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ABSTRACT. An attention has been given to investigate the flow behavior of an
incompressible viscous fluid confined in horizontal wavy channels and set in
motion due to the movement of the upper wall and the pressure differences. The
governing equations have been solved analytically as well as numerically subject
to the relevant boundary conditions by assuming that the solution consists of
two parts: a mean part and a disturbance or perturbed part. For small and mod-
erate Reynolds numbers, the analytical solution for the perturbed part has been
found to be in good agreement with the numerical one. The effects of Reynolds
number, the pressure gradient parameter, and the undulation wavenumber on fric-
tion and pressure drop are found to be quite significant. In addition to the
flow behavior for both long and short waves and for large Reynolds numbers, the
effect of the wall waviness on friction and pressure drop has been examined for
any arbitrary amplitude of the wavy wall.
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1. INTRODUCTION.

There are many physical applications of coupled pressure and shear flows.
These include, hydrodynamic lubrication of a sleeve bearing, tube flight vehicles
for the development of transportation systems. In addition to having many appli-
cations, these flows are of sufficient interest in its own right. They pose no
theoretical problems when the fluid motion is laminar, fully developed and con-
fined between parallel flat walls. However, if the shear flows occur between
wavy walls, there are certain mathematical difficulties involved with the study
of such flows. Consequently, an approximate theoretical treatment may be pro-
vided to gain some understanding of shear flow problems.

Literature is replete with theoretical as well as experimental problems
dealing with the flow pattern of a viscous fluid confined between flat solid
boundaries. Mention may be made of the studies (of these problems) by Berman [1],
Balaram [2], Hahn and Kettleborough [3], and Szeri et al. [4]. However, there
are many physical situations in which the surfaces of the solid boundaries are
wavy in nature. For example, even the surface formed by cleavage of mica con-
tains irregularities of the order of 20 A in size, and the irregularities of the
surface of an ideally smooth quartz crystal can be up to 100 A in height, which
have been discussed in detail by Kragelskii [5].

Although several authors have studied the problems of viscous fluid flows
confined between flat boundaries, an attention has been hardly given to these
flows in horizontal wavy channels with a moving wall. It seems to us that the
findings of the investigations of the fluid flows confined between wavy bound-
aries will have a definite bearing on the hydrodynamic theory of lubrication, in
particular on the bearing industry. So the main objective of this paper is to
investigate the effects of wall waviness on friction and pressure drop of the
generalized Couette flow. Since the theoretical treatment of the problem is
complicated, it is solved by a numerical perturbation technique. The solution
consists of two parts: a mean part, corresponding to the fully developed mean

flow and a small disturbance. The former coincides with the well known Couette
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flow after modifications resulting from the different non-dimensionalizations
employed in classical Couette flow and the present problem. The latter is ob-
tained by the use of the method of superposition coupled with an orthonormaliza-
tion procedure and a variable-step Runge-Kutta-Fehlberg integration scheme of
Scott and Watts [6]. A comparison is made between the numerical and the analyti-
cal solutions.

2. FORMULATION AND SOLUTION OF THE PROBLEM.

We consider a channel with the wavy walls represented by

y* = d* + e* cosk#*x* (Y1 say) and y* = -d* + o* cos(k¥*x* + 6) (Y2 say)
The representation of the second wall alows us to study the flow behavior in the
following four different types of channels by giving the values 0, 7/2, 7 and
31/2 to ©: (i) the crest of a wall corresponds to the crest of the other wall
of the channel; (ii) one of the walls considered in (i) has a phase-advance/lag;
(iii) the crest of a wall corresponds to the trough of the other; and (iv) one
of the walls considered in (iii) has a phase-advance/lag.

We make the following assumptions: (a) all fluid properties are constant;
(b) the flow is laminar, steady and two-dimensional; and (c) the effects of
elastic distortion are neglected (as in reference [3]). Under these assumptions,
the equations which govern the steady, two-dimensional motion of a viscous incom-

pressible fluid in the channel are

du* du* op* 32u* 32ux
* (uk M x Y%y _ _ 9P % (W o
p* (uk — + v ay*) Sk U G t 8y*2)’ (2.1)
av* vk dp* 32vyx 32y*
* * - * = = * — _—
p* (u Bk + v By*) By +u (Bx*z + ay*2), (2.2)
Ju* ov*
ax* | ay* 0 (2.3)

where u* and v* are the velocity components, p* is the pressure, and the
other symbols have their usual meanings. The boundary conditions relevant to
the problem are taken as

u* = U, v¥ = 0 on y* = d* + €* cosk*x*,

(2.4)
u¥* = 0, v¥ = 0 on y* = —~d* + o* cos(k*x* + 6)
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We define dimensionless variables as
x = x*/d*, y = y*/d*, u = u*/U, v = v¥/U and p = p*/p*U2.

Then, we rewrite (2.1) - (2.3) and the boundary conditions (2.4) as

3u du | 9p, _ ,3%u  3%u
R (uo—+v 3y * ) = Gzt 5§7), (2.5)
R (0 4y 2420y o 2y 0y (2.6)
9% 3y 9y ax2  3y2”’ :
Jdu v _
54.@_0, 2.7)
u=1,v=0 on y =1+ ecoskx,

(2.8)
u=0,v=0 on y=-1+o0a cos(kx + 6)

where R = U d*/v*, the Reynolds number, e = e*/d*, and a = a*/d*, the dimen-
sionless amplitudes, and k = k*d*, the dimensionless wavenumber.
By the method of perturbations, given by Nayfeh [7], we take the flow field

in the form

u (x,y) = UO(Y) + UI(X,Y),
v (x,y) = vl(x,y), (2.9)
p (x,y) = py(x) + py(x,y)

where the perturbations Uy, vy, and p, are small compared with the mean or
the zeroth-order quantities. With the help of (2.9), equations (2.5) - (2.7)
become

d2uy/dy? = RC (2.10)

to zeroth-order, and

du du p 3%y 324
el i1 IS & R
R (uo = + vlay + ™ ) (ETL + -a?zl), (2.11)
du,  3p, 32y 82v, (2.12)
R (4 x + dy ) =« BX% + Byz)’ )
Ju
—L =0 (2.13)

to first-order, where = C. Also, with the help of (2.9), the boundary con-

Y
9x ay
g
ox
ditions (2.8) can be easily simplified to

up; =1 on y=1
(2.14)

ug 0 on y=-1
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u, =-uj, v =0 ony=1
(2.15)

uy -Eéieué, v =0 on y-=-1

where a prime denotes differentiation with respect to y and o = ee (e # 0(1/€)).

Introducing the stream function V¥ defined by

up = b, vy = (2.16)

into (2.11) and (2.12) and eliminating the dimensionless pressure, we obtain

Ru, ($;xx + a;yy) - Rug $; = Vexxx ¥ 2 wxxyy + lpyyyy' (2.17)
Assuming v (x,y) = eeikx v(y), (2.18)
from which we infer
u, (x,y) = eeikx GI(Y),
v, (x,y) = eeikx ;&(y),
and using (2.18) in (2.17), we obtain
oI 4 kR (- ugp™ - 2kt + dk3Rugy + kMY = 0. (2.19)
The boundary conditions (2.15) can be now written in terms of V¥ as
V'=uf, ¥=0 on y=1,
_ e (2.20)
Y' = ece ud, Yy=0 on y=-1.

Equation (2.19) subject to the boundary conditions (2.20) has been integrated
numerically by the method of superposition coupled with an orthonormalization
procedure and a variable-step Runge-Kutta-Fehlberg integration scheme. Also, an
analytical solution has been obtained, within the long-wave approximation, and
these results are compared with the numerical ones, for the skin friction and
pressure drop (see Figure 1).

3. ZEROTH-ORDER SOLUTION (MEAN PART).

The solution for the zeroth-order velocity ug, satisfying the differen-
tial equation (2.10) and the boundary conditions (2.14), has been obtained but is
not presented here. The expression for u, at various values of y has been
evaluated numerically for several sets of values of the parameters R and C.
These results were found to be in good agreement with those of the generalized

Couette flow.
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4, SKIN FRICTION.

The shear stress Txy at any point in the fluid is given by

= y* *| gyk * | oxk
Txy p* (du |8y + v IBx ).

In dimensionless form this becomes

T d%2
X
Ty " E;%;I— = (dufdy + av]|ox).
At the wavy walls y = Y1 and y = YZ’ Txy becomes
o= 04 e i@ - v, (4.1)
T, = Tg + celkX [Eéieu"(—l) - ¥"(-1)] (4.2)
respectively, where
r? = ug(l) and Tg = uj(-1). (4.3)

To study the effects of wall waviness on friction, in general, we can rewrite

the expressions (4.1) and (4.2) as

ikx i¢

T, = T? + €e |Fll el
ikx i¢

T, = 1] + ce |F,| e "2

and, in particular, hope to bring out the salient features of IF1|, |F2|, ¢y
and ¢, in this paper (see Figures 2, 3, 5, 6, 8 and 9).

The expressions for Tg and Tg have been obtained from the zeroth-order
solution and have been evaluated numerically for several sets of values of the
parameters R and C. It is clear that expression (4.3) is the zeroth-order
skin friction at the walls and that its numerical values correspond physically to
the behavior of the flow at the walls in the case of a channel whose walls are
flat (generalized Couette flow).

