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ABSTRACT. Let m be a semi-transitive translation plane of even order with
reference to the subplane - If 7 admits an affine elation fixing "0 for each
axis in my and the order of To is not 2 or 8, then m is a Hall plane.
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1. INTRODUCTION.

Kirkpatrick [ 9] and Rahilly [ 10] have characterized the Hall planes as those
generalized Hall planes of order q2 that admit q+1 central involutioms.

In [ 7] the author has shown that the derived semifield planes of characteristic
# 3 and order q2 are Hall planes precisely when they admit q+1 central in-
volutions. This extends Kirkpatrick and Rahilly's work as generalized Hall planes
are certain derived semifield planes.

If a translation plane 7 of order q2 admits q+1 affine elations with

distinct.axes then the generated group .4 contains SL(2,q), SZ(q) or contains
a normal subgroup N of odd order and index 2 (Hering [5]). In the latter case,

little is known about & except that it is usually dihedral.
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In this article, we study semi-transitive translation planes of order q2
that admit q+1 affine elatioms.

In [8], the author introduces the concept of the generalized Hall planes of
type 1i. These are derivable translation planes that admit a particular collinea-
tion group which is transitive on the components outside the derivable net. In
this situation the group is generated by Baer collineations.

More generally, Jha [6] has considered the '"semi-transitive' translation
planes.

(1.1) Let 7 be a translation plane with subplane T If there is a col-
lineation group & such that

1) & fixes L n L pointwise,

2) leaves m invariant, and

0
3) acts transitively on R'w'"o n L5

then w is said to be a semi-transitive translation plane with reference to Ty
and with respect to 4.

Our main result is that semi-transitive planes of order not 16 or 64 that
admit elations with axis £ fixing T for every component £ of Ty are Hall
planes. We also give a necessary and sufficient condition that a translation

plane of order q2 #64 admitting q+1 elations with distinct axes is derivable.

2. TRANSLATION PLANES OF EVEN ORDER q2 ADMITTING q+1 ELATIONS.

(2.1) THEOREM. Let m be a translation plane of even order q27‘64 that
admits q+1 affine elations with distinct axes. Let 7 denote the net of degree

q+l that is defined by the elation axes and assume the group D generated by

these elations leaves 7 invariant. Then 7 is derivable if and only if D 1is
either isomorphic to SL(2,q) or is dihedral of order 2(q+l) where the cyclic
stem fixes at least two components.

PROOF. If D is isomorphic to SL(2,q) then % is derivable and actually
m 1is Desarguesian by Foulser-Johnson-Ostrom [3].

+ -—
q 1=1,cx=x lc). If (x) fixes the components X = O,

Let D = {o,x l02=x
Y = O then we may choose coordinates so that o is (x,y) —(y,x) and x is

(x,y)—'(xT,yT-l) for some matrix T of order q+l.
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By Ostrom [11], Theorem 3, there is a Desarguesian plane I containing the
two x-fixed components and 9. Clearly 7 1is an André net in I and thus deriv-
able in m.

Conversely, suppose 7 is derivable. Since each elation fixes 7, D must
fix each Baer subplane of 7 incident with O. By Foulser (2], Theorem 3,

D < GL(2,q) in its action on w so that D < SL(2,q) (each elation is then in
SL(2,q)). By Gleason [4], D 1is transitive on the elation axes so q+1 lD[
Thus, D 1is clearly éL(Z,q) or is dihedral of order 2(q+l). Moreover, if N
is derivable then Y fixes at least two infinite points of m-7. Let 72 replace
N so & fixes ﬁ componentwise in the derived plane T. Let (;) < (x) such
that |;(-l is a prime 2-primitive divisor of q2—1 (one exists since q2 # 64).
Then ; fixes at least two infinite points of T-7 so there is a unique Desar-
guesian plane I containing the x-fixed components of T (see Ostrom [11], Cor.
to Theorem 1—uniqueness comes from the fact that the degree of I N T is greater
than q+1). Since & permutes the components of I Nw (i.e., (;(_) is charac-
teristic in (X)), & is a collineation group of X. The collineation x has the

form (x,y) —’(x¢a,y¢a) where ¢ 1is an automorphism of GF(qz) and a ¢ GF(qZ).

