

## A GENERALIZATION OF CONTRACTION PRINCIPLE

K.M. GHOSH

Dept. of Pure Mathematics  
Calcutta University  
35, Ballygunge Circular Road  
Calcutta - 700019  
INDIA

(Received December 6, 1979 and in revised form April 21, 1980)

ABSTRACT: In this paper, a generalized mean value contraction is introduced.

This contraction is an extension of the contractions of earlier researchers and of the generalized mean value non-expansive mapping. Using the generalized mean value contraction, some fixed point theorems are discussed.

KEY WORDS AND PHRASES: Fixed Point, Mean Value Iteration.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES: Primary 47H10

### 1. INTRODUCTION.

Let  $T$  be a self mapping of a Banach space  $E$ . The mapping  $T$  will be called a generalized mean value contraction mapping if for any  $x, y \in E$ , there exist non-negative real numbers  $a_i$  ( $i = 1, 2, \dots, 5$ ) such that

$$||TT_\lambda x - TT_\lambda y|| \leq a_1 ||x - y|| + a_2 ||x - TT_\lambda x|| + a_3 ||y - TT_\lambda y|| + a_4 ||x - TT_\lambda y|| + a_5 ||y - TT_\lambda x|| \quad (1.1)$$

where  $\sum_{i=1}^5 a_i < 1$  and  $T_\lambda x = \lambda x + (1-\lambda) Tx$ , and  $TT_\lambda x = T(\lambda x + (1-\lambda) Tx)$ ,  $0 < \lambda \leq 1$  holds.

The contraction (1.1) is more general than the Banach contraction, contractions of

Kannan [1], Chatterjee [2], Hardy and Rogers [3]. When  $\lambda=1$  all these contractions follow as a particular case of (1.1), with suitable choice of  $a_i$ 's. Also, by example, we show that there exist self-mappings which satisfy (1.1), but do not satisfy the well-known contraction just mentioned.

EXAMPLE 1. Let  $T$  be a self-mapping on  $[0,1]$  defined by

$$T(0) = 1, T(1) = 0, T(x) = \frac{1}{9}, x \in (0,1) .$$

EXAMPLE 2. Let  $T$  be a self-mapping on  $[0,1]$  defined by  $T(x) = 1-x$ ,  $x \in [0,1]$  .

EXAMPLE 3. Let  $T$  be a self-mapping on  $[-1,1]$  defined by  $Tx = -x$ ,  $x \in [-1,1]$  .

The mapping  $T$  of the above examples satisfies (1.1) for  $\lambda = \frac{1}{2}$ . However, for  $x=0$ ,  $y=1$ ,  $T$  of Example 1 or Example 2, and for  $x=1$ ,  $y=-1$ ,  $T$  of Example 3 do not satisfy the above well-known contractions. Next, we define generalized mean value non-expansive mapping: Let  $T$  be a self-mapping of a Banach space  $E$ . Then  $T$  will be called a generalized mean value non-expansive mapping if for any  $x, y$  in  $E$ , there exists non-negative real numbers  $a_i$  ( $i = 1, 2, \dots, 5$ ) such that

$$||TT_\lambda x - TT_\lambda y|| \leq a_1 ||x - y|| + a_2 ||x - TT_\lambda x|| + a_3 ||y - TT_\lambda y|| + a_4 ||x - TT_\lambda y|| + a_5 ||y - TT_\lambda x|| , \quad (1.2)$$

where  $\sum_{i=1}^5 a_i = 1$  and  $T_\lambda x = \lambda x + (1-\lambda) Tx$ ,  $0 < \lambda \leq 1$  holds.

Now we define a new contraction which is more general than (1.1) as follows:

Let  $X$  be subset of a normed linear space  $E$ . A mapping  $T: X \rightarrow X$  is called an iteratively mean value contraction mapping if for every  $x \in X$  there exist non-negative real numbers  $a$ , such that

$$||TT_\lambda(TT_\lambda x) - TT_\lambda x|| \leq a ||TT_\lambda x - x|| , \quad (1.3)$$

where  $0 < \lambda \leq 1$  and  $T_\lambda x = \lambda x + (1-\lambda) Tx$  and  $TT_\lambda x = T(\lambda x + (1-\lambda)Tx)$  holds.

The above definition is given because there are self-mappings of a subset of a normed linear space, which do not satisfy (1.1), but satisfies (1.3). An example of self-mapping for which (1.3) holds but (1.1) does not hold, is given below:

EXAMPLE 4. Let  $T$  be a self-mapping on  $[-1,7]$  defined by

$$Tx = -x, x \in [-1,1], Tx = \frac{6}{7} -x, x \in [1,7] .$$

2. MAIN THEOREMS.

THEOREM 1. Let  $T$  be a self-mapping of a normed linear space  $E$ . If

(i)  $T$  satisfies (1.1),

(ii)  $\{x_n\}$  converges to  $u \in E$  where  $x_n = TT_\lambda x_{n-1}$  ( $n=1, 2, \dots$ ) for any  $x_0 \in E$ ,

(iii)  $T(\lambda u + (1-\lambda) Tu) = \lambda Tu + (1-\lambda) T^2 u$ , only for  $u$ ;

then  $T$  has a unique fixed point in  $E$ .

