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ABSTRACT. This paper presents some theoretical results concerning an extrapo-
lation method, based on a completely consistent linear stationary iterative
method of first Jegree, for the numerical solutior of the linear system Au=b.
The main purpose of the paper is to find ranges for the extrapolation parame-
ter, such that the extrapolation method converges independently of whether
the original iterative method is convergent or not.
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1. INTRODUCTION.

For the numerical solution of the linear system of equations
Au=b, (1.1)
where A is a given nonsingular real nxn matrix, b is a given real vector and
u is the solution - vector, which is to be determined, various iterative me-
thods can be applied. Among them, we consider a completely consistent linear
stationary iterative method of first degree (see e.g. [l])definfd by

+:
u(m ):Gu(m)+k, m=0,1,2,... , (1.2)

where G is some real matrix, which is called the iteration matrix of the me-

thod (1.2), k is some real vector and u(O) is an arbitrary initial approxi-
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mation to the solution u of (1.1). Moreover, we have

k=(I-G)A"'b  and  det(I-G)#0 . (1.3)
In order to accelerate the rates of convergence of methods like (1.2), vari-
ous procedures and modifications are used. One of them is the extrapolation
method based on (1.2). This is defined by

(m) (m)

u(m+t) +X) + (1m)u'™ , m=0,1,2,... (1.4)

= w(Gu
where w is a real parameter ( #0) called the extrapolation parameter. We no-
te here, that the idea of using an extrapolation parameter, w # 0, appeared

long ago in the stationary Richardson method [2], based on (1.1), defined by
) (m) _

u(m+1) - u(m) -b) = (I+wA)u

+uw(an™ wb s M=0,1,2,0..
which follows from (1.4) as a special case if G = I+A.

For w=1, method (1.4) coincides with (1.2). The iteration matrix of method
(1.4) is

Gm=wG+(l-u))I R (1.5)

where I is the identity matrix of order n. Thus, (1.4) takes the form

u(m+1) =G u(m) +k’

" , m=0,1,2,... , (1.6)

where k’= wk. Since

(1-6,)A b= w(I-6)A" 'b=wk =k~
and
det(I-G,) = det(w(I-G)) = w"det(I-G) #0 ,
it follows that the extrapolation method is completely consistent with the sy-
stem (1.1).
The problem which now arises is how the parameter w must be chosen in order
to have p(Gw)< p(G) with p(Gw) <1, where p(G), p(Gw) are the spectral radii
of the matrices G and Gw respectively.
As is known, the problem of finding a theoretical optimum value for w, say
mopt’ such that

p(Gw )=minp(G )< p(G) and p(G )<1,
opt w w Yopt

has been solved in some special cases, but not in the general case. It is
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easy to show (see e.g. [3]) that, if the matrix G has real eigenvalues uj
such that

umiujiuM<l s (1.7)
then p(Gw) <1 iff 0<w< 2/(1-pm) and the spectral radius p(Gw) is minimized

if we take w :wopt = 2/(2-(um+pM)). Moreover, we have

p(Gm )= (uM-um)/(2—(uM+um)) <1.
opt

Therefore, in this case, the optimum extrapolation method is always conver-
gent, although p(G) is not necessarily less than one. It must be noted that
(1.7) holds if G is the matrix B of the Jacobi method, corresponding to a po-
sitive definite matrix A of the original system. Then, the optimum JOR me-
thod [1] converges. We also note, that if G has real eigenvalues such that
1 <um_§uj Shyo then D(Gw) <1 iff 2/(1—1.|M) <w< 0. Moreover, wopt = 2/(2—(um+uM))

and p(Gw )= (uM-um)/(umﬂJM‘?) <1.
opt

In a recent work [4], a geometrical approach of the general case with p(G) <1
is discussed, where the construction of a capturing circle of the spectrum of
G is required.

In the next section we study extrapolation method (1.6) in order to find ran-

ges for w in which convergence is achieved in the general case.

2. CONVERGENCE THEORY.

First we observe that, if for some norm of G we have ||G||<1, then for
0<w<1 we obtain

Il GwH = ||wG + (1-w)I|| < w]|G]] + 1-w <wtl-w=1;

that is, the extrapolation method converges. We assume now that,

i0,
u. =p.e ], j=1(1)n , (2.1)
J J
are the eigenvalues of G, where Oj_pmj_pjg_pM=p(G), i= (-l)%, luj[ =04 and
pm=minp. > Py Imaxp. . In the sequel we omit the subscript j in pj, ej sin-
3 .

ce no confusion can be made; that is, from now on p,0 are used in place of
pj, ﬁj respectively. Evidently, the eigenvalues of Gw are given by

>‘j =wuj+1-w , j=1(1)n . (2.2)
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Therefore, for the spectral radius of Gw’ we have that

p(G) =max]wuj+l—m| fmax{|wuj |+]1-0|} = |1-0|+|w|max|u.| =
J ] ) (2.3)

= [1-w|+|w|p(B).
We examine now the convergence of method (1.6) in relation to that of method

(1.2). We discuss four basic cases, the first two of which are rather trivi-

al.

