

CORRIGENDUM

THE GEOMETRY OF $GL(2,q)$ IN TRANSLATION PLANES OF EVEN ORDER q^2

N.L. JOHNSON

Department of Mathematics, University of Iowa
Iowa City, Iowa 52242

(Received October 24, 1980)

In [1] the translation planes of even order q^2 which admit $GL(2,q)$ as a collineation group were investigated. Due to an error in a previous article, the Dempwolff plane of order 16 was overlooked.

To correct the situation, we appeal to the following theorems:

I. (Johnson [2], corollary to the main theorem):

Let π be a translation plane of order $2^{2r} \neq 4$ or 16 that admits a collineation group G isomorphic to $SL(2,2^r)$. If the Sylow 2-subgroups fix Baer subplanes π_i pointwise then the 2^r+1 subplanes π_i all belong to a derivable net.

II. (Johnson [3]):

Let π be a translation plane of order 16 that admits $SL(2,4)$ as a collineation group. Then π is Desarguesian, Hall or Dempwolff.

It was originally thought that I. was valid for planes of order 16 and because of this the Dempwolff planes were overlooked. By I. the results of [1] are valid for planes of order $\neq 16$ and by II. the only exceptional plane of order 16 is the Dempwolff plane.

Thus we have:

Theorem (to replace (2.7) [1]):

Let π be a translation plane of even order q^2 which admits $GL(2,q)$ as a

collineation group. Then the fixed point space of each Sylow 2-subgroup is a component, Baer subplane or Baer subline.

(i) π is a Desarguesian if and only if the Sylow 2-subgroups fix components pointwise.

(ii) (a) If the order of $\pi \neq 16$, π is Hall if and only if the Sylow 2-subgroups fix Baer subplanes pointwise.

(b) If the order of π is 16 and the Sylow 2-subgroups fix Baer subplanes pointwise, then, π is Hall if and only if the subplanes are in the same net of degree 5 and π is Dempwolff if and only if the subplanes do not lie in the same net of degree 5.

(iii) π is Ott-Schaeffer if and only if the Sylow 2-subgroups fix Baer sublines pointwise.

REFERENCES

1. JOHNSON, N. L. The Geometry of $GL(2, q)$ in Translation Planes of Even Order q^2 , Internat. J. Math. & Math. Sci. Vol. 1 (1978) pp. 447-458.
2. JOHNSON, N. L. Addendum to "The Geometry of $SL(2, q)$ in Translation Planes of Even Order", (To appear.)
3. JOHNSON, N. L. The Translation Planes of Order 16 that Admit $SL(2, 4)$, (To appear.)

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	March 1, 2009
First Round of Reviews	June 1, 2009
Publication Date	September 1, 2009

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru