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ABSTRACT. The concept of topological divisor of zero has been extended to endo-
morphisms of a locally convex topological vector space (LCTVS). A characterization
of singular endomorphisms, similar to that of Yood [1], is obtained for endomor-
phisms of a barrelled Ptak (fully complete) space and it is shown that each such
endomorphism is a topological divisor of zero. Furthermore, properties of the ad-
joint of an endomorphism are characterized in terms of topological divisors of zero,

and the effect of change of operator topology on such a characterization is given.
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1. INTRODUCTION.

The reader should be familiar with barrelled spaces and have available the
four references listed. The following notation and definitions will be used.
(X,T) is an LCTVS over a field K of complex numbers, X' is its topological dual,
and C(X,T) the algebra of all the T-continuous endomorphisms of X. w = o(X,X') is
the weak topology on X by X', w* = ¢(X',X), and B' is the topology on X' of uniform
convergence on all the w-bounded subsets of X--the strong topology.

C(X,T) < C{X,w) can be made into a topological space in a number of ways. If
A is a family of w-bounded (hence bounded) subsets of X and N = N(T) is a T-neigh-

borhood base at zero, then the sets
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N(A,V) = {TeC(X,T) : TA < V},
where A and V run through A and N respectively, form a neighborhood base at zero
for a locally convex vector topology T(A,T) on C(X,T), the operator topology of
uniform convergence on members of A relative to T. The space C(X',w*) < C(X',B')
can be topologized in a similar manner. For each TeC(X,w) its adjoint is a w*-
continuous endomorphism on X', i.e. TeC(X',w*) < C(X'",B'). Let A be a family of
bounded subsets of X which contains the family F of all the finite subsets of X.
The topology TA on X' of uniform convergence on the members of A is then stronger
than w*, in fact it is between w* and B'. If for each TeC(X,w), TA < A then
C(X',w*) < C(X',T,) < C(X",B'). If A=F, T(F,T) is the operator topology of point-
wise convergence relative to T while in the case of A = B -- the class of all w-
bounded subsets of X, T(B,T) is the strong operator topology relative to T. Finally
if A c X, A® c X' is its absolute polar, similarly Bo is the absolute polar, in
X, of B ¢ X',

Given Te(C(X,T), T(A,T)) and (D,<) a directed set, the following definition
extends the concept of topological divisors of zero (tdz) to C(X,T).

DEFINITION 1. T is a left (right) topological divisor of zero, ltdz(rtdz), if
there is a net {36: 8ebd} ¢ C(X,T) which doesn't converge to zero, written Ss + 0,
yet the net TSG(SGT) does converge to zero, written TSG > O(SGT*O), in T(A,T),

REMARK. This means, there are A' € A and V' € N such that SGA' 4 V' frequently,
yet for all A€ A and Ve N, TS5A < (S4TASV) eventually,

Following Yood [1] we use ZK(Zr) to denote the sets of all left (right) tdz
and HKIHr) their respective complements in C(X,T). Furthermore, Ge(Gr) will mean
the sets of all left (right) regular elements of C(X,T) and SZ(SI) their comple-
ments, Finally, NL(Nr) are the sets of all left (right) divisors of zero -- 1ldz
(rdz).

2. BASIC RESULTS.

It can easily be seen that all the basic properties of tdz remain valid as in

the case of a Banach space. Some of them are listed in the following lemma.

LEMMA 1. The following inclusions are valid in C(X,T):
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A slight modification in Yood's proof of Theorems 3.1 and 3.2 ([1], p. 493) yields

d)

e)

the following result.
PROPOSITION 1.
a) Nz

b) N = {T: TX % xJ.

{T: T is not injective}.

We shall refer to TeC(X,T) as to a topological isomorphism if T is injective
and T-relatively open as a map from X onto TX.

For yeX and x'eX' we define y@x'eC(X,T) by y@x'(x) = x'(x)y.

The next theorem characterizes topological isomorphism in terms of tdz.

THEOREM 1. TeC(X,T) is a T-topological isomorphism iff TEHK

< (C(X,T)), TIA,T)).
PROOF. A T-topological isomorphism can not be an ltdz. For if it were with
{SG}’ A' and V' as in Remark after Definition 1, S.A' ¢ V' frequently yet TSsA < V
eventually for all AcA and VeN, particularly for U = TV'eN because T is open. This
would, however, imply that TSGA' € U = TV' eventually which is impossible. If T is
not a T-topological isomorphism, T is either not injective,or T is injective but
T_1 is not T-relatively open. T being not injective implies, accordingly to Lemma
la, TENZ < Zz. On the other hand, T—l being not T-relatively open implies the
existance of a net {yé} < TX and the net {x(S = T-lyé} with the property that Ys >0
and xg 4> 0 in T. Let 0 # x'eX' and construct the endomorphisms Sg = xa(z)x'.

