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ABSTRACT. A subgroup of the linear translation complement of a translation plane is
geometrically irreducible if it has no invariant lines or subplanes. A similar defi-
nition can be given for '"geometrically primitive". If a group is geometrically pri-
mitive and solvable then it is fixed point free or metacyclic or has a normal subgroup
of order w2a+b where w® divides the dimension of the vector space. Similar conditions
hold for solvable normal subgroups of geometrically primitive nonsolvable groups.

When the dimension of the vector space is small there are restrictions on the group
which might possibly be in the translation complement. We look at the situation for

certain orders of the plane.
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1. INTRODUCTION.

A translation plane 7 of order qd with kernel GF(q) = F can be represented as
follows: Let V be a vector space of dimension 2d over F. A spread defined on V is a
class of d-dimensional subspaces (called the components of the spread) such that each
nonzero element of V belongs to exactly one component. The points of 7 are the ele-
ments of V, the lines of m are the components of the spread and their translates. The
group of nonsingular semi-linear transformations of V which permute the components is

called the translation complement of m. The subgroup consisting of linear transform-



712 T. G. OSTROM

ations is the linear translation complement.

We are interested in finding information as to which abstract groups can act
as subgroups of the linear translation complement; what the nature of the action is
and also what the nature of the plane is. The action is fully as important as the
(abstract) group.

A particularly simple kind of action is for the group to be fixed-point-free
(f.p.f.). A linear group is fixed point free if no nontrivial element fixes any
nonzero vector. The translations and a fixed-point-free group generate a Frobenius
group with the f.p.f. group as Frobenius complement. A normal subgroup G1 of a
non-f.p.f. group is a minimal non-f.p.f. group with respect to G if it is non-f.p.f.
but every normal subgroup of G properly contained in G1 is f.p.f. It can happen
that a minimal non-f.p.f. group with respect to G is also a minimal normal non-
solvable subgroup. This situation has been analyzed in previous papers and some of
the results are given in (2.4) below.

In (2.6) we show that if G is solvable then, subject to certain irreducibility
requirements at least one of the following holds: (1) G is f.p.f. (2) G is meta-
cyclic (3) G has a normal subgroup W which is a w-group of order wza"»b for some a
and b and v divides the‘dimension 2d of the vector space. The nature of G and its
action is much easier to analyze when case (3) does not occur. A similar situation
occurs in the nonsolvable case. See (2.3) and (2.4).

In (2.7), (2.8) and (2.9) we develop some circumstances under which case (3)
cannot occur. In Section-3 we develop some lower bounds on the value of d if the
plane is to admit SL(2,u) or PSL(2,u) for a given u relatively prime to q. (Recall
that the plane is defined on a vector space of dimension 2d over GF(q)). This is
a slight sharpening of some standard results. (See Harris and Hering [2].) How-
ever this sharper result is useful in looking at particular cases.

We confess to a poor background in group representation theory. All of this
is representation theory in some sense and may be implied by results in classical
representation theory. We would be pleased if some expert could show us how to get

our results from standard representation theory if this could be done in substan-

-tially less space than we have used to get them directly by fairly elementary means.
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What we seem to be ending up with are results which show that when d and the
characteristic of GF(q) are suitably restricted, the number of groups to be con-
sidered is reasonably small.

In Section 4 we illustrate how this works for some specific values of d with q
odd or even.

DEFINITION 1.1. If G is a group of nonsingular transformations, V(G) denotes
the vector subspace consisting of all vectors fixed by G. If 0 is an element of G,
V(o) means the same as V(<0>).

DEFINITION 1.2. The prime u is a q-primitive divisor of qd-l if u divides
qd—l but u does not divide qa—l for 0 < a < d.

NOTATION 1.3. If G is a group, Z(G) denotes the center of G. Whenever we are
considering subgroups of a given group G, C(H) will denote the centralizer of H
in G. If G0 is another subgroup of G, the centralizer of H in G0 will be denoted
by Goﬂ C(H).

We shall make repeated use of the fact that the Sylow subgroups of a
Frobenius complement (and hence of an f.p.f. group) are cyclic or generalized
quaternion.

This research was supported by the National Science Foundation.

