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ABSTRACT. This paper extends the convergence theory of the Accelerated Over-
relaxation (AOR) method to cases analogous to those considered first by Ostrowski
and then by Varga in connection with the Successive Overrelaxation (SOR) method.
Among others, the Ostrowski Theorem, some of the theorems by Varga on the extensions
of the SOR theory, and some recent results by Niethammer and by the authors are
obtained as special cases of the work presented in this paper. In addition,

several points are raised which suggest further research.
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1. INTRODUCTION AND PRELIMINARIES.

In a series of papers, Sisler [1]-[3] conceived and studied the idea of two-
parametric three-part splittings of the matrix A for the numerical solution of the
linear system

Ax = b (1.1)
by a first order iterative method. His method was, in fact, an Extrapolation of
the Successive Overrelaxation (SOR) one. Sisler's work has been extended recently
by Niethammer [4]. A couple of years ago, Hadjidimos [5] introduced an equivalent
splitting which led to the Accelerated Overrelaxation (AOR) method. This idea was

exploited further and some interesting results were obtained (see [6], [7] [8],
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[9] and [10]). Under the assumptions that A, in (1.1), is nonsingular with non-
vanishing diagonal elements, the AOR method (scheme) is the following
T 20— e 1A - w0+ - oA+ eag ™ o - ra) T
lm = 0,1,2,..., (1.2)
where D = diag(A), —AL and —AU are the strictly lower and upper triangular parts
of A, and w(#0) and r are the overrelaxation and acceleration parameters. It is
pointed out that, for r # 0, (1.2) becomes an Extrapolated SOR method, with extra-
polation parameter w/r and overrelaxation parameter r. It was under this restrict-
ion that both Sisler [1] - [3] and Niethammer [4] considered and studied the
method (1.2).
Now we assume that the n X n matrix A is Hermitian and can be split into the
form
A=D—E—EH, (1.3)
where D and E are n X n matrices, D is Hermitian and positive definite, and EH is
the complex conjugate transpose of E. Based on the splitting (1.3), we generalize
the scheme (1.2) as follows
LD Ly ™ 4w - ) Im = 0,1,2,..., (1.4)
where the iteration matrix of the procedure is
Lr,m = (D - 1:}3)_-l [(1 - w)D + (w - 1)E + wEH]; (1.5)
for the existence of (1.4) and (1.5), det(D - rE) # 0 is assumed. In (1.4), D and
E need not be diagonal and strictly lower triangular respectively, as the matrices
D and AL in (1.2) have to be. It is also noted that, for r = w and D being either
the diagonal or a block diagonal part of A, the method (1.4) becomes the well
known generalized SOR method for which an important convergence theorem was given
by Ostrowski [11] (see also Varga [12], p. 77). The corresponding theory was
extended by Varga [13], who also suggested that the most general form for E is
E=2(0-4+S9), (1.6)
with S being any skew-Hermitian matrix. Following the steps of the extension by

Varga, Hadjidimos [14] considered and studied the case where D is negative definite

and found some interesting results.
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The purpose of this paper is to extend the convergence theory by Ostrowski [11]
and Varga [12 , 13] so as to cover the case of the generalized AOR scheme (1.4)
and to raise questions for further research in this area. This is what we do in
the next two sections; in addition, some comparisons and comments relating recent
results by de Pillis [15], Niethammer [4], Neumann and Varga [16], and the present
authors with those of this paper are made.

2, BASIC CONVERGENCE THEORY OF THE AOR METHOD (1.4).

We begin our analysis by giving five Lemmas on which our theory is based.
LEMMA 1. Let A=D - E - EH be an n X n Hermitian matrix, where D is Hermit-

ian and positive definite. Then the eigenvalues of the generalized Jacobi matrix

1

p Ll + By =1-0p

PROOF. Let D%

B A (I is the unit matrix of order n) are real.
be the unique Hermitian positive definite square root matrix
of the Hermitian positive definite matrix D (see [17], pp. 22-24). We form the
matrix B as follows
8 = DD % = DE + EDD 2. (2.1)

The last expression shows that B is Hermitian and therefore it possesses real
eigenvalues. So does its similar matrix B.

