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ABSTRACT. M. K. Singal and Asha Rani Singal have defined an almost-continuous
function f:X - Y to be one in which for each x € X and each regular-open set V
containing f(x), there exists an open U containing x such that f(U) & V. A space
Y may now be defined to be almost-continuous path connected if for each yo, y1€ Y
there exists an almost-continuous f:I - Y such that £(0) = Y, and f(1) = Yy An
investigation of these spaces is made culminating in a theorem showing when the

almost-continuous path connected components coincide with the usual components of Y.
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1. INTRODUCTION.

The concept of an almost continuous function f:X - Y has been defined in [1]
as one in which for each x € X and each regular-open V containing f(x) there
exists an open set U containing x such that £(U) © V. Using this concept we
make the following two definitions:

DEFINITION 1. The function f:I + Y is an almost-continuous path (a.c. path)
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from Y, to y; if f is almost continuous, £(0) = v, and (1) = vy

DEFINITION 2. The space Y is a.c._path connected if for each Yo Y1 €y,

there exists an a.c. path from Y to yl.

The regular-open sets in Y may be used as a base to form the semi-regular
topology TS on Y from which f:X - (Y,T) is almost-continuous if and only if
f:X > (Y’Ts) is continuous. Thus, Definition 2 may be restated as (Y,T) is a.c.
path connected if for each Yoo V1 in Y, there is a continuous f:I - (Y,Ts) such
that £(0) = Y, and f(1) = Y- In view of this observation, many of the known
results for path connected spaces in the usual sense also apply to a.c. path
connected spaces. For example, if y0 € Y, then Y is a.c. path connected if and
only if for each y € Y, there is an a.c. path from y to Yor Furthermore, slight
variations in known results may sometimes be made to easily produce statements
concerning a.c. path connected spaces. An example is that if f:X > Y is an al-

most-continuous surjection and X is path connected, then Y is a.c. path connected.

2. MAIN RESULTS.

THEOREM 1. Every a.c. path connected space Y is connected.

PROOF. Assume Y = UU V where U and V are open in (Y,T) and U(iV = ¢. Then
U and V are regular-open so that UL V is a separation of (Y’TZ)' But (Y,TS) is
path connected, hence connected. The contradiction implies Y is connected.

Let R be the reals with the usual topology, Q the set of rational numbers and

RQ the reals with the topology generated by the usual open intervals together with

Q as a subbase. Since the semi-regular topology associated with R  is the usual

Q

topology on R, it follows that f:X > R  is almost-continuous if and only if f:X - R

Q

is continuous. Similarly, f:I > R_x R_ is almost-continuous if and only if

Q Q
f:I > R x R is continuous. These observations lead to the following example which
shows the converse of Theorem 1 is false.
EXAMPLE 1. Let Y = {(x,y) : y = sin(1/x), 0 < x < 1} € Rx R. Then
Y=Y U{(x,y) : -1 <y <1} in R xR as well as RQ x RQ. Hence Y is connected,

but not a.c. path connected.
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Example 1 also shows that a space may be a.c. path connected but its closure
may not be a.c. path connected.

For a given space Y, define xRY to mean there is an a.c. path from x to y. We
see immediately that R is an equivalence relation on Y. The resulting equivalence

classes are referred to as a.c. path connected components of Y. Consideration of

the semi-regular topology reveals that each a.c. path connected component in Y is
open (and therefore closed) if and only if each point of Y has an a.c. path con-
nected neighborhood.

THEOREM 2. A space Y is a.c. path connected if and only if it is connected
and each y € Y has an a.c. path connected neighborhood.

PROOF. If Y is an a.c. path connected space, then Y is connected by Theorem 1
and each y € Y has an a.c. path connected neighborhood by the remarks preceeding
Theorem 2.

Conversely, the hypothesis and the remarks preceeding Theorem 2 show that the
only a.c. path connected component of Y is Y itself. Therefore, Y is a.c. path
connected.

THEOREM 3. Let Y be a space. If (a) each a.c. path connected component in Y
is open or (b) if each point y € Y has an a.c. path connected neighborhood, then
the a.c. path connected components of Y coincide with the usual components of Y.

PROOF. The remarks preceeding Theorem 2 show that conditions (a) and (b)
are equivalent. So if we assume that each a.c. path connected component of Y
is open, then each point of Y has an a.c. patﬁ connected neighborhood. 1In par-
ticular, the a.c. path connected component [y] is an a.c. path connected neighbor-
hood of y. Thus, [y] is connected by Theorem 1. It follows that [y] <C(y),
where C(y) is the usual component of y € Y. Since [y] is both open and closed

in Y, [y] is both open and closed in C(y). But C(y) connected implies [y] = C(y).
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