2. SOLVABLE NON-F.P.F. GROUPS.

DEFINITION 2.1. Let G be a subgroup of the linear translation complement of

a translation plane m. Then G will be said to be geometrically irreducible either

if G is irreducible as a group of linear transformations or if none of the
invariant vector subspaces is a proper subplane of T or is a component of the
spread defining m. If G is geometrically irreducible, G will be said to be geo-
metrically primitive if m (as a vector space) cannot be written as a direct sum of
proper subspaces which are subplanes or components of the spread and are permuted
by G.

REMARK. Recall that if o is a nontrivial member of the linear translation
complement then the subspace V(0) pointwise fixed by 0 is either a proper subplane
or is a (not necessarily proper) subspace of a component. A subgroup G of the

linear translation complement is not geometrically irreducible if G has a normal
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subgroup H# 1 such that V(H) is nontrivial.

LEMMA 2.2. 1If G is geometrically primitive then G every normal elementary
abelian subgroup is cyclic of prime order.

PROOF. Suppose that G W where W is an elementary abelian w-group of order
wa, where a>1 and w is prime. Then W cannot be fixed point free and for some
element 0 € W, V(0) is nontrivial. Furthermore V(o) is invariant under W.

Let V be a minimal invariant G-space. By Clifford's Theorem V=V1@...® Vk

where Vl, V2, etc. are homogeneous W-spaces--i.e. the minimal W-spaces in Vi are
isomorphic as W-modules. If an element 0 of W is non-f.p.f. on Vi’ it fixes a

minimal W-space pointwise. Hence every minimal W-space in V, is pointwise fixed

i

by 0 so V, itself is pointwise fixed by 0. Clifford's Theorem also says that the

i
Vi are subspaces of imprimitivity for G.

Let W, be the subgroup of W which fixes V, pointwise. Let V:, V;,..., Vi be

distinct images of V(Wl) under G. Note that V(Wl) need not be a subspace of V.

* x  _ yk * X _5 Sk _
Suppose that vi+ Vg otV =V P V3 ®...6V _, =V and that VﬂVk is non

trivial. Note that V:, V;

by some conjugate of W

, etc. are invariant under W and each is pointwise fixed

1 It follows that V;f]V; is nontrivial for some

i=1, 2,...,h-1. Thus there are two conjugates, say AIIWIAI and A;lwlkz both
fixing v§r1v; pointwise. Hence there is some homogeneous W-space Vj which is

pointwise fixed by AIIWIAI and Aglwllz. But the subgroup of W which fixes Vj

-1 - -1 —
1 Hence Al wlxl Az wlkz so that Vk Vi' It

follows that T is a direct sum of V(Wl) and its distinct images under G contrary

pointwise is some conjugate of W

to the condition that G is geometrically primitive.
THEOREM 2.3. Let G be a nonsolvable subgroup of the linear translation

complement of a finite translation plane m. Let Go be a minimal nonsolvable normal

subgroup of G and let H be a maximal normal subgroup of G included in Go but not

equal to G Then either H is fixed point free or G, contains a subgroup W which

0° 0
is minimal nonfixed point free with respect to G. Furthermore W is a w-group for

some prime w and w/wo is elementary abelian, where WO is the maximal normal sub-

group of G included in W but not equal to W.
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THEOREM 2.4. In (2.3) if H is fixed point free then H= Z(GO). If H is not
fixed point free so that W exists, then either W is elementary abelian or
IW/W0| = w28 where w® divides the dimension of the vector space on which 7 is
defined and the group of automorphisms of w/wo induced by conjugation with respect
to G is isomorphic to a subgroup of Sp(2a,w).

The above two theorems are contained in Lemma (2.2) and (2.8) of our paper on
planes of odd order and dimension [9] and Lemma (2.5) of our paper on planes of
even order in which the dimension has one odd factor [10]. The key to (2.4) above
is Huppert's Satz 13.7 Chapter III in his book [5].

We now return to the solvable case

LEMMA 2.5. Let G be a solvable group of linear transformations acting on a
vector space V of dimension 2d over GF(q). Then at least one of the following
holds: (1) G is fixed point free; (2) G is metacyclic; (3) G has a normal sub-
group W with the properties of W in (2.3) and Wo is cyclic; (4) G has a normal sub-
group Q isomorphic to the quaternion group of order 8 and if G1 is a minimal
non-f.p.f. group with respect to G then either the non-f.p.f. elements in G1 have
order 2 or 3 or G1 centralizes Q.

