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ABSTRACT. Integral inequalities of the Bellman-Bihari type are established for
integrals involving an arbitrary number of independent variables.

KEY WORDS AND PHRASES. Integhral inequalities, differential inequalities.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 34A40, 35B45.

1. INTRODUCTION.

In a number of recent papers, Dhongade and Deo [1] and Pachpatte [2,3,4] have
generalized the well known Bellman inequality [5] and Bihari's generalization of
it [6] in several different -directions. Although the results concern only functions
of a single variable, it was shown in [7] that corresponding inequalities also hold
for functions of several independent variables. The purpose of this note is to
show that the technique employed in [7] can be profitabiy utilized to establish
more general integral inequalities of the Bellman-Bihari type in any number of
independent variables. We present here some of the results along this line.

As in [7] we assume that all the functions under discussion are defined in a
bounded domain R of E which, for convenience, is assumed to contain the origin.

The symbol x < y, where x = (xl, N x“) and y = (yl, e e ey yn) are any two

points of R, means x, < A for i =1, . . ., n. We also adopt the notation

i

Jx X Xy
f(s)ds = J ...J f(s,5...48_)ds. ..ds
0 0 0 1 n 1 n
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2. MAIN RESULTS.

Our first result is a variation of Theorem 3 of [7].

THEOREM 1. Let u, f, and g be continuous and nonnegative in R and let a be

continuous, positive and nondecreasing in R. Let W: [0,x) > [0,x) be continuously

differentiable and nondecreasing such that

v <welw, u>0, v>o

Then the inequality

X

u(x) < a(x) + J

S
f(s) [u(s) + J g(t)W(u)dt]ds

0 0

implies
X -1 s
f(s)G “(G(1) + J f(t)dt)ds]

u(x) < a(x)[1 + J
0

0

if g(x) f.f(x) or
X

S
u(®) < a1+ J £(s)61(6(D) + J g(t)dt)ds]
0

0

if £(x) f_g(x), where G-lis the inverse of the function

- _dr
G(w) = K ) ¥ >w > 0
o

X
provided G(1) + J f(t)dt lies in the domain of G_l.
0

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

PROOF. Since a > 0, W > 0 and both are nondecreasing, and by (2.1), we may

rewrite (2.2) in the form
X s
m(x) <1+ I f(s) [m(s) + J g(t)W(m)dt]lds
0 0

(2.6)

where m(x) < u(x)/a(x). If we set v(x) equal to the right hand side of (2.6) and

differentiate, we find
X

f(x) (m(x) + J g(t)W(m)dt)
0

Dl...Dnv(x)

X
£(x) (v(x) + J g(t)W(v)dt)
0

| A

where D, indicates differentiation with respect to x

i i°

i=1,...,n.

2.7
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Let us define

w(x) = v(x) + JX g(t)w(v)at (2.8)
' 0

and assume g(x) < £(x). Then, by differentiating (2.8) and using (2.7), we obtain

D

...an(x) = Dl...Dnv(x) + g(x)W(v) (2.9)

1

| A

f(x)w(x) + g(x)W(w)

1A

£(x) (w(x) + W(w))

Set S(x) = w(x) + W(w). Following the technique in [7], we observe from (2.9)

that
S(x)Dl...:nw(x) <t + Dls(x)Dz..;an(x)
S(x) - S(x)
or
D (Dz...an(x)) < £
S(x)

Note that, from the hypotheses, it follows that Di(w(x) + W(w)) > 0, for

i=1,2,...,n. Hence, integrating with respect to X from 0 to X, we find

D2...an(x) Xy
e < Jo f(sl,xz,...,xn)ds1 (2.10)

Similarly, since

DZS(x)(D3...an(x)) >0

s(x)2

the left hand side of (2.10) can be replaced by
X
DZ(DB"'an(x)) < J 1 f(sl,xz,...,xn)ds1
S(x) 0

By integrating this from 0 to Xy, we obtain

X
D3.-.an(x) —<_ J 2 le f(sl,sz,x3,..o9x )dsldsz
S(x) 0 0 n

Continuing in this manner, we have after (n-1) steps

f(sl,...,sn_l,xn)dsl..dsn_1 (2.11)
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With the function G(w) defined in (2.5), we note that

DnG(w) = G'(w)an(x) = an(x)/(w(x) + W(w)). Hence, integration of (2.11) from

0 to X yields
x
G(w(xl,...,xn)) - G(w(xl,...,xn_l,O)) f.J f(s) ds
0
or
-1 X
w(x) < G (G(1) + J f(s)ds) (2.12)
0

since w(x) = v(x) = 1 when x, = 0 for any i, 1 <i<nm.

i
From (2.7) and (2.8) we have

D ..Dnv(x) < f(X)w(x) (2.13)

1
Substituting for w(x) from (2.12) and integrating (2.13), we finally obtain
X -1 s
v(x) <1+ J f(s)G “(G(1) + J f(t)dt)ds (2.14)
0 0
The inequality (2.3) follows from (2.6), (2.14), and the fact that m(x) = u(x)/a(x).
If £(x) < g(x), then we need only replace f by g in the last line of (2.9) to
obtain again (2.12) with f replaced by g. The result (2.4) then follows in the
same fashion.
Our next theorem combines the feature of Theorems 1 and 2 of [7].
THEOREM 2. Let u, f, g, and h be continuous and nonnegative functions in R,
and let a be continuous, positive, and nondecreasing in R. Let Z: [0,x) -+ [0,x)
satisfy the same conditions as W in Theorem 1 such that Z is submultiplicative.

