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ABSTRACT. We define and note some properties of k H-pairs (k Henselian pairs),
k N-pairs, and k N'-pairs. It is shown that the 2-Henselization and the 3-
Henselization of a pair exist. Characterizations of quasi-local 2H-pairs are

given, and an equivalence to the chain conjecture is proved.
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1. INTRODUCTION.

We define a pair (A,m) to be a k H-pair (a k Henselian pair) in case the ideal
m is contained in the Jacobson radical of the commutative ring A and if for every
monic polynomial f(X) of degree k in A[X] such that E(X)Q,A/m [X] factors into
E(x) = EO(X)EO(X) where éO(X) and EO(X) are monic and coprime, there exist monic
polynomials g(x), h(X)€ A[X] such that £(X) = g(X)h(X), g(X) = gO(X). and
h (X) = EO(X). It is shown that the 2-Henselization and the 3-Henselization of a
pair (A,m) exist. Several properties of k H-pairs are noted. And an equivalence
to the Chain Conjecture is also given.

2. k H-PAIRS, k N-PAIRS, AND k N'-PAIRS.

In this section we define and give some facts about k H-pairs, k N-pairs, and
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k N'-pairs. The main result, Theorem (2.10) states that (i) a k H-pair is a k
N-pair, (ii) a k N-pair is a k N'-pair, and (iii) an k N'-pair is a j H-pair pro-

vided k > max {C [n =0,1,...,3}.

j,n
We begin be stating several definitions. In these definitions and throughout
the paper a ring shall mean a commutative ring with an identity element, and J(A)
denotes the Jacobson radical of the ring A.
DEFINITION 2.1. (A,m) is a pair in case A is a ring and m is an ideal in A.
DEFINITION 2.2. (A,m) is a k H-pair in case
(1) m ©J(4); and
(i1) for every monic polynomial f(X) of degree k in A[X] such that
£(X) € A/m [X] factors into f(X) = EO(X) EO(X) where go(x) and EO(X) are monic and
coprime, there exist monic polynomials g(X), h(X) € A[X] such that £(X) = g(X)h(X),
g(X) = g (X) and A(X) = & (0.
DEFINITION 2.3. Let (A,m) be a pair. A monic polynomial Xk + ak_lxk_l + ...
+ a X + a of degree k is called a k N-polynomial over (A,m) in case ay € m and

1

a; is a unit mod m.
DEFINITION 2.4. (A,m) is a k N-pair in case
(1) m € J(A); and
(ii) every k N-polynomial over (A,m) has a root in m.
The next results give some facts about k N-polynomials and k N-pairs.
LEMMA 2.5. Let f(X) be a k N-polynomial over the pair (A,m). If m & J(A),
then f(X) has at most one root in m.
PROOF. The proof follows from [5, Lemma 1.5], since a k N-polynomial is an
N-polynomial.
REMARK. Every k N-polynomial over a k N-pair (A,m) has one and only one root
in m.
PROPOSITION 2.6. If (A,m) is'a k N-pair, then (A,m) is an j N-pair for 2
2< j<k.
PROOF. Given a k N-pair (A,m), it suffices to show that (A,m) is a (k-1)

N-pair. Let f(X) be a (k-1) N-polynomial over (A,m). Let u be a unit in A and
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g(X) = (X + u)f(X). Then g(X) is a k N-polynomial and thus has a root r in m and
0= g(r) = (r + u)f(r). Since (r + u) is a unit, we have f(r) = 0. Therefore,
(A,m) is a (k - 1) N-pair.