PROOF. Suppose that G is not fixed point free. Let ¥ be a maximal normal
subgroup of G. If Y% is not cyclic then ¥ is not f.p.f. and ¥ contains a sub-
group W which is minimal non-f.p.f. group with respect to G.

By Corollary (3.3) of [8] if W is a solvable minimal non-f.p.f. group with

respect to G and W, is the maximal normal subgroup #W of G included in G, then

0
W/W0 is elementary abelian.

Hence we have conclusion (3) if 9 is not cyclic. Suppose that g is cyclic.

If 9 is its own centralizer in G, then G/ ¢ is cyclic. In this case we have
conclusion (2) since the outer automorphism group of a cyclic group is cyclic.

If 9 is not its own centralizer in G, then the centralizer of g in G contains

a minimal normal nonabelian subgroup W* of G. The conditions of Huppert's

Hilfsatz I are satisfied [4] and the conclusions include the following:
1. W* has prime power order, say wa.

2. W* mod its center is elementary abelian.
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3. If w>2 and 0 €W then 0" =1.

4. If w=2 and 0 €W then 04=1.
Thus if w# 2, we may take W*=W and we have our conclusion (3). We also have
conclusion (3) if w=2 and W* is not f.p.f. Otherwise w=2, W* is f.p.f. so W* is
generalized quaternion. But if W* has exponent 4 this implies that W* is quaternion
of order 8. Let us change our notation and let Q be this normal quaternion group.

Suppose that G has a minimal non-f.p.f. group G, which does not centralize Q.

1
Since Gl must be generated by its non-f.p.f. elements, it follows that G, contains

1
an element which induces a nontrivial automorphism on Q by conjugation. But the
outer automorphism group of Q is isomorphic to SA so its order must divide 24. This
gives us case (4) of the Lemma.

THEOREM 2.6. Let T be a translation plane of order qd and kernel GF(q). Let
G be a solvable subgroup of the linear translation complement which is geometrically
irreducible and geometrically primitive. Then at least one of the following holds:
(1) G is fixed point free. (2) G is metacyclic. (3) G has a normal subgroup W
such that W is a w-group for some prime w. W mod its center Wo is elementary
abelian of order w2a for some a >1 where w® divides 2d. The group induced by G
on W/Wo by conjugation is isomorphic to a subgroup of SP(2a,w).

PROOF. Apply (2.2), (2.5) and Hilfsatz II from Huppert's paper [4] or Satz
13.7 Chapter III in his book [5]. Note that both cases (3) and (4) of (2.5) come
under case (3) of the present theorem.

The situation at this stage can briefly be described by saying that if G is
geometrically irreducible and geometrically primitive then every solvable normal
subgroup is fixed point free and if G has a minimal nonsolvable normal subgroup G0
then G0 modulo its center is a direct product of isomorphic simple groups.

Note that G0 is its own derived group and (see Huppert [5] Hilfsatz 5.23.3)
in this case Z(GO) is a subgroup of the Schur multiplier of GO/Z(GO). The
situation where G0 contains a (noncyclic) metacyclic normal subgroup of G does not
arise when G is nonsolvable due to the fact that G0 is a minimal normal subgroup
of G.

We can now drop the irreducibility considerations and consider the cases where
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GO/Z(GO) is simple. As we shall see the possibility frequently arises in trans-
lation planes that GO/Z(GO) is PSL(2,u) for some u. For u#9, the order of the
Schur multiplier divides 2 so that G0 turns out to be SL(2,u) or PSL(2,u) in these
situations.

We might remark that we have not made much use of the geometry and that
primitivity as a linear group is at least as strong a condition as geometrical
primitivity.

In any case it is desirable to have conditions in which every solvable normal
subgroup is fixed point free.

We find it convenient to use the expression "geometrically primitive" instead
of the more complete "geometrically irreducible and geometrically primitive'".

COROLLARY 2.7. Let T be a translation plane of order qd with kernel GF(q).
Suppose that both q and d are powers of the same prime u. Let G be a solvable
geometrically primitive subgroup of the linear translation complement. Then no
minimal non-f.p.f. group with respect to G is a w-group for a prime w.