If u satisfies

x s X
u(x) < a(x) + J f(s)[u(s) + J g(t)u(t)dtlds + J h(s)z(u)ds (2.15)
0 0 0
then
X
u(®) < a(x)p(IH T(HQ) + J h(s)Z(p)ds) (2.16)
0
where
x s
p(x) =1+ J f(s)exp f (£(t) + g(t))dtds (2.17)
0 0

and H—l is the inverse of the function
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v

_ dr

H(V) = J Z(r)’ v > VO >0 (2.18)
0

The proof of this theorem makes use of the following result which we state as

a lemma. This was established in [7] as Theorem 1.

LEMMA. Under the hypotheses of Theorem 2, the inequality
X s

u(x) < a(x) + J f(s)[u(s) + J g(t)u(t)dtlds
0 0

implies
X s
f(s)exp J (£(t) + g(t))dtds].

u(x) < a(x)[1 + J
0

0

PROOF of Theorem 2. As in Theorem 1 we rewrite (2.15) in the form

>4 s
m(x) <1+ J f(s) [m(s) + J g(t)m(t)dtlds
0 0
(2.19)
X
+ J h(s)Z(m)ds
0
If we set
X
vix) =1+ J h(s)Z(m)ds (2.20)
0
then (2.19) becomes
>4 s
m(x) < v(x) + J f(s)[m(s) + J g(t)m(t)dt]ds.
0 0
Hence, by the lemma, we have
X s
m(x) < v(x)(1 + J f(s)exp J (£(t) + g(t))dtds) (2.21)
0 0

< v(x)p(x)
Since Z is submultiplicative, we note that Z(m) < Z(v)Z(p). Therefore,
differentiating (2.20) with respect to XyseeesX s we find

D,...D v(x) = h(x)Z(m)

< h(x)Z(v)Z(p)
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D,...D v(x)

° B S N
r T S b0z (2.22)

By the same argument as in the proof of Theorem 1, we can integrate (2.22) to
obtain

X
H(v(xl,...,xn)) - H(v(xl,...,xn_l,O)) f_[o h(s)Z(p)ds

where H(v) is defined by (2.18). This gives
-1 X
v(x) < H “(H(1) +J h(s)Z(p)ds) (2.23)
0

The substitution of (2.23) in (2.21) yields the inequality (2.1€) since
m(x) = u(x)/a(x).
When g(x) = 0, Theorem 2 reduces to Theorem 3 of [7].
By combining Theorems 1 and 2, we finally have
THEOREM 3. Let u, a, f, g, h, and Z be as in Theorem 2 and let W be as in
Theorem 1. If u satisfies
x (s

u(x) < a(x) + J f(s)[u(s) + J g(t)W(u)dtlds (2.24)
0 0

X
+ I h(s)Z(u)ds, where g(x) < f(x)

0
then
-1 x
u(x) < a(x)q(x)H ~(H(1) + J h(s)Z(q)ds) (2.25)
(¢
where
X -1 s
q(x) =1+ J f(s)G ~(G(1) + J f(t)dt)ds (2.26)
0 0

G = is the inverse of the function defined in (2.5) and H-l is the inverse of the
function defined in (2.18).

PROOF. We rewrite (2.24) in the form

X s
m(x) < v(x) + J f(o) [m(s) + J g(t)W(m)dtlds (2.27)
0 0
where
X
v(ix) =1+ J h(s)Z(m)ds (2.28)

0
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with m(x) = u(x)/a(x). Then according to Theorem 1, we have

X S
m(x) < v(x)[1 + f £()6 e + J £(t)dt)ds] (2.29)
0 0

< v(x)q(x)
Since Z(m) f_Z(v)Z(q), we obtain from (2.28)

D ...D v(x) = h(x)Z(m) < h(x)Z(v)Z(q)

With H(v) defined by (2.18), we obtain as in the proof of Theorem 2
v(x) < H1m) + Jx h(s)Z(q)ds)
0

The substitution of this for v(x) in (2.29) leads to the desired inequality (2.25).

Observe that, when h(x) = 0, (2.25) reduces to (2.3); when W = u, it agrees
with (2.16) with g replaced by f in view of the condition g < f.

We remark that our Theorems 1, 2, and 3 correspond respectively to Theorems
4, 2, and 5 of [4]. From the argument presented above, we readily see that other

more general integral inequalities can also be established for n independent

variables along the lines considered in [1] and [4].
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