72] studies properties of solutions to equations of the form
° Kk
w'(dz) = I ak(z)w (z), (3.7)
k=0
where ak(z) are entire functions such that T(r, ak) = o(T(r, w)) as r > ©, and ) is a
complex number, |\| = 0, where T(r, w) is the Nevanlinna function. He establishes
the following
THEOREM 3.5. (Mohon'ko [72]). Let w(z) be an entire solution of (3.7). If
m= 1, then w(z) is of zero order, and if m > 1 then In T(r, w) ~ (Inm/In o) Inr

asr > o,

The problem



ORDINARY AND FUNCTIONAL DIFFERENTIAL EQUATIONS 263

n n
5 aiw(i)(z) = exp(az) T biw(i)(xz),
1=0 i=0

v =w, 120, .., n -1,

in which ag, bi’ 0 and A are complex numbers, has been studied with various
assumptions concerning parameters [73-77]. It is proved in [75] that, if Ikl =1,
A # 1, and Ian{ > lbn|, its solution is an entire function. If |A| <1, A #1,
and || C|l < 1, the solution of the matrix problem

W'(z) = AW(z) + exp (az)[BW(Az) + CW'(Az)], W(0) = Wo
is an entire function of exponential type [76]. These results were extended to lin-
ear FDE with polynomial coefficients and countable sets of argument delays in [7],
[3] and [58]. The method of proof employs the ideas developed in the theory of

distributional solutions.

THEOREM 3.6. (Wiener[58]). Suppose the system

o ) ;
WPy =3 3 Qi.(z)w(3)<xi.z), (3.8)
i=0 j=0 *J J

w0y = Wis 320, ceny p - 1

in which Qi and W are r X r - matrices, satisfies the following conditions:

]

(i) Q14 (z) are polynomials of degree not exceeding m;
<

(i) A are complex numbers such that

ij

0<q <Al <1, G=0, cess p=-1,0<q, < lxip| <ay <L

(1) 1)

converges, where Q = max || Q
i,k

ij

| and Q are the

(iii) the series L Q 19k

ot 3 13k |

coefficients of Qi (z), and I “ Qip(O)ll < 1.
i=0

]

Then the problem has a unique holomorphic solution, which is an entire function
of order not exceeding m + p.
THEOREM 3.7. (Cooke and Wiener [3]). If, in addition to the hypotheses of Th.

3.6 the parameters Xi (0 <3 <p-1) are separated from unity:

]
0 < 9 f-lxijl 249, < 1, the solution of (3.8) is an entire function of zero order.
THEOREM 3.8. (Cooke and Wiener [3]). Under the assumptionsof Th. 3.3 there
exists a polynomial Q(z) of degree p - 1 such that the system
k

: &)
BT T
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with positive constants aij has a solution W(z) regular at z = © , and W(z—l) is an
entire function of zero order.

THEOREM 3.9. (Wiener [51]). The problem

wW'(z) = 1£0Ai(Z)W(z - ai) + iioBi(z)W'(z - bi)’

lim W(z) =W
Rez»>—x

0

with r X r - matrices A, B, W has a unique holomorphic solution which is an entire

function if:
m m
kz kz
(1) A,(z) = ZA,.e ", B (z) = LB, e
i k=1 ik i k=0 ik

(ii) a,, b, are complex numbers such that
i i

O:ReaiiM‘<°°,0<M2:Rebi_<_M3<°°;
: . -Reb,
(iii) the series I A(l) and X B(l) e * converge where A(i) = max || Aik’l’
k
© -Reb
B = max [| B, ||, and z [[B@e f<u.
k i=0

The authors [78] propose a method for finding polynomial solutions of the

linear neutral FDE

n
x'(t) = bx(t) + iElaix'(t - ri),

where b, a, and T > 0 are given constants. Meromorphic solutions of a class of
linear differential-difference equations with constant coefficients are investigated
in [79]. Numerous examples of FDE admitting entire solutions may be found in [40]
and [80].

In conclusion, we mention papers [81] and [82], where singular integral equa-

tions have been studied in spaces of generalized functions. However, it should be

noted that, perhaps, the first work of this kind was [83].
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