PROOF. At characteristic u a u-group has a nontrivial subspace which it fixes
pointwise. If W exists with W/Z(W) of order WZa where w2 divides 2d it follows in
this case that w=u. Hence W cannot exist. The possibility that W might be
elementary abelian is excluded by the geometrical primitivity.

If qd-l has a q-primitive divisor u (see Definition (1.2)) and if the stabi-
lizer of some component of the spread is transitive on nonzero points, then the
order of the translation complement is divisible by u. Kallaher and the author
made much use of this idea [6].

LEMMA 2.8. Let G be a geometrically primitive subgroup of the linear trans-
lation complement of a translation plane of order qd with kernel GF(q). Let d* be
the largest prime power factor of 2d and let d be the largest prime power factor
of d. Suppose that u is a prime factor of IG] such that u>d+1 if q is even or
u > %{d*+—1) and u#d* if q is odd. Suppose that G has a normal subgroup W as in
(2.3) and (2.4) or (2.5). Then all elements of order u in G centralize W.

PROOF. The order of Sp(2a,w) is
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2

2a=2_3y . wE-1w®

( 1)(w

Under the hypotheses if lW/wol = w2a’ where w® divides 2d, the prime u does not
divide |Sp(2a,w)l. Thus if W exists and 0 is some element of order u in G and

A €W we must have that O-IAO = Av for some v in wo since 0 must induce the trivial
automorphism of w/wo. Then A = 6 “Ac” = AV so that v=1 since (u,w)=1 and v is
a w-element.

THEOREM 2.9. Suppose that the prime u is a factor of IGI which satisfies
the hypotheses of (2.8) plus the extra condition that either u is a gq-primitive
divisor of qd—l or u is a q-primitive divisor of qt—l where d = 2t and q is even.
Let G be a solvable geometrically primitive subgroup of the linear translation
complement. Then no solvable minimal non-f.p.f. group with respect to G is a
w-group for a prime w.

PROOF. Suppose that W does exist with the usual properties. By Huppert,
Satz 13.7 [5] W is a central product WIWZ...W where W /Z(W) is elementary
abelian of order w2. If 0 €W then o € Z(W) =W0. Hence if V(o) is nontrivial,
then |o|==w since WO must be fixed point free. Furthermore tﬁe conjugate of O
with respect to an element of W is either 0 or the product of ¢ with an element of
Wo. It follows that 0 has exactly w conjugates with respect to W and that T as a
vector space is the direct sum of w copies of V(0) so that dim V(o) =2d*w. If q
is even, w# 2. If dim V(o) =e, then the prime u does not divide qe—l if u is a
q-primitive divisor of qd-l or if qt—l with q even.

By (2.8) each element of order u in G must leave V(o) invariant; in the
present situation such an element must fix V(0) pointwise.

Thus if W exists the normal subgroup generated by the u-elements fixes some
nontrivial subspace pointwise and G cannot be geometrically irreducible. Hence W
cannot exist if G is geometrically irreducible and geometrically primitive.

REMARK. A prime q-primitive divisor of qd—l is not ncessarily larger than d

or even larger than the largest prime power factor of d. However this is "usually"

the case at least for small q and d. Note that 26-1 has no 2-primitive divisors

3
but 2°-1 has a primitive divisor larger than 6.
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3. BOUNDS ON THE DIMENSION.

It is probably well known from classical representation theory that the
dimension of the smallest complex representation of PSL(2,u) is %(u-l). For a
group acting on a vector space over a finite field with characteristic prime to u
this is part of the results of Harris and Hering [2]even if the representation
cannot be obtained from a complex representation. This section represents a
slight sharpening of this part of the results of Harris and Hering [2] for the case
where the group is part of the translation complement of a finite translation plane.
Furthermore our methods are relatively elementary. We consider this to be an asset.
The group W in this section does not play the same role as the group W of Section 2.

LEMMA 3.1. Let W be a group of prime order w acting on a vector space of
finite dimension d. Suppose that (1) does not fix pointwise any proper subspace
of V. (2) There exists a nonsingular linear transformation A on V which
normalizes and induces by conjugation a regular automorphism group of order h0 on
W (i.e. Xi centralizes no nontrivial element of W for i < 0 < ho but Ai central-
izes W for i=h0).

Then h0 divides d.