(Note x fixes 7 componentwise.) Since q+l is odd, (x2> {x ). Choosing co-
- 2
ordinates so that the components of 7 are X=0, Y=0, y = xa, a € GF(q")

then x fixes 'y = xa for all a € GF(qz) if and only if a¢ = a. Since
2
(x )= (x), we may assume ¢ = 1. Thus, ¥x fixes lm of I pointwise. Since

I and m share at least two components (those fixed by ;), x must fix at

least two components of .

3. SEMI-TRANSITIVE TRANSLATION PLANES OF EVEN ORDER.

Let w be a translation plane of even order q2 that admits q+1 elations
as in section 2. Then, 7 is a derivable plane provided the generated group D
is dihedral and the cyclic stem fixes at least 2 points or SL(2,q). In any case
let 7 denote the net defined by the elation axes. Let & be a collection group
that commutes with D. Then clearly, & must fix 7N L pointwise.

(3.1) THEOREM. Let 7 be a translation plane of even order q2 # 64 that

admits q+l elations with distinct axes. Assume the group D generated by these
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q+l elations leaves the net % of the elation axes invariant. Let & be a col-
lineation group which commutes with D and is transitive on lm-ﬁ n L Then ™
is a Hall plane.

PROOF. Since q2 # 64, there is a prime 2-primitive divisor m of q2-1.
By Gleason [4], q+1 ,lDI. Clearly, m|}|q+l. Let x be an element of D of
order m. X acts on the q(q-1) points of lm-n n 2 so must fix at least two
points of & -7 n £_. Since & commutes with X and . is transitive on
L -7N n £, x must fix lw-n N g pointwise.

By the corollary to Theorem 1, Ostrom [11], there is a Desarguesian plane I
such that the components fixed by x in w are exactly the common components of I
and 7. Let w=7U%M where 7 is the net complementary to 7 in w. Then
z =72 UM for some net 7 of degree q+l. So I and 7 are two extensions of a net
M of critical deficiency (see Ostrom [12]). Then m must be Hall since I and 7
must be related by derivation (i.e., m cannot be itself Desarguesian) by Ostrom [12].

The conditions of (3.1) are close to giving the definition of a "semi-transi-

tive" translation plane (see (1.1)). In (3.1), it is possible that & may not

satisfy condition 2. Also, it is not clear that a semi-transitive translation
plane is derivable. However, Jha [6] shows if 7 has order not 16 and there is a
nontrivial kern homology in 7 then w is derivable and T is a Baer subplane.
We may overcome this restriction on the kern in our situation:
(3.2) THEOREM. Let 7 be a semi-transitive translation plane of even order
with respect to a collineation group & and with reference to a subplane Ty

Let 7 admit an affine elation for each axis in ..

0
1) 1If the order of ™ is not 8 then w is derivable.
2) If the order of “0 is not 2 or 8 then m is a Hall plane.

PROOF. Following Jha's [6] ideas, let =, be a minimal subplane of w prop-

1

erly containing Ty Clearly, the stabilizer J%l of ™ is a semi-transitive

collineation group of ™ with reference to To* Moreover, a sylow 2-subgroup of

J%l must leave LA pointwise fixed since & fixes T and fixes L n L

pointwise. (Note ld%ll is divisible by (2r+1)__(23+1) for some r,s.)

Clearly, = is a Baer subplane of T

0 1’
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Every elation which leaves o invariant must also leave any superplane in-

variant. So the group D generated by the elations leaves ™y invariant and,
clearly, 4 commutes with D since & fixes LA N2 pointwise (& must com-
mute with each central collineation fixing wo).

By (3.1), if the order of T is not 8 then ™ is a Hall plane and m is

derivable. We may now directly use Jha [6] to show that if the order of T is

not 2 then T (that is, Jha uses the hypothesis that there is a kern homology

to show that is derivable).

1
Actually, our proof of (3.2) proves the following more general theorem for

arbitrary order.
(3.3) THEOREM. Let 7 be a semi-transitive translation plane with reference

to m, and with respect to & and order pr. Let x be a collineation generated by

0
central collineations leaving T invariant such that lxl is a prime p-primitive

divisor of (order wo)z-l (where the order of L is not 2). Then 7 is a Hall plane.

Note that a semi-transitive plane of odd order p2r must admit Baer p-elements
(see Jha [6]). By Foulser [1], we could then not have both Baer p-elements and
elations so we could restate our Theorem (3.2) without reference to order.
(3.2)2) 1is also valid if the order L is 8. The arguments supporting this will

appear in a related article.
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