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ABSTRACT. The problem of flow of a Rivlin-Ericksen type of viscoelastic fluid is dis-
cussed when such a fluid is confined between two infinite rotating coaxial disks. The
governing system of a pair of non-linear ordinary differential equation is solved by
treating Reynolds number to small., The three cases discussed are: (1) one disks is
held at rest while other rotates with a constant angular velocity, (ii) one disk ro-
tates faster than the other but in the same sense and (iii) the disks rotate in op —
posite senses and with different angular velocities. The radial, tranverse and axial
components of the velocity field are plotted for the above three cases for different
values of the Reynolds number. The results obtained for a viscoelastic fluid are com-
pared with those for a Newtonian fluid. The velocity field for case (i) is also com -
puted when a magnetic field is applied in a direction perpendicular to the discs and
the results are compared with the case when magnetic field is absent.Some interesting

features are observed for a viscoelastic fluid.
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1. INTRODUCTION.

In a recent investigation we have discussed the flow of a viscoelastic fluid
of Rivlin-Ericksen type between a pair of infinite, coaxial rotating disks (see ref.
[117 and all the other references therein). The disks are taken to rotate with
different constant angular velocities, either, in the same senses or opposite
senses, or, one disk is held at rest and the other is taken to rotate with a constant
angular velocity. The system of non-linear ordinary differential equations governing
the flow was obtained and solved numerically under the appropriate boundary
conditions of the problem using finite-difference technique and successive over-
relaxation procedure. The solutions were given for values of the Reynolds
number up to 1000 and some interesting features for the flow of a viscoelastic
fluid were reported.

In the present investigation, therefore, it is our aim to discuss the problem of
flow of a Rivlin-Ericksen fluid between coaxial rotating disks but for small values
of the Reynolds number. As the basic system of equations governing such a flow has
been already derived in [1] , we shall briefly formulate the problem in the next sec-—
tion. In section 3, we obtain the pertubation solutions for small values of the
Reynolds number. In section 4, we treat the flow in the presence of an externally ap-
plied magnetic field and provide pertubation solutions for the case of one disk at
rest. At the end in section 5, we give some interesting illustrative examples for
radial, transverse and axial components of the velocity and discuss characteristics

of the flow field.
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-2, FORMULATION OF THE PROBLEM.

Let us consider the steady flow of a Rivlin - Ericksen type of non-Newtonian
fluid occupying the space between a pair of infinite parallel disks. In a cylindrical
polar co-ordinate system (r, 6, z), let the lower disk situated at z = 0 have an
angular velocity QS while the other disk, situated at z = d have an angular ve-
locity §,0 and S being constants. Let u,v and w represent the components of velocity
in the increasing directions of r,0 and z respectively.

We now write
u=;%rﬂﬁ‘(n),v=rQG(n), w =d QH(n) , (¢9)

so that the equation 6f continuity is identically satisfied for an axi-symmetric flow.
Here n is a non-dimensional axial co-ordinate given by n = z/d and a dash denotes
differentiation with respect to n.

Substituting from (1) intc the equations of motion (as was done in[1]and elimi—
nating the pressure from the equations in the radial and axial directions respective-
ly, we obtain the following system of non-linear ordinary differential equations for.

the functions G and H:

G'' + R(H'G - HG') + aR(H'G'' - H''G') (2)

+ KR(HG''' - H''G') =0 ,

Hlv - R(HH''' + 4GG') + oR(12G'G'' + H'Hlv + 2H'"'H''') +

+ KR(H''H''' + 8G'G'' + % wEY 4+ % ') =0 , (3)
where
2 ¢ ¢
R = g p is the Reynolds number and o = 2 , K= g
1 pd pd

are the non-dimensional parameters characterising the viscoelasticity of the fluid.

The equations (1) and (3) have to be solved under the following non-dimensional-
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ized boundary conditions:

G(0) =S . G(1) =1,
H(0) =0 . H(1) = 0,
H'() =0 . H'T1) = 0. (%)

When o = 0, K = 0, the above equations (2) and (3) reduce to the well-known equations

to the corresponding problem for a classical viscous fluid.

3. SOLUTION FOR SMALL VALUES OF REYNOLDS NUMBER R.

We now develop regular pertubation solutions for the functions G and H in the

following manner:

G(n) = Gy(n) + RG () + R'G,n) + RG,(n) + ...,

H(n) = By(n) + RE () + R°H,(n) + ROE;(M) + «oo . )

In order to obtain the various order solutions for the functions G and H , we

substitute their expressions in the equations (2) and (3) and the boundary conditions

4).

(i) ZERO-ORDER SOLUTION

The equations for Go and HO have the form

Gé' =0 (6)
and
H;V =0, %)

to be solved under the boundary conditions

GO(O) =S, Go(l) =1, HO(O) = Ho(l) = Hé ) = 36(1) =0 . (8)

It can be easily seen that
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o =5+ A -9n , ®)

Hy(n) =0 . (10)

(ii) FIRST-ORDER SOLUTION

Making use of (9) and (10), the equations for G1 and Hl take the form

Gi' =0 (11)
and
Y -4
;=40 -9+ - s)nl. 12)

The conditions satisfied by G1 and H1 are

6,(0) =6,(1) =0, H(0) =H 1) =H(0) =H(1) =0. (13)
Solving (11) and (12) and making use of (13), we get,

Gl(n) =0 . (14)

and
1 2 1 3
Hl(n) 30 (1-8) (2+38)n 30 (1-S) (3+78)n
1 4 1 25
+ 3-3(1-s)n * 35 (1-8)" n~ . (15)

It may be noted that the zero and first order solutions do not involve the viscoelas-

tic parameters o and K.