LEMMA 2. Under the hypotheses of Lemma 1, let Hy [i = 1(1)n be the eigen-
values of B. Then A is positive definite iff ui <1 [i = 1(1)n.

PROOF. From Lemma 1, we have I - B = D-lA. Thus, the real number 1 - ui
Ii = 1(1)n are the eigenvalues of the product D—lA where the matrices D_'1 and A
are Hermitian with D-l positive definite. Then, according to Wigner [18], A is

positive definite iff 1 - “i >0 li = 1(1)n, which proves our assertion.

LEMMA 3. Under the hypotheses of Lemma 1, the matrix M below

- 2 -w w=-r H = 2 -1 r - Ww
M= ( m )D + ( m J(E+ E) = ( m )D + ( m A, (2.2)
is positive definite iff the matrix
S 2 -w w=-rs
M= ( m )T + ( m )B (2.3)

is positive definite.

PROOF. Using the definitions (2.3), (2.1), and (2.2), we obtain
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- — =1 =1 -1 -1 - =1
2 - Wy 4 5D E + gyp™% = p"Ap~E = pI(d HH,

M= (

In view of the last expression for M and according to Corollary 2.8 (p. 24 of [17]),
the lemma is proved.

LEMMA 4. Under the hypotheses of Lemmas 1 and 2, let um = minpi and
i

= maxui. Then the matrix ﬁ in (2.3) is positive definite iff the parameters
i

My

w(#0) and r take any values from their domains, as these are defined and given in
the table in each specific case which depends on the relative position of Um and

M, with respect to (wrt) zero.

M
PROOF. The eigenvalues ui |i = 1(1)n of B are the same as those of ﬁ

(Lemma 1). Therefore, according to Lemma 3, the Hermitian matrix ﬂ (and consequent-
ly M) is positive definite iff all its eigenvalues given, because of (2.3), by the
expressions

[2-w + =Dyl |i = 1(1)n, (2.4)
are positive. Now we have to distinguish six cases, depending on the relative
position of um and uM wrt zero. These are given in the table. In what follows,
we work out only Case 1 (the others can be treated similarly). Assume then that

0 <\um < H,. Thus, if w <0, the relationships [(2 - w) + (w - r)ui]/w >0

M
]i = 1(1)n lead to the equivalent ones w + (2 - w)/ui <r ]i = 1(1)n which, in
turn, are equivalent to w + (2 - w)/um <r. If, on the other hand, w > 0, we
arrive at w + (2 - w)/ui > r [i = 1(1)n. Now we have to consider three cases.
If w <2, it is implied that r <w + (2 - w)/uM; if w =2, then r <2; if w > 2,

r <w+ (2 - w)/um. These results, together with those obtained from the other

five cases, given in the table, prove the present lemma.
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Table

giving the possible domains of the parameters w and r

Case olﬁeiztiﬁi ‘;;Si‘;:m;em w -domain r-domain
(-=,0) (w+ 2 - Wiy, +)
(0,2) (==, 0+ (2 - W /Ky
1 0 < Mo < My ; - 2
(2, +°) (==, 0+ (2 - w/u)
2 0 =h <My (0,2) (==, W+ (2 - W/u
3 0= Mo = My (0,2) (==, +%)
4 um <0 < uM (0,2) (w+ (2 - w)/um, w+ (2 - w)/uM)
5 Hp SHy =0 (0,2) (W+ (2 = W/U, +9)
(=, 0) (==, w+ (2 - W/H)
(0,2) (Wt (2 = W/u, +)
6 [ §UM<0 , 2. +
(2, +9 (w+ (2 - w)/LM, +°)

COROLLARY. Under the assumptions of Lemma 4 and the additional assumptions
that D = diag(A) or D is a block diagonal part of A and in either case D is positive
definite, then M (and consequently M) is positive definite iff the w- and r-domains
are those given in the Cases 3 and 4 of the table (see also [10] for the case
D = diag(A)).

