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ABSTRACT: In this paper, a generalized mean value contraction is introduced.

This contraction is an extension of the contractions of earlier researchers and of

the generalized mean value non-expansive mapping. Using the generalized mean

value contraction, some fixed point theorems are discussed.
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I. INTRODUCTION.

Let T be a self mapping of a Banach space E. The mapping T will be called a

generalized mean value contraction mapping if for any x,ye $ there exist non-neg-

ative real numbers a
i

(i 1,2,...5) such that

IITTIx-TTIy I1 al llx-Y II+ a211x-TTixll+ a311y-TTIylI+ a
4 IIx-TTIy I1+ a51-TT x ll

(1.1)
5

where a < i and T x Ix + (l-I) Tx and TTIx T(Ix + (1-I) Tx) 0<I<l holds
i-- i I

The contraction (i.i) is more general than the Banach contraction, contractions of
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Kannan [1], Chatterjee [2], Hardy and Rogers [3]. When %=I all these contractions

follow as a particular case of (I.I), with suitable choice of ai’s. Also, by

example, we show that there exist self-mappings which satisfy (1.1), but do not

satisfy the well-known contraction just mentioned.

EXAMPLE I. Let T be a self-mapping on [0,I] defined by

T(0) I, T(1) 0, T(x) x (0,i)

EXAMPLE 2. Let T be a self-mapping on [0,i] defined by T(x) l-x, x [0,1]

EXAMPLE 3. Let T be a self-mapping on [-I,i] defined by Tx -x, x [-I,i]

The mapping T of the above examples satisfies (1. I) for % 1/2. However, for

x=0, y--l, T of Example 1 or Example 2, and for x--l, y=-l, T of Example 3 do not

satisfy the above well-known contractions. Next, we define generalized mean value

non-expansive mapping: Let T be a self-mapping of a Banach space E. Then T will

be called a generalized mean value non-expansive mapping if for any x, y in E,

there exists non-negative real numbers a. (i 1, 2,...5) such that
1

ITTkx-TTyl < ail Ix-Yl + a211x-rrxl + a311y-TTyl + a411x-rryl + a51
(i .2)

5
where Zai and Tkx kx + (l-k) Tx, 0 < < holds.

i=l

Now we define a new contraction which is more general than (1.1) as follows:

Let X be subset of a normed linear space E. A mapping T: X + X is called

an iteratively mean value contraction mapping if for every x X there exist non-

negative real numbers a, such that

ITTX (TTxx) TTxll <_ al[rTx x[l, (1.3)

where 0 < < 1 and Tkx kx + (l-k) Tkx and TTkx T (kx + (1-k)T x) holds.

The above definition is given because there are self-mappings of a subset of

a normed linea space, which do not satisfy (1.1), but satisfies (1.3). An example

of self-mapping for which (1.3) holds but (1.1) does not hold, is given below:

EXAMPLE 4. Let T be a self-mapping on [-1,7] defined by

6
Tx =-x, x [-I,I], Tx -x, x[l,7]
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2. MAIN THEOREMS.

THEOREM i. Let T be a self-mapping of a normed linear space E. If

(i) T satisfies (I.I),

(ii) {x } converges to 6E where x TTxXn_ (n--I 2 ..) for any x06E,n n I

(iii) T(Xu + (l-X) Tu) XTu + (l-X) T2u, only for u;

then T has a unique fixed point in E.

PROOF: Let x0 be any point in E. Define, x TTxx (n 1 2 Put
n n-I

x x and x y in (I I), then we have
o I

llXl x211 < all x
0 Xll + a211 x

0 Xll a311 x I x211 + a411 x
0 x21 (2.1)

Again, put xI x and y x
0

in (I.I). Then

llx2 Xll <al[ xI x
0 II+ a211 x I x211 + a311 x

0 Xll + a511 x
0 x21 (2.2)

Adding (2.1) and (2.2), we obtain llx2 x III < r llxI x011

where r
2a I + a2 + a3 + a4 + a5 5

and r < I, since E ai< i.
2 a

2
a
3

a4 a
5 i=l

By induction it may be proved that [IXn Xn+l[ < rnl[ x I x0[
It may be shown by routine calculation that {x is a Cauchy sequence. Hence

n

{x is convergent. So, by (ii), x
n
/ 6E, as n /

n

Now, flu TTxull <flu Xn+III + IITTxxn TTxull

< (a
3
+ a4) flu TTxull as n +

Therefore, (I a
3

a4) u TTXull< 0, which implies that u TTXu, since

5

Eai < I Now, Tu T(TTxu) T(T(Xu + (l-X) Tu) T(X Tu + (l-X) Tu2), by

i=l

Therefore

flu- Tull l(Xu + (l-X) Tu) -T(XTu + (l-X) rmu)ll < rll u- Tull by (i).