DEFINITION 2.7. Let (A,m) be a pair. A monic polynomial

Xk + d1 Xk_l + d2 Xk_2 + .0+ dk of degree k is called a k N'-polynomial over

(A,m) in case d1 is a unit mod m and d2, ey dk belong to m.
DEFINITION 2.8. (A,m) is a k N'-pair in case
(1) m € J(A); and
(ii) every k N'-polynomial over (A,m) has a root in A, which is a unit.
We note that if (A,m) is a k N'-pair, f(X) = Xk + dlxk—l + ...+ dk is a k
N'-polynomial over (A,m) and r € A is a root of f(X) given by the definition of
a k N'-pair, then r = -31, and f'(r) is a unit.
PROPOSITION 2.9. Let (A,m) be a k N'-pair, then (A,m) is an j N'-pair for
2<j <k
PROOF. Given a k N'-pair (A,m), it suffices to show that (A,m) is a (k-1)
N'-pair. Let f(X) be a (k-1)N'-polynomial over (A,m). Then Xf(X) is a k N'-poly-
nomial and has a root u, which is a unit. and uf(u) = O implies that f(u) = O,
therefore (A,m) is a (k-1)N'-pair.
THEOREM 2.10. (i) A kH-pair is a kN-pair
(ii) A kN-pair is a kN'-pair
(1i1i) A kN'-pair is a jH-pair, provided
k > max {cj’nl n=0,1,..., j}
PROOF, Part (i) follows from the definitions.
The proof of (ii) follows from the proof of [10, Lemma 7]
The proof of (iii) follows from Crépeaux's proof of [3, Prop. 1]
3. k N-CLOSURE.
In this section we construct the k N-closure for a given pair (A,m). That
is, we find the "smallest" k N-pair which "contains" (A,m). The development of

this section parallels Greco's development in [5].

In order to construct the k N-closure we need the following definitionms.
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DEFINITION 3.1. A morphism (of pairs) @:(A,m) +~ (B,n) is a ring homomor-
phism @:A + B, such that ﬂ-l(n) = m.

DEFINITION 3.2. A morphism (of pairs) @:(A,m) - (B,n) is strict in case
n = @(m)B and @ induces an isomorphism A/m - B/n.

DEFINITION 3.3. Let (A,m) be a pair. A k N-pair (B,n) together with a
morphism @:(A,m) + (B,n) is a k N-closure of (A,m) if for any k N-pair (B',n')
and any morphism Y:(A,m) »~ (B',n') there exists a unique morphism V¥':(B,n) + (B',n')
such that ¥'o @ = V.

DEFINITION 3.4. Let (A,m) be a pair and f(X) a k N-polynomial over (A,m).
Let Alx] = A[XJ/(f(X)), S =1+ (m,x)Alx] and B = S_lA[xI‘ Then (B,mB) is called

a simple k N-extension of (A,m).

DEFINITION 3.5. A k N-extension of (A,m) is a pair obtained from (A,m) by a
finite number of simple k N-extensioms.
The next two results give some useful properties of simple k N-extensions and
k N-extensionms.
LEMMA 3.6. Let (B,n) be a simple k N-extension of (A,m). Let @:A + B be
the canonical morphism. Then:
(1) x € n.
(ii) ¢-1(n) =m and @:(A,m) > (B,n) is a morphism of pairs.
(iii) @:(A,m) »> (B,n) is strict.
PROOF. The proof follows from [5, Lemmas 2.3,2.4, and 2.5] since a simple
k N-extension is a simple N-extension.
COROLLARY 3.7. If (B,n) is a k N-extension of (A,m), then the canonical
morphism @:(A,m) > (B,n) is strict.
We note that a k N-extension of a quasi-local ring (A,m) is a quasi-local
ring.
The following lemma is used to show that the partial order defined in Defini-
tion (3.9) is well defined.
LEMMA 3.8. Let (A',m') be a k N-extension of (A,m) and let (B,n) be a pair

with n ¢ J(B). Let @#:(A,m) +~ (A',m') be the canonical morphism. Then for any
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morphism ¥:(A,m) -~ (B,n) there is at most one morphism y':(A',m"'") > (B,n) such
that ¥' o @ = V.
PROOF. The proof follows from [5, Lemma 3.1] since a k N-extension is an
N-extension.
In particular, the above lemma holds when (B,n) is a k N-extension of (A,m).
DEFINITION 3.9. Define a partial order on the set of k N-extensions of (A,m)
as follows: If (A',m') and (A",m") are two k N-extensions of (A,m), then (A',m')
< (A",m") if and only if there is a morphism ¥:(A',m') - (A",m") such that ¥ o ¢ = ¢",
where @:(A,m) -~ (A',m") and @¢":(A,m) + (A",n") are the canonical morphisms.
PROPOSITION 3.10. Let (A,m) be a pair. Then the k N-extensions of (A,m) form
a directed set with the order relation and the morphisms defined above.
PROOF. The proof is analogous to 5, Prop. 3.37.
LEMMA 3.11 Let (A',m') be a k N-extension of (A,m) and let @#:(A,m) >(A',m')
be the canonical morphism. Let (B,n) be a k N-pair and let ¥:(A,m)>(B,n) be a mor-

phism. Then there is a unique morphism ¥':(A',m')>(B,n) such that ¥ = ¥'o @.
PROOF. The proof is analogous to [5, Prop. 3.4].

kN kN

THEOREM 3.12. Let (A,m) be a pair and let (A" ,m ) be the direct limit of the
set of all k N-extensions. Then (ARN,mkN) with the canonical morphism (A,m) -

(AkN,mkN) is a k N-closure of (A,m).

PROOF. The proof is analogous to [5, Thm. 3.5].
. . kN kN
We note that if (A,m) is a quasi-local ring; then a k N-closure (A ,m )
of (A,m) is quasi-local, since the direct limit of quasi-local rings is quasi-

local.

4. k H-CLOSURES AND AN EQUIVALENCE TO THE CHAIN CONJECTURE.

In this section, we note the existence of a 2H-closure and of a 3H-closure,
we give some characterization of a quasi-local 2H-pair, and we observe that the
H-closure (or Henselization) of a pair (A,m) can be written as the direct limit or
union of k H-pairs, k = 2,3,4,... . We also give an equivalence to the Chain
Conjecture.

DEFINITION 4.1. Let (A,m) be a pair. A k H-pair (B,n), together with a
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morphism @: (A,m)>(B,n) is a k H-closure of (A,m) if for any k H-pair (B',n') and
any morphism ¥:(A,m)>(B'n'), there exists a unique morphism ¥':(B,n)+(B',n') such
that ¥' o @ = V.

THEOREM 4.2, Let (A,m) be a pair. Then:

(i) a 2 H-closure of (A,m) is (AzN, mZN).

(i1) a 3 H-closure of (A,m) is (A3N, m3N

).

PROOF. It suffices to show that a k N-closure (k = 2,3) is a k H~pair. And
by Theorem 2.10, we have that a 2N-pair is a 2H-pair, and that a 3N-pair is a 3H-
pair.

DEFINITION 4.3. If @:A*B is a ring homomorphism, then B is said to be k-integral
over A in case each b € B satisfies a monic polynomial of degree k over @(A).

REMARK. If B is k-integral over A, then B is also j-integral over A for all
j 2k

In the next three items we give examples of rings and elements which are
k-integral over a given ring A.

LEMMA 4.4, If A is an integrally closed domain and £(X) € A[X] is a monic
polynomial of degree k, then A[X]/(£f(X)) is k-integral over A.

PROOF. Let A[x] = A[X]JA(£f(X)) and let L be the quotient field of A. Then
[L(x):L] < k and thus each o €A[x] satisfies a monic polynomial g(X) € L [X] of
degree < k. Since a is integral over A and A is integrally closed, it follows
that g(X) € A [X]. Therefore A[x] is k-integral over A.

LEMMA 4.5. Let A be a ring and let £(X) = X> + oX + B €A[X]. Then A[X]/(£(X))
is 2-integral over A.

PROOF. Let A[x] = A[X]Af(X)) and then all of the elements of A[X] are of the
form ax + b where a,b € A. To show that A[x] is 2-integral over A, we need to find
F, G € A such that

(ax + b)% + F(ax + b) + G = 0.
By expanding the left side, we see that F = aa - 2b and G = aZB - b2 -Fb = aZB + b2 - aba
are the needed values. Therefore A[X] is 2-integral over A.

EXAMPLE 4.6. Each element of EndA(Ak) is k-integral over A by [1l, Proposition 2.4].
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In fact, if M is any A-module generated by k elements, each element of EndA(M)
is k-integral over A.
DEFINITION 4.7. (A,m) is a (<k)H-pair in case (A,m) is a j H-pair for 2 < J < k.
It follows by Theorem 2.10 that if (A,m) is a j N-pair (or j H-pair),
then (A,m) is a (<k)H-pair provided j > max {Ck,nl n=20,1, ...k}. In particular
we have that for k = 2,3, or 4, a k H-pair is also a (<k)H-pair.
LEMMA 4.8. Let (A,m) be a quasi-local domain which is a (<k)H-pair. Then
every k-integral extension domain of A is quasi-local.
PROOF. The proof is analogus to [6, (30.5)]
DEFINITION 4.9. A ring A is decomposed if A is the product of finitely many
quasi local rings.
THEOREM 4.10. Let (A,m) be a quasi local ring. Then the following statements
are equivalent.
(i) Every finite 2-integral A-algebra B is decomposed.
(ii) Every finite free 2-integral A-algebra B is decomposed.

(iii) Every A-algebra of the form A[X]/(f(X)), where f(X) € A[X]
is monic and of degree 2, is decomposed.

(iv) (A,m) is a 2 H-pair.

PROOF. (1) =P (ii) is clear. (ii)=p(iii) is clear by (4.5). The proofs that
(iii)‘ﬁ(i) and that (i1i)&(iv) follow classical lines; for example, see
[9, Prop. 5, p.2].

THEOREM 4.11. A quasi local domain (A,m) is a 2H-pair if and only if every
2-integral extension domain A' of A is quasi-local.

PROOF. () is true by (4.8).

&) . We will show that (A,m) is a 2H-pair by showing that every finite free
2-integral A-algebra is decomposed. Let B be a finite free 2-integral A-algebra.
Since B is decomposed if and only if B/nil rad B is decomposed, we may assume that
B is reduced. Since B is flat over A, regular elements of A are also regular in B.
Thus the minimal primes of B contract to {0} in A. Let {Pi}liEI be the minimal primes
of B. Then for each ji€I, B/Pi is a 2-integral extension domain of A and is quasi

local by the hypothesis. Thus each minimal prime Pi is contained in a unique maximal
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ideal. By [2, Proposition 3, p. 329], the set of minimal primes of B is finite.

Let Ij = nPiE M-Pi where Mj’ j=1,..., n, are the maximal ideals of B. Then the

I, are coprime, and n; = 0 since B is reduced. So by the Chinese Remainder

3

Theorem B = 7w

=1 Ij

n B/Ij and each B/Ij is quasi local. Thus B is decomposed and there-

j=1
fore (A,m) is a 2H-pair.
COROLLARY 4.12. Let (A,m) be a quasi local domain which is 2H-pair. Let A'
be an integral extension domain of A. If b€A' is 2-integral over A, then b€ J(A')
or b is a unit.
PROOF. A[b] is a 2-integral extension domain of A and is thus quasi local.
The result follows since all the maximal ideals of A' contract to the unique maxi-
mal ideal of A[b].
We will now show that the N-closure of a pair (A,m) is the direct limit of the
k N-closures of (A,m). It will follow from this result that the H-closure of (A,m)
can be written as the direct limit of k H-pairs.
DEFINITION 4.13. Let (A,m) be a pair. Then (A,m) is an N-pair (respectively,
a H-pair) in case (A,m) is a k N-pair (respectively, a k H-pair) for k = 2,3,...
DEFINITION 4.14. Let (A,m) be a pair. An N-pair (respectively, an H-pair)
(B,n), together with a morphism @#:(A,m)>(B,n) is an N-closure (respectively, an
H-closure) of (A,m) if for any N-pair (respectively, any H-pair) (B',n'), and any
morphism ¥: (A,m)>(B',n'), there exists a unique morphism ¥': (B,n)>(B',n') such
that ¥' o @ = v,
THEOREM 4.15. Let (A,m) be a pair. Then the H-closure of (A,m) is isomorphic
to the N-closure.
PROOF. See [5, Lemma 1.4 and Theorem 5.10].
PROPOSITION 4.16. Let (AN,mN) be an N-closure of (A,m). Then
(AN,mN) = dir lim (AkN,mkN), where the directed system {(AkN,mkN),ukj} of k
N-closures of (A,m), k=2,3,4,..., is ordered by (AkN,mkN)fﬂAjN,ij) iff k < j and
if k < j, then gt (AkN,mkN)+(AjN,ij) is the unique morphism which makes the

following diagram commute:
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]
(A,m) K RS

7

)

ukj

TSR

where ¢j and Gk are the canonical morphisms.

PROOF. The proof follows immediately from Definitions (3.3) and (4.14) and
the definition of a direct limit.

COROLLARY 4.17. Let (AH,mH) be the H-closure of (A,m). Then (AH,mH) B
dir lim (Ai’Mi) where (Ai’mi) is an i H-pair for i = 2,3,... .