5. PRESSURE-DROP.

We refer to (2.5) and (2.6) and obtain the fluid pressure
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- = || 2p
p (x,y) J dp [[Bx dx + 3y dy] ,

(5.1)
or p (x,y) -L = ie [éx éikx) Z(y)]
where L 1is an arbitrary constant and
2(y) = 2O - BT - 1k (ugd? = ugh)
Equation (5.1) can be written as
iseikx
p=p (x,-1) - p (x,1) = =~ [Z (-1) -z (l)}
(5.2)
or = Eelkx lq] e18 ,

where P has been referred to as the pressure drop since it indicates the dif-
ference in the pressure on the wavy walls, with x fixed. The amplitude ]Ql
and the phase B were evaluated numerically for several sets of values of the
dimensionless parameters entering the problem and are presented in Figures 4, 7,
and 10. In what follows, we record the qualitative differences in the behavior
of the flow characteristics that show clearly the effects of the wavy walls of
the channels.

6. RESULTS AND DISCUSSION.

As mentioned in the introduction, the analytical solution of |F1|,

¢i (i =1,2), IQI, and B are compared with the numerical ones in Figure 1.
From Figure 1 it is evident that the analytical and numerical solutions are in
good agreement, for small and moderate Reynolds numbers. However, at high Rey-
nolds numbers, the analytical solution differs very much from the numerical solu-
tion. In Figures 2-10 only the numerical solution results for the amplitudes

and phases (arising from wall waviness) are plotted for various values of R, C,
and k.

Figure 2 shows the behavior of |F and ¢1 at various Reynolds numbers

!
in the four different channels considered. Similar results for (|F2|, ¢,) and
(IQ], B) are presented in Figures 3 and 4, respectively. From Figure 2, it

follows that the amplitude lFll increases with R: physically it means that
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the amplitude increases when the wall moves faster. But the phase ¢, increases
with R when 6 is 7/2 and decreases when 6 is 37/2. On a keen perusal
into Figures 2, 3, and 4, we arrive at the conclusion that the features of

((le’ |Q|) and (¢2,B) resemble those of IF and ¢1’ respectively, in all

1
the channels considered; the only exception is that B decreases with R for
all values of 6, However, the amplitudes lFll, |F2|, ,Ql and the phases ¢1,
¢2, B8 are quantitatively different.

Figure 5 describes the behavior of the amplitude |F1| and the phase ¢,
for different values of C (i.e., for flows with adverse and favorable pressure
gradients). From this figure we observe that IFll is minimum when C is O

but |F increases with an increase in ICI. However, ¢1 is minimum when 6

|
is 7m/2 and is maximum when C is 0. On comparing figures 5, 6 and 7, we note
that the features of (|F2|, |Ql) and (¢2, B) resemble qualitatively those of

IF and ¢,, with the exception that B is minimum when 6 is O and maxi-

5!
mum when 6 is T,

Figure 8 depicts the behavior of |F and ¢1 with changes in the wave-

|
number. From this firgure, it is clear that the effect of wavenumber on the ampli-

tude |F is to increase it considerably and this is true in all the channels

N
considered, but the phase ¢1 increases when 6 is 7/2 and decreases when 6
is 3m/2. The observation from Figures 9 and 10 shows that the effect of wave-

number is to increase the amplitudes |F and ]Ql. However, the phase B8

2l
increases (with an increase in k) in all the channels and ¢, increases when

6 dis 37/2 and decreases when 6 is 7/2. From all these figures, it is clear
that the amplitudes and the phases are very much affected (in all the channels)
by the parameters R, C, and k, an indication that the skin friction (at both
walls) and the pressure drop are significantly affected not only by the usual
parameters R and C but also by the parameters k and 6. Hence, it is

evident that the wall waviness does affect the skin friction and the pressure

drops significantly.
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7. CONCLUSION.

The amplitudes |F1|’ |F and ]QI are enhanced significantly with an

A"
increase in either the Reynolds number R or the pressure gradient parameter C

or the wavenumber k, in almost all the channels considered. Of all the para-
meters, the Reynolds number and the pressure-gradient parameter have the strong-
est influences on the amplitudes. However, the phases ¢, ¢2, and B were

found to have different trends in different channels, depending on the parameters
R, C and k; they are very much affected by the parameters R and C. Finally,
it may be concluded that the present analysis is capable of providing us with

information relating to the effects of wall-waviness on friction and pressure drop

for long as well as short waves at small, moderate, and large Reynolds numbers.
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