Case I: p =0. Here we assume that y, =0 for all j. Then I)\jl <1 iff 0<w<2,

It is obvious that the optimum valu~ of w, which minimizes p(Gw), is w___ =1,

opt
since p(G,) = 0.

Case II: p=1. Now we have that |uj[ =1 for all j. Then, [)\j| <1 iff
2w(w=-1)(l-cosB) < 0. If cose;fl; that is, if uj #1 for all j, then for 0<w<1
we have p(Gw) <1l. If uj =1 for some j, then method (1.6) does not converge.
In the case where uj #1 for all j, we seek the optimum value of we€(0,1)
which minimizes p(G,). Suppose that

-1<x, <x<x,<1, (2.4)
where x = cosf = Re uj. It is apparent that

mgxlkj |2 = 1-20(1-w)(1-x,)
J

and

1
min{max|A,|} = (min[1-20(1-0)(1-x, )] )2 .
w ] ] w

By letting f(w) = 1-2w(1-w)(1-x,), we easily get that min fw) = £(%) = (1+x,)/2,
which implies that

b
i = = = D/2)%.
m;np(Gm)_p(Gmopt) p(G;ﬁ) ((l+m]§xReuj)/ )

Remark If max Re uj =-1 (which is valid if uj = -1 for all j), then we have

J
p(Ggi) = 0.
: = <1.
Case III: 0<pm§_pgpM p(G) <1
In this case ‘)‘jl <1 iff
w2(p2+1-2pcosh) +2w(pcosB-1) <0 . (2.5)
Assuming first that w<0, (2.5) is equivalent to

w(p2+1-2pcosbh) +2(pcosb-1) >0 . (2.6)
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Sirce pz+l-29cose_>_pz+l-2p =(1-p)?>>0 and 1-pcos8>1-p >0, from (2.6) we ob-
tain w>2(l-pcosh)/(p2+1-2pcosh) > 0, which contradicts to the hypothesis. If
now w >0, then (2.5) is equivalent to

w(p?+1-2pcosB)+2(pcosb-1) <0 , (2.7)
which gives 0<w<2(1-pcosB)/(p®+1-2pcosb) Zg(p,B) for all My or equivalen-
tly

0<w<ming(p,6)

"5

and the following theorem has been proved.
Theorem 2.1 If the method (1.2) converges (p(G) <1), then the method (1.6)

converges (p(Gw) <1) iff 0<w<min{2(1-pcosB)/(p%+1-2pcosb)}.

"3

Remark It can be proved that g(p,6)>1 for p<1.

We now show that mig g(p,8) =2/(1+p(G)) for all p,f such that
(<5}

0<p <p<py=p(G)<1l and 0<B<2n.
We note that 3g/d(cosb) = o(1-p2)/(p%+1-2pcosB)? > 0 from which it follows that

min g(p,0) = g(p,cos6=-1)=g(p,06=1)=2/(1l+p)
cosf

and consequently

mig g(p,9) =min(2/(1+p)) = 2/(1tp)) = 2/(1+p(G)) .
[ P

Since, 2/(14+p(G)) <ming(p,0) (the equality holds if for some j we have

"3
uy =-p(G)), then by virtue of Theorem 2.1 the validity of the following two
statements is easily established.
Corollary 2.2 If p(G) <1, then p(Gw) <1 for all 0<w<2/(1+p(G)) <2.
Corollary 2.3 If the matrix G has at least one negative eigenvalue u, such
that |u| =p(G) <1, then p(G) <1 iff 0<w<2/(1+p(G)).