PROOF. We shall show that A permutes the eigenvalues of 0, where W=<0>.

Let K be an extension of GF(q) which contains all of the eigenvalues of o.

We can embed V in a vector space V* of the same dimension as V but where v* is a

vector space over K. Let 6 be an element of K which is an eigenvalue of 0. Then
the eigenspace (in v*) belonging to 6 is identical with V(oe—l), the subspace of

v* pointwise fixed by 06-1. Now X-lok = 0% for some integer a and

3 _ . v !) =v(©e™) and is the

Ao =067 s0 Voo ™HA = voPeh) £ o
eigenspace to Gb. The two eigenspaces are disjoint unless they are identical.
They are identical only if 09_1 =06-b so that 6= eb. But then 6% =0 which cannot
happen since A induces an automorphism of order %{w—l). In a similar fashion, A
permutes eigenvalues #1 in cycles of length ho. Now V* is a direct sum of eigen-

spaces of 0 and A permutes these eigenspaces in orbits of length h0==%{w—l).

Hence ho divides dim V.
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THEOREM 3.2. Let G be a subgroup of the linear translation complement of a
translation plane with kernel GF(q), order qd. Let w be an odd prime relatively
prime to q. Suppose that G has a normal subgroup W which is elementary abelian
of order w* and that G induces a cyclic automorphism group on W by conjugation so
that the nontrivial elements of W fall into exactly conjugate classes each of
length %(wa-l). Then either w®=4d+1 or w> = 2d+1. If V(W) is trivial, then
wo-1 divides 4d.

PROOF. Note that G is acting on a vector space of dimension 2d over GF(q).

Consider the case where a>1. There may or may not be some nontrivial subspace
V(W) pointwise fixed by W. If V(W) is nontrivial, W has some complementary space
on which it acts faithfully.

Let V be a vector space on which W acts faithfully. (The following is
suggested by the proof of Lemma 1.3 in Harris and Hering [2].)

There exists an element A such that A induces a group of automorphisms on W

of order %(wa—l). Let G.= <A,W> and let 7= <Ae,w>, where e = %(wa-l).

1
since A® centralizes W, 7 is abelian. Then Clifford's theorem implies that V is

a direct sum V1€B. ..® Vk

not f.p.f. on V

of homogeneous 7 -spaces. If a >1 some element 0 of W is

1 But 7 is abelian so 0 fixes a minimal % -space pointwise and,
since V1 is a homogeneous 7 -space, V1 is pointwise fixed by o. An f.p.f.

elementary abelian w-group must have order w so W must induce a group of order w

on wl--i.e. Wl is pointwise fixed by a group of order wa-l. Thus Vl""’vk

respectively are pointwise fixed by conjugate subgroups of W having order wa-'1

The number of subgroups of order wa_l in a conjugate class is the same as the
number of subgroups of order w in a conjugate class and is either (Wa—l)(w-l)-l or
-%-(wa-l)(w-l)“1 depending on whether a subgroup of order w has 2 or 1 conjugate
classes of nontrivial elements.

By the previous Lemma h_ = -%—(w—l) or w-1 divides dim V Hence

0 1°

A v, @...@Vh is invariant under G and dim[VleB...@Vh] is a multiple of %(wa-l).

Furthermore if m = VOGVI...eﬁVh@V' then the argument can be repeated to show that

V' contains a direct sum Vi @.. .@V;l where %(wa-l) divides dim [ Vi D.. .@V}" ]. A1l
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of this holds for a=1 again by the previous Lemma. By induction, 7 is the direct
sum of V0 and a subspace whose dimension is divisible by %{wa-l). If V0 is trivial,
then %(wa—l) divides 2d or 4d =0 mod w'-1. In this case either 4d=w"-1 or
2dz w?-1.

Now suppose that V0 is not trivial. Here we make our first use of the fact

that G is acting on a translation plane. If £ is any component such that Vorll

is nontrivial, then £ is invariant under W. Furthermore V_ is a subplane iff at

0
least three components are invariant under W. With the proper basis, W can be
represented by matrices of the form 3 2 where the points of m are ordered pairs

(x,y) from a vector space of dimension d; the sets of points for which x=0, y=0,
y = x respectively are three invariant components. In this case if Vi intersects an
invariant component it intersects all of them. Hence h=“%(wa—1) is less than d.