PROOF: Let  $x_0$  be any point in  $E$ . Define,  $x_n = TT_\lambda x_{n-1}$  ( $n = 1, 2, \dots$ ). Put  $x_0 = x$  and  $x_1 = y$  in (1.1), then we have

$$\|x_1 - x_2\| \leq a_1 \|x_0 - x_1\| + a_2 \|x_0 - x_1\| + a_3 \|x_1 - x_2\| + a_4 \|x_0 - x_2\|, \quad (2.1)$$

Again, put  $x_1 = x$  and  $y = x_0$  in (1.1). Then

$$\|x_2 - x_1\| \leq a_1 \|x_1 - x_0\| + a_2 \|x_1 - x_2\| + a_3 \|x_0 - x_1\| + a_5 \|x_0 - x_2\|. \quad (2.2)$$

Adding (2.1) and (2.2), we obtain  $\|x_2 - x_1\| \leq r \|x_1 - x_0\|$ ,

where  $r = \frac{2a_1 + a_2 + a_3 + a_4 + a_5}{2 - a_2 - a_3 - a_4 - a_5}$  and  $r < 1$ , since  $\sum_{i=1}^5 a_i < 1$ .

By induction it may be proved that  $\|x_n - x_{n+1}\| \leq r^n \|x_1 - x_0\|$

It may be shown by routine calculation that  $\{x_n\}$  is a Cauchy sequence. Hence  $\{x_n\}$  is convergent. So, by (ii),  $x_n \rightarrow u \in E$ , as  $n \rightarrow \infty$ .

$$\begin{aligned} \text{Now, } \|u - TT_\lambda u\| &\leq \|u - x_{n+1}\| + \|TT_\lambda x_n - TT_\lambda u\| \\ &\leq \|u - x_{n+1}\| + a_1 \|x_n - u\| + a_2 \|x_n - x_{n+1}\| + a_3 \|u - TT_\lambda u\| + a_4 \|x - TT_\lambda u\| + a_5 \|u - x_{n+1}\| \\ &\leq (a_3 + a_4) \|u - TT_\lambda u\|, \text{ as } n \rightarrow \infty. \end{aligned}$$

Therefore,  $(1 - a_3 - a_4) \|u - TT_\lambda u\| \leq 0$ , which implies that  $u = TT_\lambda u$ , since

$\sum_{i=1}^5 a_i < 1$ . Now,  $Tu = T(TT_\lambda u) = T(T(\lambda u + (1-\lambda) Tu)) = T(\lambda Tu + (1-\lambda) T^2 u)$ , by

Therefore,

$$\|u - Tu\| = \|T(\lambda u + (1-\lambda) Tu) - T(\lambda Tu + (1-\lambda) T^2 u)\| \leq r \|u - Tu\|, \text{ by (i).}$$

Since  $r < 1$ ,  $(1-r) \|u - Tu\| \leq 0$  implies  $Tu = u$  i. e.  $u$  is a fixed point of  $T$ .

Uniqueness of the fixed point follows easily.

THEOREM 2. Let  $T$  be a self-mapping of a bounded convex subset  $M$  of a normed linear space  $E$ . If for any  $x \in M$ ,

(i)  $T$  satisfies (1.3)

(ii)  $\{x_n\}$  converges to  $u \in M$ , whenever  $\{x_n\}$  is convergent, where  $x_n = TT_\lambda x_{n-1}$ ,  
( $n = 1, 2, 3, \dots$ ) for any  $x_0 \in M$ .

(iii)  $\lim_{n \rightarrow \infty} T(\lambda x_n + (1-\lambda) T x_n) = T(\lambda \lim_{n \rightarrow \infty} x_n + (1-\lambda) T \lim_{n \rightarrow \infty} x_n)$

(iv)  $T(\lambda u + (1-\lambda) Tu) = \lambda Tu + (1-\lambda) T^2 u$ , for all  $u$ ;

then  $T$  has a fixed point.

PROOF: Proof is exactly similar to that of Theorem 1, so we omit it.

THEOREM 3. Let  $E$  be a rotund Banach space,  $M$  be a compact convex subset of  $E$  and  $T$  be a self-mapping of  $M$ . If  $T$  is continuous and  $T$  satisfies (1.2) and  $TT_\lambda x = T_\lambda Tx$  for any  $x \in M$ , then  $T$  has a fixed point in  $M$ .

PROOF: Let  $x$  be any point in  $M$ . Define  $f(x) = \|x - Tx\|$ . Since  $T$  and  $\|\cdot\|$  are continuous functions, therefore,  $f(x)$  is also continuous. So  $f(x)$  attains its minimum for some  $x$  (say  $x = z \in M$ ).

