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ABSTRACT: In this paper, a generalized mean value contraction is introduced.
This contraction is an extension of the contractions of earlier researchers and of
the generalized mean value non-expansive mapping. Using the generalized mean

value contraction, some fixed point theorems are discussed.
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1. INTRODUCTION.

Let T be a self mapping of a Banach space E. The mapping T will be called a
generalized mean value contraction mapping if for any x,ye E there exist non-neg-
ative real numbers ay (i =1,2,...5) such that

|02, -1,y < ) ey |1+ ay [Ttz |1 oy |ly=2,y | a, etn,y | ag -1z ] |
(1.1)
5

where gai <1 and T,x = Ax + (1-A) Tx, and T, x = T(Ax + (1-1) Tx), O<i<l holds.
i=

The contraction (1.1) is more general than the Banach contraction, contractions of
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Kannan [1], Chatterjee [2], Hardy and Rogers [3]. When A=1 all these contractions
follow as a particular case of (l.1), with suitable choice of ai's. Also, by
example, we show that there exist self-mappings which satisfy (1.1), but do not

satisfy the well-known contraction just mentioned.

EXAMPLE 1. Let T be a self-mapping on [0,1] defined by

T(0) =1, T(1) =0, T(x) =5 , x €(0,1)

1
9
EXAMPLE 2. Let T be a self-mapping on [0,1] defined by T(x) = 1-x, x €[0,1] .
EXAMPLE 3. Let T be a self-mapping on [-1,1] defined by Tx = -x, x €[-1,1]

The mapping T of the above examples satisfies (1.1) for A = %. However, for
x=0, y=1, T of Example 1 or Example 2, and for x=1, y=-1, T of Example 3 do not
satisfy the above well-known contractions. Next, we define generalized mean value
non-expansive mapping: Let T be a self-mapping of a Banach space E. Then T will
be called a generalized mean value non-expansive mapping if for any x, y in E,
there exists non-negative real numbers a; (i=1, 2,...5) such that

17,272,y 1< ay| lxey| [+ a, ) [x-T2 x| [+ 2] 1y-T2,5] [+ 2, | |x-T,y] [+ ag||y-2,x] ],
(1.2)

5
where }:ai =1and T)x = Ax + (1-2) Tx, 0 < A < 1 holds.
i=1

Now we define a néw contraction which is more general than (1.1) as follows:

Let X be subset of a normed linear space E. A mapping T: X - X is called
an iteratively mean value contraction mapping if for every x € X there exist non-
negative real numbers a, such that

IITTA (TT,x) - TTAx||§_a||TTAx - x|, (1.3)

where 0 < A <1 and T,x = Ax + (1-1) Txx and TT.x = T (Ax + (1-A)T x) holds.

A A
The above definition is given because there are self-mappings of a subset of

a normed linear space, which do not satisfy (1.1), but satisfies (1.3). An example

of self-mapping for which (1.3) holds but (1.1) does not hold, is given below:

EXAMPLE 4. Let T be a self-mapping on [-1,7] defined by

Tx = -x, x [-1,1], Tx =%-—x, x€[1,7] .
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2. MAIN THEOREMS.
THEOREM 1. Let T be a self-mapping of a normed linear space E. If
(1) T satisfies (1l.1),

(ii) {xn} converges to u€E where x = TT>‘xn_1 (n=1,2,....) for any xOGE,

(iii) T(u + (1-1) Tu) = ATu + (1-1) T2u, only for u;
then T has a unique fixed point in E.

PROOF: Let x, be any point in E. Define, X = TT, x (n=1,2,...). Put

0 A'n-1

X, = x and X =y in (1.1), then we have

lxy = mll < agll % = ]l + 2l g = =yl agll %, = xll + gl % = mll 5 21

Again, put X =% and y = X, in (1.1). Then

||x2 - x1|| < 31” X1 " % |+ 32“ X - lel + a3|| X0 ~ xlll + a5|| Xy ~ x2|| . (2.2)
Adding (2.1) and (2.2), we obtain ”x2 - xlll <r ”xl - xOH R

2a, +a,+a,+a, +a 5
where r = 1 2 3 4 3 and r < 1, since Eai< 1.

2-a2ea3 a4—a5 i=1

By induction it may be proved that |[[x - xn+1|| <t X - xoll

It may be shown by routine calculation that {xn} is a Cauchy sequence. Hence

{xn} is convergent. So, by (ii), x > w€E, asn > ® .
Now, ”u - TT)\u” i”u - xn+1“ + ”TT)‘xn - TT}‘u”

i”u—xn_"l“ +a1|| xn—u” +a?;|| xn-xn+1|| +a3|| u-TT)\uH +a4|| x-TT)‘u” +a5[| u-xn+1||

< (agta) lu - TT,ufl , as n > = .