If W has precisely one invariant component we again conclude h<d. (This case
doesn't really happen) If W has two invariant components and <\A> leaves both
invariant we again conclude h<d. If W has two invariant components in the same
orbit under A then V0 must intersect both of them nontrivially and we are back to
the case where V0 is a subplane.

COROLLARY 3.3. Let G be a subgroup of the translation complement for a trans-
lation plane of order qd with” kernel GF(q). Suppose that G has some normal sub-
group H such that G/H = PSL(2,ua) for some odd prime u, (|H|,u) =1 and (u,q)=1.
Then either ua==4d-+1 or ua =2d+1. 1If ua-l does not divide 4d then a Sylow
u-group in G fixes a nontrivial subplane pointwise.

PROOF. The group G of the previous theorem exists. If u®-1 does not divide
4d, the Sylow u-group has at least one fixed component. There is more than one
fixed component since (u,q) =1 and each fixed component must contain fixed points
different from 0 if %(ua—l) does not divide 2d.

THEOREM 3.4. Let m be a translation plane of order q4 and with kernel GF(q)
where q is even. Suppose that the translation complement G of T contains no affine

elations. Then the Sylow 2 groups of G have nilpotency class at most 2.
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PROOF. Let S be a Sylow 2-group. Since the number of components of the
spread is odd, S must fix some component £ and act faithfully on 2. Furthermore
each involution in S is a Baer involution and hence fixes a 2-space on £ pointwise.
Furthermore if 0 is any nontrivial element, we must have that V(o) N £ has dimension
at most 2.

Let us restrict ourselves to the representation of S on £ by 4 x4 matrices.

We can choose a basis so that the elements of S are represented by upper triangular
matrices with 1's on the diagonal. Furthermore we may assume that some involution

in the center is represented by a matrix of the form

1 ¢ c

1 2
g =
0 1 cy C,
00 1 0
0 0 1

But if 0 is an involution we must have (1 c) (1 0) (cl c, (0 0)
+ = .
01 0 1 c3 64) 0 0

Hence either cy=c, = 0 or ¢c=0. In the former case the points (0,1,0,0)(0,0,1,0)
and (0,0,0,1) are all fixed contrary to the condition that the dimension of V(o)

is equal to 2. Hence c=0. In abbreviated form 0 = (I C) where the capital

0 I
letters are 2 by 2 matrices. By a further change of basis we can take 0= ((]; i)
Now the condition that (g EI:> commute with 0 is that A= R. We may take
1 a c ClZ
A=(, ] ) - The reader may verify that the commutator of 11 and
0 c
11
D D I E
11 12 has the form
0 D11 0 1
where E = D11 D12 + Dll C11 C12 D11 + C11 D11 D12 C11 + C11 C12 (using the fact
that Cll’ D11 are commuting involutions).
If we set D,, = 1 d and C,, = loc it turns out that the element
11 01 11 0 1
in the left hand cornmer of E is 0. The commutator of (é ?) with respect
£ f
to a general element then has the form ((]; 1;) where K has the form 11 12 .
0 0
But then (g I;) fixes the vectors (0,1,0,0)(0,0,1,0) and (0,0,0,1). It

follows that K=0 and thus the commutator of three elements is the identity.
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4. APPLICATIONS.

As before G is understood to be a subgroup of the linear translation comple-
ment of a translation plane with kernel GF(q) and order qd. We shall assume that
G is geometrically primitive and G0 will denote a minimal nonsolvable normal sub-
group of G if G is nonsolvable.

As we have pointed out in several previous papers when q and d are both odd
and G is nonsolvable G0 contains a normal subgroup H of G such that GO/H is
PSL(2,u) for some odd u or GOIH is A7.

Consider the case q=d=5. Applying (2.7), (2.3), (2.4) and the remarks
preceding (2.7) we can say that H is a Schur multiplier for GO. By (4.8) of
[10], each odd prime factor of G must divide 5(554-1)(55-1)(54—1)(53—1) so A,
does not apply. Hence Go=-SL(2,u) for some odd u. If (u,5)=1 then by (3.2)
either u=4.5+1=21 or us1l. Since 21 is composite we cannot have u=2l. Thus
u=11,9, or a power of 5. If we put in the condition that G has a subgroup fixing
some component £ and transitive on nonzero vectors of %, then IGI is divisible by
the prime factor 71 of 55-1. (This condition arises naturally in the investigation
of rank three planes.) We leave it to the reader to verify that in this case the
only possibility is u= 52 so that the plane is Desarguesian.

