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ABSTRACT. The Subgraph polynomial fo a graph pair (G,H), where H € G, is defined.
By assigning particular weights to the variables, it is shown that this polynomial
reduces to the dichromatic polynomial of G. This idea of a graph pair leads to a
dual generalization of the dichromatic polynomial.
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1. INTRODUCTION.

The graphs considered here will be finite and undirected. Let G be such a
graph, and H a subgraph of G. We define a graph pair to be an ordered pair (G,H).
Let K be a spanning subgraph (or cover) of G containing H. With every component
o of K, let us associate a weight LA and with K, let us associate the weight

w(X) =1 LA
where the product is taken over all the component of K. Then the subgraph poly-
nomial of the graph pair (G,H) is
S((G,H) :w) =2 w(K),
where the summation is taken over all the covers K of G such that HEKCS G, and w

is a vector of indetermainates associated with the given weights.

We will define the dichromatic polynomial, dichromate and chromatic

polynomials of graph pairs and show that with approximately chosen weights,
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these polynomials reduce to their analogous well known counterparts.

2. BASIC RESULTS

We will say that an edge e of G is incorporated in G, if it is distinguished
in some way and required to belong to every cover K that we consider. An
incorporated graph will be a graph whose edge set consists only of incorporated
edges. Clearly then, H will be an incorporated graph when we consider the graph
pair (G,H). If the edge set of H is empty, we will denote the graph pair (G,H)
by G/H. Of course, if H is the null graph (G,H) is essentially G itself.

By putting the covers K into two classes according to whether or not they
contain a specified unincorporated edge, we obtain the following theorem.

THEOREM 1. (The Fundamental Theorem). Let G be a graph containing
an unincorporated edge e. Let G~ be the graph obtained from G by
deleting e, and H* the graph obtained by adding the edge e to
H - a subgraph of G; i.e. E(H*) = E(H) U {e}. Then

S((G,H) ;W) = S((G”,H);w) + S((G,H*);w).

(Notice that Theorem 1 further generalizes the analogous result for
F-polynomials given in Farrell [1]). By applying the theorem recursively, we
can obtain an algorithm for finding subgraph polynomials of graph pairs. The
incorporating process will depend on the criteria used for assigning weights to
the covers. The implied algorithm will be called the fundamental algorithm for
subgraph polynomials of graph pairs, or for brevity, the reduction process.

Let G be a graph consisting of two components G, and G,. Let H be a subgraph
of G such that

(1) EMNEG) =E (H)
and (i1) E(MH) N E(,) =E (H,),
where Hl and H2 are subgraphs of H. Then every cover of G can be broken up into
a cover of G, containing H, and cover of G, containing H,. Conversely, every
cover of Gl containing H, can be combined with any cover of G, containing H,,
to yield a cover of G. By generalizing this discussion we can prove the following

theorem.

THEOREM 2. If G consists of components Gl, Gz’ .. » G, then
n
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n

where H, are respectively subgraphs of Gi such that E(H) N E(Gi) = E(Hi)

i
(i=1, 2,..., n).

(Notice that it is possible to have (Gi’Hi) isomorphic as a graph pair to
(Gj’Hj)’ while S((Gi,Hi);g) + S((Gj,Hj);y), since our definition allows the

possibility that isomorphic components of G be given different weights).

3. APPLICATION TO DICHROMATIC POLYNOMIALS

Let us put w = (wij :1i>1, j > 0), where i and j are the number of nodes

and edges respectively in the component. Then the subgraph polynomial of (G,H)

can be written as
n

Iw, 13 (1)

S((G,H);w) = P

z
HE KEC G

where n,, is the number of components of K that contain i nodes and j edges.

By putting wij= X y3_1+1, we get the polynomial
n,,
Q((G,B);x,y) = I I (xyd 1D J
HC KC G
= 3 %€ ya—b+c ,
Hec KC G

where ¢ 'Z. nij is the number of components in K,

1,3

a= 1§j j nij is the number of edges in K,

and b = izj i nij is the number of nodes in K.
bl

The polynomial of Q((G,H) ;w) will be called the dichromatic polynomial of
the graph pair (G,H), or the Tutte polynomial of (G,H). It is clear that if
H is empty, the polynomial Q(G/H; x,y) is the dichromatic polynomial of G as
defined in Tutte [2]. Thus we have the following result.

THEOREM 3. The polynomial obtained from S(G/H;w) by putting
j-i+l

w = M i -
w (wij i>1, j>0), with wij =xy » where i and j are the number"

of nodes and edges respectively in the component, is the dichromatic polynomial

of G.
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The polynomial Q((G,H);x,y) gives a dual generalization of the
dichromatic polynomial of a graph, since

(1) the polynomial can be taken relative to a fixed subgraph and

(i1) different weights can be attached to subgraphs.

Let us put T [ (x-1) (y—l)]l—i(y-l)j in Equation (1), and let p be the
number of nodes in G. Then we get the polynomial

n
R((GH);x,y) = & 1 {[(x-1)(y-1)] L y-1pd) 3
HC KC G

a-b+c

2(x-1)"? (x-1)¢ (y-1)
b+c

GDP I (x-1)° -1
= (x=-17? QUGB 3x-1, y-1). )
We define R((G,H):x,y) to be the dichromate of the graph pair (G,H).
Equation (2) shows an analogous relation between the dichromate and dichromatic
polynomials of a graph pair.
The following result is clear from the definition of the dichromate of a

graph given in [2].

THEOREM 4. The polynomial obtained from S(G/H;w) by putting

w=(w :1i>1, j >0), with wij = [(x-l)(y-l)]l—i(y-l)j, where i and j are the

ij

number of nodes and edges respectively in the component, is the dichromate of G.

4. APPLICATION TO CHROMATIC POLYNOMIALS

Let us put w = (wi: i > 0), where i is the number of edges in the component.
Then the subgraph polynomial of (G,H) (where G is a graph with p nodes and
q edges) becomes
S(GH);W = 5 I a (Lo, d1seees 1) w " tevw 9, (3)
mel (i) © o 0 a

where am(iyil,u.,iq) is the number of covers which contain H, and have m

components consisting of i0 isolated nodes, i1 edges, i, components with 2 edges
q
etc., and the second summation is taken over all solutions of I i =m.
r
r=0

Specifically, if we put w, = (-l)lk, then Equation (3) yields the following
polynomial.

P n.m
P((G,H): ) = 5§ ¢ a(d,,i,,..., 1) (-1)"a, (4)
m=1 (1) ™ ° q
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jgl j ij. Since all components with the same number of edges will

receive the same weight, we can replace a, C P ) iq) by am(n) - the

where n =

number of covers of G containing m components and n edges. Thus Equation (4)

becomes
P q n n
P((G,H;A) = Z [ (-1) a (m] A
m=1 n=0 m
P m
= mél dmx ’
where dm = E -n" am(n). The polynomial P((G,H);\) will be called the

n=0
chromatic polynomial of the graph pair (G,H).
The following result is clear from the material above, and the definition

of the chromatic polynomial of a graph given in Whitney [3].

THEOREM 5. The polynomial obtained from S(G/H;w) by putting

w= (v :1i2>0), withw, = (-1)*A, where i is the number of edges in the

i
component, is the chromatic polynomial of G.

By establishing a relation between x yJ_1+1 and (—l)Jk, we obtain the
following result.

THEOREM 6. P((G,H);A) = (-l)pQ((G,H);-A,-l) = AP R((G,H);1-1,0).
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