Proof: This follows from Theorem 2.1 since, in this case, we have

min g(p,6) =ming(p,6) =g(p(G),n) =2/(1+p(G)) .
uj p,e

Theorem 2.4 If p(G)<1, then p(Gw) <1 for all 0<w< 2(1—xm)/(02(G)+1-2xm),
where xm =minx, x=Re uj = pcosf

Proof: According to Theorem 2.1, it is sufficient to show that
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2/( 1+p(G))i?(l-xm)/(pz(G)'Pl-?xm)imin g(p,8) . (2.8)
"

J
Evidently, we have -l<xm§x<l and -p(G)< xm<p(G). Hence, p2(G)+1-2x
— m— m
> p2(G)+1-2p(G) = (1-p(G))? > 0. Thus, the first inequality in (2.8) is equiva-
lent to

(p(G)+xm)(p(G)-1)50 . (2.9)

Since 1-p(G) >0 and p(G)+xm_>_0, we conclude that (2.9) holds. To prove the
second inequality in (2.8), it is sufficient to show that 2(l-xm)/(pz(G)+1-
—2xm)52(l-pcose)/(p2+l-2pcose) for all ”j =peie , or equivalently, since
pcosO = x, that

p2(l-xm)—pz(G)(l-x)+xm-x§0. (2.10)

The inequality (2.10) can be written as follows

(1-x)(1-p%(€)) < (1-x_)(1-p%)

The inequality above holds because of the relationships 0 < l-x_<_l-xm and
0<1-p%(G) <1-p% .

Corollary 2.5 If the iteration matrix G of the method (1.2), has eigenvalu-
es uj such that, Re ujgo for all j and p(G) <1, then p(Gm) <1 for all
0<w<2/(1+p%(G)).

: < <p< = .
Case IV: 0<p <p<p, and p <1<p, p(G)

It is also assumed, in this case, that “j #1, j=1(1)n. Consider now only

those eigenvalues uy of G with 1< Plpy= p(G). Then l)\jl <1 iff

w?(p?+1-2pcosh)+2w(pcosb-1) < 0. (2.11)
We distinguish two cases according to whether w is less or greater than zero.
1. Let w<O0. Since pz+1—2pcose_>_(1-p)2 >0, by virtue of (2.11) we have
w > 2(1-pcosB)/(p2+1-2pcosh). In order that negative values for w exist, we
must have 1l-pcos6f < 0; Namely, the real parts of the eigenvalues, which we con-
sider, must be > 1. Since, according to Cases I, II , and II for the other ei-
genvalues of G with inmip <1, there is no convergence for w <0, we conclu-

de that w can not take negative values.

2. Now let w>0. Then (2.11) gives w < 2(1-pcosB)/(p2+1-2pcosB). In order

that positive values for w exist, we must have pcosf <1 or Re uj <1 for tho-
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se eigenvalues uj with p >1. Considering now all the eigenvalues of G and ta-
king into account the results of Cases I, II , and I, together with the ob-
servation that 2(1-pcosf)/(p2+1-2pcosB) <1 for p>1, the theorem below fol-
lows.

Theorem 2.6 If p(G)>1 and Re uj <1, j=1(1)n, then p(Gw) <1 iff O0<uw

<min g(p,0) , where g(p,0) = 2(1-pcos®)/(p2+1-2pcosb).
u.
J

Theorem 2.7 If p(G)>1 and Re ujio, then p(Gw) <1 for all 0<w<2/(1+p3(G)).
Proof: We prove that

2/(1+p?(G)) < 2(1-pcos®)/(p?+1-2pcos) for all uy - (2.12)
For this, because of the remark in Theorem 2.1, it is sufficient to show
(2.12) for p>1 and pcos® <0. We observe that (2.12) is equivalent to

p2-1< (1-pcosB) (p2(G)-1) ,
which holds because of 0<p?-1<p2(G)-1 and 1< 1-pcosf.

The following Theorem is an immediate result of Case IV.

Theorem 2.8 If G has eigenvalues uj with p>1, j=1(1)n, then the following
statements are valid.

1. If Reuj >1, j=1(1)n, then p(Gw) <1 iff max g(p,0)<w<o0.
M.
]
2. If Reuj <1, j=1(1)n, then p(Gm) <1 iff 0<w<ming(p,06),
H.
]
where g(p,8) = 2(1-pcosb)/(p2+1-2pcosh).
Corollary 2.9 If G has eigenvalues “j with Re uj >1,3j=1(1)n, then p(Gw) <1

for all 2/(1-p(G))<w<o0.
Proof: The conclusion follows, in view of the Theorem 2.8, since we have

2(1-pcosB)/(p2+1-2pcosh) < 2/(1-p(G)) for all uj; that is,
max g(p,0) < 2/(1-p(G)).

"3

If the method (1.2) is the Jacobi method (J) with iteration matrix B,
then (1.€) is the extrapolation Jacobi method (JOR or EJ) with iteration ma-
trix Bw (see e.g. [l] ). For these methods, by applying the previous results,
we have.

