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ABSTRACT. In a reference book for distributions [1], it is shown that the multi-
plication (u,f) b— uf on c¢” x 8', as well as on GM x 8', is hypocontinuous. We
show here that in both cases it is discontinuous.
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1. INTRODUCTION.

The discontinuity of multiplication on C°° x 8', seems to be part of general
folklore, but no proof has yet been published. As far as we know the second
result is new. The presented proofs are simple enough that they can be included
in any future textbook on distributions.

THEOREM 1. Let B be the strong and 0 the weak* topology, both on B'(Rn),
and Y the usual topology on Cm(Rn). Then the multiplication
(u,f) p— uf : C: x 8 é — 8 é is not jointly continuous.

PROOF. The family & of all increasing sequences of positive integers is

a directed set under the induced product ordering from NN. Let I' be the directed

product N X %, and let d = Bn/axlaxz...an. For each (m,s) € I', put
m+1,-1

fm S(t) = (mt ) if t € [1, exp(m* s(m))], with fm S(t) = 0 otherwise, and
-1
Fn,s 7 87 C g P smT2 g g(0).
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n
If g is the Fourier transform of 1 f (x.), then the inequalities
m, S j=1 m,s j
[ee] oo

k -1 _ m _ .
[ CE (e <o, k=1, 2, w1, [m " E_(0dt = s imply,

0 b

. k -
respectively, |[id g, SHoo <m ™ and dmgm s(O) = inms(m)n, where i is the imaginary
’ ’

unit. Thus lim g s = 0 in C:. For any ¢ € § (Rn), which equals 1 in some

(m,s) €l m,
_1
neighborhood of the origin, lim I(gm SFm S)wl = lim |s(m) 23 g 0] =
(m,s)er ™S ™ (m,s) €l moms
. n-%
1 = + F : [
- ;?er s(m) © and {gm,s m,s}(m,s)EF does not converge to 0 in g o

It remains to show that {Fm s} converges to O uniformly on every set g
b

bounded in § . For each such §§, there exists r € F such that Idmg(O)I < r(m)

for all m € Nand g € . Choose € > 0 and s € % such that s(m) > e—zrz(m) for

all m € N. Then

1
~2

1
|Fm s(g)l = |s(m” % d"g(0) | < s(m) Zr(m) <e for all g € B.
1
In the sequel, we need a weight function W(x) = (1 + lez)ﬁ, and Hilbert
spaces H_= {f : R ~ C; |If1|i = 3 f lwk'|°‘lD°‘f|2dx < + ®}, k € N. The
ol <k In
= R
space g of rapidly decreasing functions equals the proj lim Hk' For every
P, 9 € N, the space @p q = {u:R"~>c; f > uf : Hp > Hq continuous} equipped
’
with the operator norm | |l is Banach. If 6 = ind lim 6 , then the
Psq q Psq

p >
space Gy of rapidly increasing functions equals proj lim Gq, [4]. Finally,
denote by || [l the supremum norm of Lw(Rn) and by de the dilation operator
(def)(x) = f(ex).

LEMMA 1. For each k € N and multi-index a GNn,

lim Helalwk(x)Da exp(—}gjz)ﬂ = HDa exp(-]x]z)H , where ]x|2='x 24-x22+---+-x 2
€0+ e ® ! n

prRoof.  1im lie!®lW¥Gon® exp(- X 5l =
€ >0+ €
lim HWk(x) d1 p* exp(—lxlz)mn= lim ”Wk(EX)Da exp(—lez)w”= HDaexp(-lxlz)Hm.

€~ 0+ e ~> 0+

€
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LEMMA 2. If p, ¢ € N, 0 < q<p, and r = 1 + [%»n], then there is a

sequence {f } in 8 (R") such that sup If || < 1 and
m - m p,q —

lim [If_(x) ¢-=-><p(-lx|2)“q+r =

m > ©

PROOF. By Prop. 8 of [4] and Lemma 1, there exists A > 0 such that

lim sup HEq exp(—l%lz)ﬂ < lim sup T qu—p[al(x)Da exp(—|-§|2)|}oo =
€ > 0+ P24 e 5 o4 la]<q

2
A I HDa exp (- | x| )Hw.
a|=q

Define hm(x) =n ¢ exp(—lmx|2), m € N, x € R™.

Then S = suplih || <+ ® If we put f = S_lh , m € N, then
m m p,q m m

2.112
suplifmlip’q <1 and Hfm(X) exp(-|x] )Hq_,,r

m
sT2m%9 g f W10 G0 0% expc(1 + mdy [x]) |2 dax =
lo|<q+r %n
1 1
S22 v ndy 2 r 1+ mz)l‘”/ s lel a2y 2 exp(—lxlz)‘dx.
Ia]§q+r Rn

Take a multi-index R such that |B| = q + r. Then

lim sup Hfm(x) eXP(']XIZ)“§+r z

m > «©
_9 _ -—=n+q+r
Lin sup " m 23(1 + u’) 2 [ »* exp("IXIz)}zdx -
m > oo n
R
B 2,12 -2q 2 q+r_ln
D eXP(—|X] )’ dx ¢ lim sup m (1 +m") 2 = 4+ o,

m > ®

s72 /'
Rn

THEOREM 2. Let B be the strong and 0 the weak* topology on S'(RP). Then
the multiplication (u,f) F—= (u,f) : Gy gé — gé is not jointly
continuous.

PROOF. The polar P of the singleton {exp(-lx]z)} C g is a 0-neighborhood
of 0 in §'. If the multiplication was continuous, there would be neighborhoods

of 0, UC Oy and V¢ 8!, such that UV ¢ P. For some q € N, there exists a
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a neighborhood G of 0 in 6 q such that G N 6 M C U, and there exists a ball B(g)

of radius € about the origin in 6 4.p such that B(e) ¢ G. Since § c 6 o

’

Lemma 2 implies existence of a sequence {fm} in B(e) N G)M such that

2 1
i =1 = oo = =
lim Hfm(x) exp (- x| )Hq . + o, where r = 1 + [2n ].

m->®

For any g € V, we have fmg € UV ¢ P, which implies

g(f_ exp(~ |x|9)

= }(fmg) exp(—ixlz))} < 1. Hence fm exp(—|x]2) is contained
in the polar v° of V. since V° is bounded in g, the sequence {fm exp(—[x|2)}
is bounded in §, too; i.e., sup Ikm exp(—lxlz)H g+t < + », which is a
contradiction. "
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