PROOF. Since D = diag(A) or D is a block diagonal part of A, we have from
the expression for B (and therefore B) that tr(B) = 0. The latter implies that
so that only the Cases 3 and 4 of the table can

either p = =0orpuy <0 <y
m m

Hy M

occur. This completes the proof.
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LEMMA 5. (Householder-John Theorem [19]). Under the hypotheses of Lemma 1,

let A = A1 - A2 be a splitting of A generating the first order scheme x(m+l) =
AIlAzx(m) + Azlb |m = 0,1,2,... for the numerical solution of (1.1). If A? + 4,

is positive definite, then p(A;lAz) <1 iff A is positive definite.

THEOREM 1. (Generalized Ostrowski Theorem). Let A=1D - E - EH be an n X n
Hermitian matrix, where D is Hermitian and positive definite and the det(D-rE) # O
for any permissible pair of parameters r,w from the table depending on the position
of Mo and My wrt zero. Then, for the parameters r,w from the appropriate intervals
of the table, the AOR method (1.4) converges (p(Lr,w) < 1) iff A is positive def-
inite.

PROOF. It is obvious that, in our case of the scheme (1.4), the splitting of

Lemma 5 is defined by A % (D - rE) and A, = % [(1 - w)D+ (w - r)E + wEH].

17 2

Hence, A? + A2 = M. Since any pair (r,w) of the parameters is taken so that it
belongs to the appropriate intervals of the table, then according to Lemmas 3 and
4 the Hermitian matrix M is positive definite. Thus by virtue of Lemma 5, the
present theorem is proved.

REMARK. It is obvious that the most important part of Theorem 1 is that where
the positive definiteness of A implies convergence of the AOR scheme. The converse
is of theoretical value only, unless knowledge of the position of Um and UM wrt
zero is known in advance as e.g. in the cases of the Corollary of Lemma 4. If we
have to know the exact values for um and uM in order to be able to form the w- and
r-domains from the table and find that p(Lr,w) <1 for any permissable pair (r,w)
so that positive definiteness for A is implied, then we can reach the last con-
clusion straightforwardly from the value of UM which must be less than one (see
Lemma 2).

THEOREM 2. Let A=D - E - EH be an n X n Hermitian positive definite matrix,
where D is Hermitian and the det(D - rE) # O for one pair of parameters r,w. If
Aj ]j = 1(1)n are the eigenvalues of L W and uj [j = 1(1)n the corresponding

eigenvectors, which may not be all independent, then the AOR method (1.4) converges

(L, ) <1) iff u?Muj >0 |j=1()n.
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PROOF. We follow the basic steps of the analysis in [13] and begin with the

relationships
o = 5% |3 = 1()n.
By using (1.3), (1.5), (1.6), and notation similar to that in [14] giving that
H H H
a, = u,Au, >0 d, = u,Du,, io, = Su, = 1(1)n, 2.4
5 ujAuy > 0, dy = upDuy, oy = ugsu, |5 = 1(n 2.9

1
with Gj € Rand i = (—1)1, we can obtain that

L - [ - r)dj - Qw - r)aj] - iroj

. = _ — [ = 1(Q)n. (2.5)
h| [(2 r)dj + raj] 1r0j

From (2.5) and by virtue of (2.2) and (2.4), it can be taken that

2 4w2aju?Muj
lle =1 - 3 o) j = 1(1)n. (2.6)
[(2 - r)dj + raj] +r Oj

It is obvious that relationships (2.6) prove the theorem.

REMARK. We observe that, if M is positive definite, convergence of the AOR
method (l.4) is guaranteed under the assumptions of Theorem 2, Especially for the
SOR method (r = w), we have that M = (2iF5D. Thus: i) the part of Theorem 1 of
Varga [13] "for any D positive Jdefinite and any w e (0,2) D(Lw,w) < 1" and ii) the
part of Theorem 2 of Hadjidimos [14] "for any D negative definite and w € (-2,0)U
(2,+°)" become special cases of the previous Theorem 2. Consequently, convergence
of these extensions of the SOR method is implied straightforward. In view of the
observation made at the beginning of this Remark, sufficient conditions for the
convergence of the AOR method can be given in the following two Corollaries.