Theorem 2.10 If all the eigenvalues of B are real with moduli >1, then the

JOR method does not converge.
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Proof: Since tr(B) =0, the matrix B must have positive and negative eigenva-
lues with moduli > 1. The proof now follows by theorem 2.8.

Theorem 2.11 If the Jacobi method (J) converges (p(B) < 1), then p(Bw) <1
for all 0<w<2/(1+p(B)) < 2.

The previous Theorem is more general than Theorem 1.1 [l, pP. 107] . We also
note that some of the results of this section are given in [5] in a different
way.

In the sequel, we consider the case where the matrix G of the method (1.2)
has eigenvalues uj with 0 #p(G) <1 and we seek to find values for w such that

o(Gw)so(G).

For this, we require |)\j|i|uj[ to hold for all j, where A. are the eigenva-

lues of G,» given by (2.2). Because of (2.1), we conclude that I}\jlihijl iff

Flw) =w?(p?+1-2pcosh)+2uw(pcosd-1)+1-p2 < 0. (2.13)
Since, |:>2+l—2p>cosez(l-p)2 >0 and the discriminant of F(w) given by
D=u4p2(pcosB)? >0, it follows that (2.13) holds iff min(w,,w,) <w<max(w,,w,),
where w, ,w, are the two roots of F(w) given by

w; =1, w,=(1-p%)/(p%+1-2pcosb). (2.14)

We note that w, >1 if p2 < pcosf, while w, <1 if p2 > pcosh.

Thus, the following Theorem has been proved.
Theorem 2.12 If G has eigenvalues uj with 0 #p(G) <1, then the following
statements are valid.

1. If p2<Re M for all j, then p(G ) <p(G) for all

1<w<min{(1-p?)/(p%+1-2Re M )}.

5

2. If p2>Re “j for all j, then p(Gw) <p(G) for all

max{(1-p2)/(p?+1-2Re u; Y<w<1.

3

Remark The restriction p? < Re ”j implies that p <1 and thus p(G) <1, while
this is not true if p? >Re uj .

Letting uj = x+ily, where x =Re “j and y = Im uj , we have p? =x2+y2. Then the
following lemma, which can be easily shown, gives ranges for x and y such

that either p2<x or p2>x and p<1.
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Lemma 2.13
1. p2 <x
iff |y| <1/2 and (1-k)/2 <x < (1+k)/2, where k :(1-4y2)%.
2. p2>x and p <1 iff anyone of the following statements holds
i) -1<x<0 and |y[<(l-x2)lﬁ
ii) -1<y<-1/2 or 1/2<y<1 and 0<x< (l—yz)lﬁ
iii) |y| <1/2 and (1+k)/2 <x <(1-y2)LE or 0<x<(1-k)/2, where k :(l-4y2)%.
As an application of Theorem 2.12, we consider the following examples.

1. Let the matrix G have eigenvalues

satisfying p2 < Re uj > 3=1,2,3,4.
Therefore

(G ) <p(G) for all uJG(l,min{(l-pz)/(pz+l—2Reuj)}) =(1,2.4483).
H.
3
It must be noted that p(G)=0.7120, while

min p(G,) = p(G, 4,) =0.6.
we(1,2.4483)

2. Suppose that G has eigenvalues

2 1.3, 1 3,
MiTogs M7 ogtpls wgEogogd
satisfying p? >Reu:.| , P<1, j=1,2,3.

Hence, we have

p(G ) <p(G) for all u)e(max{(l—pz)/(p2+l-2Repj)},l)E (0.2, 1).
3
Moreover, we find that p(G)= 0.9014 and
min p(Gw) = p(G,, /“5) =0.4472.
we(0.2,1)

3. CONCLUDING REMARKS

From the previous convergence results of section 2, it is clear, that
in order to be possible to find ranges for w such that p(G,) <1, either
Repu <1 or Re ”j >1 must hold for all the eigenvalues uj, j=1(1)n of G.

]
For practical purposecand in a case which is not a special one, the choice
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of w + is made computationally, since, the range for w for which p(Gw) <1
op

is known.

Finally, we note that the Accelerated Overrelaxation (AOR) method stu-
died in [6], which in turn was an extension of the corresponding one intro-
duced by Hadjidimos [7], is an extrapolation of an obvious extension of the
well known Successive Overrelaxation method (SOR) (see e.g. [8], [l]). Also,
in a paper of Niethammer [9], an extrapolation of the SOR is studied. Thus,
all the theory developed in this paper could be applied to the extrapolation

method based on SOR in order to obtain better rates of convergence.
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