First suppose  $\|Tz - z\| = 0$ , then  $z$  is a fixed point of  $T$ . Now let

$\|Tz - z\| \neq 0$ . Hence

$$\begin{aligned} f(TT_\lambda z) &= \|TT_\lambda z - T(TT_\lambda z)\| = \|TT_\lambda z - TT_\lambda(Tz)\| \\ &\leq \|z - Tz\| < \|z - Tz\|, \text{ since } E \text{ is rotund.} \\ &= f(z), \text{ which contradicts the minimality of } f(z). \end{aligned}$$

Therefore  $\|T(z) - z\| = 0$  i.e.  $Tz = z$  is a fixed point of  $T$ .

THEOREM 4. Let  $E$  be a Banach space,  $M$  be a compact convex subset of  $E$ , and  $T$  be a continuous self-mapping of  $M$ . If for any  $x, y$  ( $x \neq y \in M$ ,  $T$  satisfies (1.1) (where  $\leq$  is replaced by  $<$ ) and  $\sum_{i=1}^5 a_i = 1$  and  $TT_\lambda x = T_\lambda Tx$ , then  $T$  has a unique fixed point in  $M$ .

PROOF: Proof is similar to that of Theorem 3.

### 3. CONCLUDING REMARKS.

(i) That the condition (iii) of Theorem 1 is necessary for existence of fixed point of  $T$  as illustrated by the following example.

EXAMPLE 4. Let  $T$  be a self-mapping on  $[0,1]$  defined by  $Tx = 1 - x$ ,  $x \in [0,1]$ ,  $T(1) = 0$ . Here  $T$  satisfies conditions (i) and (ii) of Theorem 1 for  $\lambda < 1$ , but it does not satisfy (iii) and  $T$  has no fixed point in  $[0,1]$ .

(ii) The self-mapping  $T$  of Example 1 and Example 2 are non-expansive ( $\|Tx - Ty\| \leq \|x - y\|$ ). Kirk [4] has proved the following fixed point theorem on non-expansive mapping:

"If  $K$  be a nonempty closed convex bounded subset of a reflexive Banach space  $X$  and if  $K$  possesses normal structure, then every non-expansive mapping from  $K$  into itself has a fixed point."

The same result is also established independently by Browder [5] in a uniformly convex Banach space. There is a close connection between the theorems of Kirk and Browder. This was first noted by Goebel [6] that if  $X$  be a uniformly convex Banach space, then any closed convex bounded subset  $K$  of  $X$ , must have normal structure.

We observe that for the existence of a fixed point of any non-expansive mapping in a Banach space, the Banach space must have a property either "uniform convexity" or "reflexivity with normal structure". Though self-mapping  $T$  in Example 1 and Example 2 are non-expansive, they are contractions in the sense (1.1). These mappings satisfy all the conditions of Theorem 1. Theorem 1 explains the existence of the fixed point of the above mappings without assuming "uniform convexity" or "reflexivity with normal structure".

These examples also suggest that non-expansive mappings may be converted into contraction mappings (general process of conversion is not known). Since the study of contraction mappings is easier than non-expansive mapping, so this type conversion has some importance in fixed point theory.

ACKNOWLEDGMENT: I am thankful to Dr. S. K. Chatterjee for his kind help and continuous encouragement during the preparation of the paper. I am also thankful to the learned referee for his valuable suggestions.

REFERENCES

- [1] Kannan, R. Some Results on Fixed Points, Bull. Calcutta Math. Soc. 60 (1968) 71-76.
- [2] Chatterjee, S. K. Fixed Point Theorems, C.R. Acad. Bulgare Sci. 25 (1972) 727-730.
- [3] Hardy, G. and T. Rogers. A Generalization of a Fixed Point Theorem of Reich, Canad. Math. Bull. 16 (1973) 201-206.
- [4] Kirk, W. A. A Fixed Point Theorems for Mappings which do not increase Distances, Amer. Math. Monthly 72 (1965) 1004-1006.
- [5] Browder, F. E. Non-Expansive Nonlinear Operators in a Banach Space, Proc. Nat. Acad. Sci. 54 (1965) 1041-1044.
- [6] Goebel, K. An Elementary Proof of the Fixed Point Theorem of Browder and Kirk, Michigan Math. J. 16 (1969) 381-383.

## Special Issue on Boundary Value Problems on Time Scales

### Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/ade/guidelines.html>. Authors should follow the Advances in Difference Equations manuscript format described at the journal site <http://www.hindawi.com/journals/ade/>. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

|                        |                 |
|------------------------|-----------------|
| Manuscript Due         | April 1, 2009   |
| First Round of Reviews | July 1, 2009    |
| Publication Date       | October 1, 2009 |

### Lead Guest Editor

**Alberto Cabada**, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; [alberto.cabada@usc.es](mailto:alberto.cabada@usc.es)

### Guest Editor

**Victoria Otero-Espinar**, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; [mvictoria.oter@usc.es](mailto:mvictoria.oter@usc.es)