Therefore, (1 - a_ - aA) | o - TT)‘u||_<_ 0, which implies that u = TT.u, since

3 A

5
z:ai <1. Now, Tu= T(TTAu) = T(T(Au + (1-A) Tu) = T(A Tu + (1-1) Tuz), by
i=1

Therefore ,
”u - Tu“ = ”]?()\u + (1-12) Tu) - T(ATu + (1-2) T2u)|| < r” u - Tu“ , by (1).
Since r<1, (l-r) || u - Tu|| < 0 implies Tu = u i. e. u is a fixed point of T.

Uniqueness of the fixed point follows easily.
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THEOREM 2. Let T be a self-mapping of a bounded convex subset M of a normed
linear space E. If for any x € M,
(1) T satisfies (1.3)
(ii) {x_} converges to u € M, whenever {x_} is convergent, where x = TT.x .,
n n n A n-1
(n = 1,2,3,...) for any X, € M.

(iii) Lim T (Ax_ + (1-A) T x ) = T(A Lim x_ + (1-A) T Lim x )
oo n n e D o D

(iv) T (wu + (1-2) Tu) = ATu + (1-A) T2u, for all u;

then T has a fixed point.
PROOF: Proof is exactly similar to that of Theorem 1, so we omit it.
THEOREM 3. Let E be a rotund Banach space, M be a compact convex subset of
E and T be a self-mapping of M. If T is continuous and T satisfies (1.2) and

TTAx = TXTx for any x€ M, then T has a fixed point in M.

PROOF: Let x be any point in M. Define f(x) = |[x - Tx||. Since T and
[l.]| are continuous functions, therefore, f(x) is also continuous. So f(x) attains
its minimum for some x(say x = z€M).
First suppose ||Tz - z|| = O, then z is a fixed point of T. Now let
||tz - z||# 0. Hence
£(TT,2) = ||TT,z - T(IT,2)|| = || TT,z - TT, (T2)||
< ” z - Tz||< ||z - Tz]l, since E is rotund.
= f(z), which contradicts the minimality of f£(z).
Therefore ||T (z) - z|| = 0 i.e. Tz = z is a fixed point of T.
THEOREM 4. Let E be a Banach space, M be a compact convex subset of E, and
T be a continuous self-mapping of M. If for any x,y (x # y) €M, T satisfies (1.1)

5

(where < is replaced by <) and Eaéi =1 and TT,x = T,Tx, then T has a unique
i=

AT M
fixed point in M.
PROOF: Proof is similar to that of Theorem 3.

3. CONCLUDING REMARKS.

(1) That the condition (iii) of Theorem 1 is necessary for existence of fixed

point of T as illustrated by the following example.
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EXAMPLE 4. Let T be a self-mapping on [0,1] defined by Tx = 1 - x, ¥€.[0,1],
T(1) = 0. Here T satisfies conditions (i) and (ii) of Theorem ] for A < 1, but
it does not satisfy (iii) and T has no fixed point in [0,1].

(ii) The self-mapping T of Example 1 and Example 2 are non-expansive
(lltx - Ty|| < |l]x - y|| ). Xirk [4] has proved the following fixed point theorem
on non-expansive mapping:

"If K be a nonempty closed convex bounded subset of a reflexive Banach space
X and if K possisses normal structure, then every non-expansive mapping from K
into itself has a fixed point."

The same result is also established independently by Browder [5] in a uni-
formly convex Banach space. There is a close connection between the theorems of
Kirk and Browder. This was first noted by Goebel [6] that if X be a uniformly
convex Banach space, then any closed convex bounded subset K of X, must have nor-
mal structure.

We observe that for the existence of a fixed point of any non-expansive map-

"uniform

ping in a Banach space, the Banach space must have a property either
convexity" or "reflexivity with normal structure'". Though self-mapping T in
Example 1 and Example 2 are non-expansive, they are contractions in the sense
(1.1). These mappings satisfy all the conditions of Theorem1l. Theorem 1 explains
the existence of the fixed point of the above mappings without assuming "uniform
convexity" or "reflexivity with normal structure'.

These examples also suggest that non-expansive mappings may be converted into
contraction mappings (general process of conversion is not known). Since the
study of contraction mappings is easier than non-expansive mapping, so this type
conversion has some importance in fixed point theory.
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