PROOF. For a given i, let (Ai’mi) = (AkN,mkN) where k = max'{Cj,n|n=0,1,...,j}.
Then the corollary follows by results (2.10), (4.15) and (4.16).

We now give an equivalence to the Chain Conjecture. The terminology used is
the same as in [8] or [10].

THEOREM 4.18. The following statements are equivalent:

(i) The Chain Conjecture holds.
(ii) Every 2 Henselian local domain A, such that the integral closure of
A is quasi-local, is catenary.

PROOF. (1)=J(ii). This follows by [8, Thm. 2.4].

(ii)::)(i). By [8, Thm. 2.4] it suffices to show that every Henselian local domain
is catenary. Let A be a Henselian local domain. Then A is also 2 Henselian and
the integral closure of A is quasi-local by [6, (43.12)]. Thus by the hypothesis
A is catenary.

5. EXAMPLES.

In this section we show that there exist k N-pairs which are not N-pairs and
there exist k H-pairs which are not H-pairs. More precisely, for each prime number
p we give an example of a pair which is not a p N-pair but is a k N-pair for
2 < k < p. This example also shows that for any integer k 2 2, there exists a k
H-pair which is not a p H-pair for some sufficiently large prime number p.

Let p > 2 be a prime number. Let (R,q) be a normal quasi-local domain such

that there exists an f(X) = P+ 4+ alx + a €R[X], where a, ¢q, a €q and f(X)
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is irreducible over R[X].

In particular, let R = 2(2) and let £(X) = x° 4+ 3X + 6. Then by Eisenstein's
Criterior, £(X) is irreducible in Q[X], and thus irreducible in Z(z)[X] since f(X)
has content 1.

Let K be the quotient field of R and let X be an algebraic closure of K. Let
R' be the integral closure of R in K and P' any maximal ideal in R'. Now £(X) as
an element of R'[X] factors completely, and since P'(| R = q, £(X) has a unique
root a€P', Let L be the least normal extension of K containing a. Then p|[L:K]
and by [7, Thm. 6] there is a maximal field M without o of exponent p with
KESMCK. Let A=R'() Mand let m = P'[ A.

Now (A,m) is not a p N-pair since f(X) is a p N-polynomial over (A,m) which
does not have a root in m. But (A,m) is a k N-pair for 2 < k < p. For, let g(X)
be a (p - 1)N-polynomial over (A,m). Then g(X) as an element of R'[X] has a unique
root BEP'., Now [M(B):M] < p - 1, but by [7, Thm. 2], [M(B):M] = pi for some i 2 0.
So [M(B):M] =1 and BE€EM. Thus B€m = P'(| A and (A,m) is a (p - 1l)N-pair. It
follows by (2.6) that (A,m) is a k N-pair for 2 < k < p.

REMARK. If j and the prime number p are closen such that p > max {Cj,n|n=0’1""’j}’
then by Theorem 2.10, the above example is an example of a pair (A,m) such that
(A,m) is not a p H-pair, but (A,m) is a k H-pair for 2 < k < j.

Let the notation be as in the above example. Then (Am,mAm) is as an example
of a normal quasi-local domain which is not a p N-pair, but is a k N-pair for
2 <k <p.

6. PROPERTIES OF k N-PAIRS.

We conclude this paper by noting that many of the properties of the Hensili-
zation or N-closure of a pair which S. Greco proved in [5] also hold for a k N-
closure and thus also for a 2 H-closure and a 3 H-closure. Some of these results
are: direct limits commute with k N-closures, cf. [5, Cor. 3.6]; a k N-closure of
(A,m) is flat over A and is faithfully flat over A iff m&J(A), cf. [5, Thm. 6.5];
a k N-closure of a noetherian ring is noetherian, and if a k N-closure of (A,m) is

Noetherian and m< J(A), then A is Noetherian, cf. [5, Cor. 6.9]; if A is Noetherian



PARTIAL HENSELIZATIONS 701

and A has one of the properties Rk’ Sk’ regular, or Cohen-Macaulay, then a k N-
closure of (A,m) also has that property, and the converse is also true provided
m< J(A), cf. [5, Cor. 7.7]; a k N-closure preserves locally normal, cf. [5, Thm. 9.7];

and a k N-closure of a reduced ring is reduced, cf. [5, Thm. 8.7].
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