A similar argument works for q=3, d=5 if we again assume G has a subgroup
fixing and transitive on some component £ of the spread. These are special cases;
our results appear to be the most useful in narrowing down the possibilities for
groups in particular situationms.

Consider the case where q is even and d=4. If G contains affine elations
(shears) we can apply Hering's results on the groups generated by elations [3],
so assume that G has no affine elations. By (3.4) the Sylow 2-groups have nil-
potency class at most 2.

According to Walter [11] the nonsolvable simple groups with abelian Sylow
2-groups are in the following list: PSL(2,u), u>3 UZ3 or 5 mod 8 or u=23;
J(11), Ree type (R, (u)).

According to Gilman and Gorenstein [1], the simple groups with Sylow 2-groups
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of nilpotency class 2 are PSL(2,u) u=7, 9 mod 16, A, Sz(2%), U5(2%), PSL(3,2%),
PSp(4,2") nz 2.

We note that PSL(3,2) =PSL(2,7) acts on a plane of order 16 but is geometrically
reducible [7].

To illustrate the methods of this paper, we restrict ourselves to the cases
where GO/H=PSL(2,u) u=3 or 5mod 8 or u=7 or 9 mod 16 or G is solvable. Note
that if q is even and G is geometrically primitive then G can have no normal
2-groups. By (2.6) and (2.7) every solvable normal subgroup will be fixed point
free or metacyclic.

A fixed point free group on a vector space over a field of characteristic 2
must have odd order. Except possibly if u=9 the Schur multiplier for
PSL(2,u) (u odd) has order 2. In the present context we actually have that H of
(2.3) must be trivial so that G0=PSL(2,u). By (3.2) u=4°4+1 =17 or
us4+2+1=9. But 171 mod 16 so u<9. Since PSL(2,5) = PSL(2,4) the only

cases left are PSL(2,9) and PSL(2,7).

REFERENCES

1. GILMAN, R. and GORENSTEIN, D. Finite Groups with Sylow 2-Groups of Class Two,
I, II, Trans. Am. Math. Soc. 207 (1975), 1-101, 103-125.

2. HARRIS, M. and HERING, C., On the Smallest Degrees of Projective
Representations of the Groups PSL(n,q), Can. J. Math. 23 (1971), 90-102.

3. HERING, C. On Shears of Translation Planes, Abh. Math. Sem. Hamb. 37 (1972),
258-268.

4. HUPPERT, B. Lineare Auflosbare Gruppen Math, Math. Z. 67 (1957), 479-518.

5. HUPPERT, B. Endliche Gruppen I, Springer-Verlag, Berlin and New York
(1967).

6. KALLAHFR, M. and OSTROM, T.G. Collineation Groups Irreducible on the
Components of a Translation Plane, Geom. Ded. 9 (1980), 153-194.

7. LORIMER, P. A Projective Plane of Order 16, J. Comb. Thy. (A) 16 (1974),
334-347.

8. OSTROM, T.G. Solvable Linear Groups on Vector Spaces whose Dimension is
the Product of Two Primes, Aeq. Math. 18 (1978), 77-102.

9. OSTROM, T.G. Translation Planes of 0dd Order and Odd Dimension, Int. J. Math.
and Math Sciences 2 (1979), 187-208.

10. Translation Planes of Even Order in which the Dimension has only
One 0dd Factor, Int. J. of Math and Math. Sciences.

11. WALTER, J. The Characterization of Finite Groups with Abelian Sylow 2-Groups,
Ann. Math. 89 (1969), 405-514.



Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and

Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due February 1, 2009

First Round of Reviews | May 1, 2009

Publication Date August 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of Sdo Paulo, 05508-970 Sao Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratério Associado de
Matemadtica Aplicada e Computagdo (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), Sdo Jose dos
Campos, 12227-010 Sao Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King’s College,
University of Aberdeen, Aberdeen AB24 3UE, UK;
grebogi@abdn.ac.uk

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers4pt
	Guest Editors