COROLLARY 1. Let A=D-E - EH be an n X n Hermitian positive definite
matrix and D be Hermitian and positive definite. Then sufficient conditions for

the AOR method to converge are det(D - rE) # 0 and 0 < w <r §=2, w # 2 (see also

[ro].
PROOF. We observe that the assumptions of Theorem 2 are satisfied. However,
P . 2-r r-w
the restrictions on r and w give that > 0 and > 0, where at least one of

the inequalities must be a strict one. From these relationships, the fact that D

and A are Hermitian and positive definite, and the second expression for the matrix
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M in (2.2), we readily deduce that M is positive definite. Hence, the AOR method
converges.

COROLLARY 2, Let A=D - E - EH be an n X n Hermitian positive definte matrix
and D be Hermitian and negative definite. Then sufficient conditions for the AOR
method to converge are det(D - rE) # O and either 0 < w, max{w,2} < r (the pair

(r, w) = (2,2) is excluded) or r < w < 0.

r—

PROOF. We observe that, in either case, we have Ziﬁ < 0 and L > 0, where
at least one of the inequalities is a strict one. Since the Hermitian matrices D
and A are negative and positive definite respectively, then, because of the relat-
ionships for r and w , just obtained, we have from the last expression for M in
(2.2) that M is positive definite. The latter implies the convergence of the AOR

method.

3. GENERAL COMMENTS, DISCUSSIONS AND FINAL REMARKS.

As has already been seen, the theory presented in the previous section extends
not only the theory of the AOR method but also generalizes some well-known results
concerning extensions of the SOR method. Thus, in view of what has already been
discussed, we are now in a position to clarify some of the points of the previous
sections and also to indicate some questions for further research.

i) Examining very carefully the corresponding w- and r-domains in all the
Cases of the table, we can find that their intersection is the empty set except in
the cases and subcases where w ¢ (0,2). For example, in the first subcase of Case 1,
we have (-©,0) n (w + (2 - w)/um, +») = @ since w <w + (2 - w)/um. Thus we come
to the expected conclusion that, for the generalized SOR method, the Generalized
Ostrowski Theorem (Theorem 1) does hold for w € (0,2).

ii) It is astonishing the variety of ways one can use to prove Theorem 1.

For the interested reader, we just outline two of them very briefly. a) If we
denote by Em |m = 0,1,2,... the error vector of the scheme (1.4) at the mth iter-

ation (assuming eo # 0), define the quantities 5m =€ |m =0,1,2,... and

m em+l
follow the steps as in Varga (see [12], pp. 77-78), we arrive at the relationship

H

6iM6m = egAem - €m+1A€m+l' The latter is the same as relationship (3.56) of [12],
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the only difference being that instead of M the reduced form of it corresponding to
the generalized SOR method, namely (252)D, is present. Consequently, by following
the reasoning of [12], the theorem can be proved. b) By following the theory given
in Young (see [17], pp. 80-84), in which Lyapunov's theorem is contained, and using
(1.5), (1.6) and (2.2), we form the expression (I - Lr,w)-l(l + Lr,w) = A-l(M - 58).
It is easy to prove that if A is positive definite the real parts of the eigenvalues
of the matrix A_l(M - £S) are positive so that p(L_ ) <1 and, if p(L ) <1, the
w r,w r,w
real parts of the eigenvalues of A—l(M - is) are positive implying that A is posi-
tive definite. It should be noted that the proof just outlined was pointed out
(for a similar problem) to the first of the authors by Dr. M. Neumann [20].

iii) There exist other possible proofs for Theorem 2, too. One of them is that
based on a straightforward application of Theorem 2.2 of [19], taking into account
that A is Hermitian and positive definite.