Since r < I, (l-r) II u Tull < 0 implies Tu u i. e. u is a fixed point of T.

Uniqueness of the fixed point follows easily.
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THEOREM 2. Let T be a self-mapping of a bounded convex subset M of a normed

linear space E. If for any x M,

(i) T satisfies (1.3)

(ii) {x } converges to u E M, whenever {x is convergent where x TTn n n %Xn-i
(n 1,2,3 for any x0 E M.

(iii) Lira T (lx
n
+ (I-) T xn) T(I Lira Xn + (I-) T Lira Xn

(iv) T (%u + (I-) Tu) ITu + (1-1) T2u, for all u;

then T has a fixed point.

PROOF: Proof is exactly similar to that of Theorem I, so we omit it.

THEOREM 3. Let E be a rotund Banach space, M be a compact convex subset of

E and T be a self-mapping of M. If T is continuous and T satisfies (1.2) and

TT%x T%Tx for any 6M, then T has a fixed point in M.

PROOF: Let x be any point in M. Define f(x) II x Tx II Since T and

II’II are continuous functions, therefore, f(x) is also continuous. So f(x) attains

its minimum for some x(say x z 6 M).

First suppose llTz zll 0, then z is a fixed point of T. Now let

z II # 0. Hence

f(TT%z) IITT%z T(TTlz)II IITTlz rr%(Tz)ll
<_ II z Tzll < II z Tzll since E is rotund.

f(z), which contradicts the minimality of f(z).

Therefore liT (z) zll 0 i.e. Tz z is a fixed point of T.

THEOREM 4. Let E be a Banach pace, M be a compact convex subset of E, and

T be a continuous self-mapping of M. If for any x,y (x # y)6M, T satisfies (i.I)
5

(where <_ is replaced by <) and ai
I and TTkx T%Tx, then T has a unique

fixed point in M.

PROOF: Proof is similar to that of Theorem 3.

3. CONCLUDING REMARKS.

(i) That the condition (iii) of Theorem 1 is necessary for existence of fixed

point of T as illustrated by the following example.
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EXAMPLE 4. Let T be a self-mapping on [0,i] defined by Tx-- i x, [0,I],

T(1) 0. Here T satisfies conditions (i) and (li) of Theorem for < i, but

it does not satisfy (iii) and T has no fixed point in [0,i].

(ii) The self-mapping T of Example i and Example 2 are non-expansive

II rx TYll < II x Yll )" Kirk [4] has proved the following fixed point theorem

on non-expansive mapping:

"If K be a nonempty closed convex bounded subset of a reflexive Banach space

X and if K possisses normal structure, then every non-expansive mapping from K

into itself has a fixed point."

The same result is also established independently by Browder [5] in a uni-

formly convex Banach space. There is a close connection between the theorems of

Kirk and Browder. This was first noted by Goebel [6] that if X be a uniformly

convex Banach space, then any closed convex bounded subset K of X, must have nor-

mal structure.

We observe that for the existence of a fixed point of any non-expansive map-

ping in a Banach space, the Banach space must have a property either "uniform

convexity" or "reflexivity with normal structure". Though self-mapping T in

Example i and Example 2 are non-expansive, they are contractions in the sense

(i.I). These mappings satisfy all the conditions of Theorem l. Theorem i explains

the existence of the fixed point of the above mappings without assuming "uniform

convexity" or "reflexivity with normal structure".

These examples also suggest that non-expansive mappings may be converted into

contraction mappings (general process of conversion is not known). Since the

study of contraction mappings is easier than non-expansive mapping, so this type

conversion has some importance in fixed point theory.
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