Then the net {56} < C(X,T) is such that S6 +* 0 yet TS0 in T(A,T). To see this,

§
take AcA and VeN, then TséA = x'(A)ya. T-boundedness of A and T-continuity of x'
imply that M = sup{|<a,x'>|:acA} exists. Then ¥5*0 implies that y, € mly eventually,
hence TSGA < V eventually.

COROLLARY 1. TeHz c (C(X,w), T(A,w)) iff T is a w-topological isomorphism.

THEOREM 2. TeC(X,w) is surjective iff el < (C(X,w), T(F,T)).
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PROOF. Let T be surjective. If e’ < (C(X,w), T(F,T)), then with Ss»

A' = TcF and V'cN as in Remark, we have SdF 4 V' frequently. Since SéTF < V event-
ually for all FeF and VeN, SéTFl = SéF < V' eventually for Fl = T—lF, which contra-
dicts the choice of the net 55'

Conversely, assume T is not surjective, In the case that its range is not
dense in X, according to Lemma 1b, TeNT < Z¥. If however the range of T is dense
in X, its adjoint T' is injective but not w*-relatively open, hence there is a net
{yé} < T'X' and the net {x' = (T')—lyé} such that yé + 0 in w*-topology yet xé++ 0.
Let O # X <€ X, and construct the endomorphisms Sg = xO(Z)xé € C(X,T). The net
{SG} has the property that S 4> 0 in T(F,T) yet S¢T 0 in the same topology. The
map (A,x) > Ax is separately continuous. This proves that Tezt,

The next four lemmas will be used to sharpen the results obtained so far.

LEMMA 2. A relatively open, continuous endomorphism of a barrelled space must
have a barrelled range.

PROOF. 1If TX is not barrelled there is a net {yé} < TX which tends to zero
and doesn't belong to a barrel B in TX. Then the net {x6 = T_lyé} can not tend to
zero because it is not eventually in the neighborhood U = T-lB.

LEMMA 3. Any relatively open endomorphism T of a complete space must have a
closed range.

PROOF. Let {yé} be a net in the range of T and let Ys 7Y Since {ya} is a
Cauchy net and T is relatively open the net {x6 = T_lyé} is also a Cauchy net hence
converges to some xcX. Then Tx6 =Yg + Tx = y, hence the range of T is closed.

LEMMA 4. Let T be an endomorphism of a barrelled Ptak space (X,T). If its
adjoint T' is B'-topological isomorphism, then T is surjective and open.

PROOF. Let M be a balanced, convex, w*-~closed and T-equicontinuous subset of
X'. It is then both w*-compact and B'-bounded. Since T' is B'-open, (T')—lM =B
is R'-bounded. B is also w*-closed because T' is w*-continuous. Since (X,T) is
barrelled, B is w*-compact and this in conjunction with w*-continuity of T'implies

that T'B = T'X' n M is w*-compact, hence w*-closed. Since (X,T) is also a Ptak

space it implies that T is relatively open. Finally, completeness of a Ptak space
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and injectiveity of T' imply that T is both closed (Lemma 3) and dense in X, hence
T is surjective.
LEMMA 5. If TeC(X,T) is surjective and T-open, then TeH: < (C(X,T), TIA,T)).

PROOF. If TeZ®, then with S
1

5 A'eA and V'eN as in Remark, SéA' ¢ V' frequent-

A' = A, is bounded, because T is open. Since ST > 0 in T(A,T), SsTA; < A

ly. T 1 1 <

eventually and this is impossible because séTAl = SéA', hence TEHr.

THEOREM 3. If (X,T) is a barrelled Ptak space, then TEHK c (C(X,T), TIA,T))
iff T is injective and TX is barrelled.

PROOF. A T-continuous injection from a Ptak space into a barrelled space is
a T-topological isomorphism, hence according to Theorem 1, TCHﬁ. The converse
follows from Lemma 2 and Theorem 1.

THEOREM 4. If (X,T) is a barrelled Ptak space, then TeHT c (C(X,T), T(A,T))
iff T is surjective.

PROOF. If T is surjective then, according to Proposition 2 [3, p. 299], T is
T-open hence by Lemma 5 it cannot be a rtdz.

Assume now that T is not surjective. If the range of T is not dense, then
according to Lemma l.a, TeN® < 75, Suppose that the range of T is dense in X. T
can not be T-open, because it would have to have a closed range (Lemma 3). Accord-
ing to Lemma 4, its adjoint T' (which is injective) can not be £'-relatively open,
hence there is a net {yé} c T'X', yé -+ 0 and the net {xé = (T')_lyé} 4> 0 in B'.
The conclusion then follows just as in the last part of Theorem 2.

Since Fréchet space is both barrelled and Ptak space, Theorems 3 and 4 are
valid for them.

COROLLARY 2. If (X,T) is a Fréchet space then

a) T is injective and range closed iff TQHK < (C(X,T), TIAT)).
b) T is surjective iff TeH® < (C(X,T), T(A,T)).

PROOF. Part a) follows from the fact that a closed subspace of an Fréchet
space is a Fréchet space, hence barrelled and from Theorem 3. Part b) follows
from Theorem 4 and the foregoing remark.

Properties of a linear operator on an LCS are very intimately related to those
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of its adjoint operator. For example: "T is w-open iff T' is w*-range closed".
The next theorem relates properties of T with those of T' in terms of tdz.
In this regard it is important to note that an operator topology f(A,T) remains
unaltered if either A is replaced with its balanced convex and closed envelope
and/or N is replaced with a fundamental system of balanced, convex and closed
neighborhoods. In the sequel it is assumed that each AcA and VeN is balanced con-
vex and closed.
THEOREM 5. Let A be a family of bounded subsets of X and TeC{X,w) such that
TA < A. Then the following are equivalent:
o 1e282%) € (Clxw), TIAT)).
b) T'€Zr(Z£) c (C(X',w*), T(E,TA)), where E is the set of all T equi-
continuous subsets of X'.
PROOF. The condition TA < A makes T' TA-continuous. This together with the
Ty

ment then follows from the following facts:

-boundedness of each EcE implies that T(E,TA) is a vector topology. The state-

o

- TA < B iff T'8° < A", if A,B are convex, balanced and closed;

- S. >0 in T(A,T) iff S' + 0 in T(A,TA);

§ $

- (SGT)' = T'Sé .

In what will follow B' and F' will denote the sets of all w*-bounded and finite
subsets of X' respectively.

There is a number of families of banded subsets (equivalently w-bounded) of X
yhich satisfy the condition of Theorem 5 for all TeC(X,w). Consider the most
extreme ones: F--the family of all finite-—and B--all bounded--subsets of X. Note
that F generates the w*-topology and B the B'-topology in X'. 1In C(X,w), since
FcB, TIF,u) < T(B,w). The effect of change of operator topology on the results
of the preceding theorem are given in the following corollary.

COROLLARY 3. 1If TeC{X,w), the following statements are valid:

a) 1e28(7) < (C(X,w), T(F,w)) iff w257 < [C(X",wx), TIF',u*)).

al

b) 1ez(2%) < (C(X,w), T(B,w)) iff TEZ5(2Y) < (ClX,w*), T(F',8')).

o) 1eZb(2%) < (ciX,w), TIB,T)) iff te25(Z9)

In
N

(C{X",w*), T(E,B")]).
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The next theorem characterizes w-isomorphisms and their adjoint in terms of tdz.
THEOREM 6. If TeC(X,w), the following are equivalent:

a) T is a w-topological isomorphism.

b) T' is surjective.

o Tt < (Clx,w), T(B,wl).

d) T'ed” < (CIX',w*), T(F',8')).

PROOF. The equivalence of a) and b) is a standard result and could be found
for example in [2, Proposition 8.6.3, p. 517]. The equivalence of a) and c) follows
from Corollary 1 while that one of c¢) and d) from Corollary 3b.

The preceeding results can be strengthened in the case of Fréchet space due to
the fact that: '"T is an isomorphism iff it is a w-isomorphism" [2, Theorem 8.6.13,
p. 521].

COROLLARY 4. If (X,T) is a Fréchet space, the following are equivalent:

a 1ezt < (CIX,T), T(B,w).
by 1ezt < (CIX,T), T(B,T)).
o) T'eZ’ < (C(X',w¥), T(F',8")).
) 1'elf < (C(X',wx), T(B',B')).

PROOF. The equivalence of a) and b) is by Theorem 6, the foregoing remark
and Theorem 1. c¢) is equivalent to d) because in the dual of a barrelled space
E=B'=F'. Finally, b) is equivalent to d) by Corollary 3c.

The next theorem generalizes the following result of Rickart [4, p. 297]:

"A singular endomorphism of a Banach space is a topological divisor of zero."

THEOREM 7. Every singular endomorphism of a barrelled Ptak space is a topolo-
gical divisor of zero.

PROOF. T is singular iff T is either not injective in which case TSNZ < Zz,
or T is not surjective. In the latter case, if the range of T is not dense,

TeNT < 25, 1f however, the range of T is dense then according to Theorem 4, ezt
3. CONCLUSION.
Preliminary results, obtained in this paper, indicate that the concept of tdz

can successfully be used to classify endomorphisms of LCS which are of a more gen-
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eral nature than is Banach space.

A decomposition of C(X,T) into nine disjoint subsets such as in Theorem 3.14,
[1], has not been attempted. The conjecture is that it is possible.

A difficult question seems to be the one in regard to a topological character-
ization of the set of regular endomorphisms and others. An answer to it seems to
be directly related to the question:

Under which conditions is C{X,T7) a topological algebra with a continuous in-
verse?
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