iv) Niethammer [4, Theorem 1A] gives the w- and r-domains for which his
Extrapolated SOR method, for A positive definite and D = diag(A) = I, converges.
Since he also assumes that M < 0, his results

0 <r<2, 0<wc< (rum - 2)/(um - 1)

and (3.1)

2 <r < Z/UM, 0 <w < (rhy = 2)/(hy - D
cover only Case 4 of our table and must coincide with the results given there.
However, if we solve for w in terms of r, and not the other way as we have done
when constructing the table, the corresponding domains for our Case 4 can be found
to be almost the same as those in (3.1). The only difference is that our LHS for
the first series of inequalities for r is 2/)1m < 0. Thus, our results, even in
that specific case, are slightly better. This had to be expected because of two
reasons., The first is that the case r = 0 is not covered in [4] due to the form
of the scheme there. The second is that only positive values for the ratio a = w/r
are considered. The latter, in view of the fact that W happens to be always posi-
tive (see (3.1)), has as a consequence that r in Niethammer's case can not be

negative.



58 A. HADJIDIMOS AND A. YEYIOS

v) The problem of finding optimum parameters for w and r has been solved so
far in two cases only. More specifically, Niethammer [4] solved the problem for
the scheme (1.4) with D = diag(A) = I, A =1 - B, B weakly 2-cyclic consistently
ordered, and p(B) <1 in the two cases: a) A Hermitian positive definite and b)

B skew-Hermitian. Avdelas and Hadjidimos [21] solved, quite independently, the
aforementioned problem (a) by considering the whole (r,w)-plane and found the same
optimum parameters and, in two very special cases, some better ones. Varga [13]
solved the problem for the SOR scheme (1.4) (r = w) with A and D Hermitian positive
definite and w € (0,2) and, finally, Hadjidimos [14] did the same with D negative
definite and w € (-»,0)U(2,+°). Having in mind the complicated analysis, which
even the simplest special cases require, we reach the conclusion that the general
problem for the AOR scheme (1.4) must be a difficult one. It constitutes an open
problem which is being investigated.

vi) The problem of sharpness of some upper bounds for the spectral radius
D(Lr,w)’ which was put and solved first by Varga [13] in a special case for r = w
(SOK method) and then by Neumann and Varga [16] in cases for r = w and a class of
matrices A, is directly connected with the solution of the problem of the optimum
parameters mentioned in (v) previously. Thus, this new general problem remains an
open one and, at the moment, it can be tackled only in special cases for which the
optimum parameters are already available.

vii) A final remark concerning the improvements of the results of this paper
by the technique developed recently by de Pillis [15]. 1In [15], second order iter-
ative schemes from first order ones are constructed by means of an ellipse symmetric
to the real and imaginary axes which captures the spectrum 0(B) of the iteration
matrix B of the first order procedure. The second order schemes, which are con-
structed under the restriction that 0(B) lies in the infinite strip {z: |Rez] <1},
are in general faster that the corresponding first order ones. However, as de Pillis
remarks in 85 of [15] in case the capturing ellipse is a circle, then the second
order scheme degenerates into the corresponding first order one. In [21], the idea

by de Pillis is exploited further by considering a monoparametric family of captur-
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ing ellipses and among them the one for which the rate of convergence of the second
order scheme is a maximum. Thus, in the case of the AOR scheme (1.4) (in fact any
AOR scheme can be treated similarly), a combination of the techniques of [21] and
[15] may improve the convergence rates. For this, the operator A of the original
system (1.1) is written in the form of the multiplicative splitting Ao(I - B) (see
[15]) with A0 = %(D - rE) and B = Lr w and then, assuming knowledge of O(Lr,w)’ the

>

optimum capturing ellipse (see [21]) is found. Unless p(Lr,w) < 1 and the optimum
capturing ellipse is a circle, the rate of convergence of the AOR scheme can not
be improved upon by combining the techniques of [15] and [21]; in all the other
cases, an improvement can be achieved. It is understood that the optimum pair
(r,w) must be used in the AOR scheme whenever this is available.
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