(iii) SECOND-ORDER SOLUTION

It can be easily seen that the equations determining the functions G2 and H2

have respectively the forms

[ . [T ] 11A0
Gy (H1G0 cho) + (o + K)H1 Gy > (16)

and
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BV =0, %))

to be solved under the boundary conditions
= = . = = 1 = 1 =
G2(0) Gz(l) 0 ; H2(0) H2(1) H2(0) H2(1) 0. (18)

Thus we get,

_ 1-8 2 _ . S(1-S) 3
Gz(n) = $300 (27 87 + 16 8§ - 8)n - =55 (2 + sS)n
_1-s . _ 2, 4 1-S _ 3.5
1_83(1 48 1287)n + 300 (3 + 4S8 1787)n
1 2 6 1 3 7
- -4? S(l-S) n - E (I—S) n

2 2
(@ + K) [S%igl @ + 38 - S%i?l_ (3 + 78)n°

+

+

% s(1-5)2 n* + gﬁ -3’1, 19)

and

H,(n) = 0. (20)

(iv) THIRD-ORDER SOLUTION

Substituting from (5) into the equations (2) and (3), it may be easily verified

that G, and H, satisfy the following equations respectively:

3 3

¢}' = o0, (21)
Hgv - (HH]'' + 4GG) *+ 4G) G,)

+ a(126)G," + 126)'G) + HiHiv + 2H)" HY')

+ 2K(8G6 Gé' + 8G6'Gé + Hi'Hi" + % Hiniv + %-HlH:) =0 . (22)
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0’ 62 and Hl in the above equations and solving

them under the prescribed boundary conditions on G

Using the expressions for G
' .
30 H3 and H3 we find that, the

third-order solution is given by,

G, =0 (23)
Hs(n) = xo nz + 15(1 n3 + X2 nl' + X, n5
+X4n6+X5n7+X6n8+X7n9
+ Xg nt0 4 X ntt , (24)

where Xi », 1 =0 to i =9 are given by

S 105 - - 2y, _1-s
Xo = - 396800 (461 922 S 1219 s7) + 3368000 (332
2 3 a(1-8)>
- 1011 S + 2466 S~ + 913 s7)] - 567000 (474 - 17138
2. K@A-s)2 2
- 2361 S87) - 383500 (552 - 1059 S - 1743 87)
T, 3
+ =150~ (a + K) (3a + 4K)(1-S)7 (16 + 19S8) , (25)
_ _8(1-8) _ _ 2 1-8 _
Xl 326800 (856 17128 2504 S7) + 3368000 (579 1277 S
2 3, a(1-s)> 2
+ 3117 S© + 1781 §7) - —337556—(839 + 8072 S + 8189 S7)
K(1-8)° 2 1 4
- —g3500~ (7 * 4636 S + 5257 §7) + a7 (o + K)(Ba + 4K)(1-8) 7, (26)
o1 _ _ _ 2 (a+K) _ay2
X2 2725 s(1 S)(8 16S 2787) + 300 (1-S)“(2+38) (3+7S)

- 313 (¢ + K) (3 + 4K) (1-8)3(2+38) , @27
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1 2 2 1, 2
+ 117 $%) + R(27+86 5+ 878%) ] + SEIEli%%at_ﬁEl a-5)3@3+78) (28)
1 2, . (-s)?
X, == 57000 (1=8)(2 + 38)(3 + 4S + 1387) + =5oie- [ a(s + 298
2 2 1 3
+ 5787) + K(4 + 208 + 3657)] - 7% (a + K)(3a + 4K)S(1-8)" , 29)
X = —oo— (1-5) (27 + 195 + 1615° + 3935°)
5 = T378000
a-s)* 2 2 2
+ 252l [ (3457 - 6757) - 2KST -(a + K)(3a + 4K)(1-S)° 1, (30)
315 20
- 1 - 2 _ 3, _ o _ay3 _ K _ay3
X, = 151505 (17S) (2 + 175 + 208" - 9957) - 575 S(1-5)" - &5 S(1-8)7,  (31)
1 2 2, _a-s)*
X; = 753500 (17S)7(3 + 48 - 10757) - —omgs— (Ja + 4K) (32)
11 3
Xg 726800 S(178)7 » (33)
1 4
Xq 726800 (175 - (34)

Thus the components of the velocity field u,v and w have been computed to the

third power of the Reynolds number R.

4. EFFECTS OF TRANSVERSE MAGNETIC FIELD ON THE FLOW FIELD :CASE OF ONE DISK HELD AT

REST.

We now consider the problem of flow of a viscoelastic fluid when a constant mag-
netic field ﬁb is applied in a direction perpendicular to the discs. Making use of
the steady state Maxwell's equations and adding the contributions due to Lorentz

force in the equations of motion, it can be verified that the equations (2) and (3)
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for the functions G and H are modified to have the following forms respectively:

G'' + R(H'G - HG') + aR(H'G'' - H''G'")

+ KR(HG''' - H''G') - MG =0 , (35)

and

HY - R(HH''' + 4GG') + aR(12G'G'' + H'H'Y + 2H''H''')

iv 1 2
gy + E-HHV) -MH''=0, (36)

+ 2KR(8G'G''' + H'"'H'"' +1~_
2

where the Hartmann number M is defined as

22 2
2 MgHydo
We 22— .
Poy

In the above expression for M, Ho represents the magnetic permeability and o the
conductivity.

The boundary conditions satisfied by G(n) and H(n) in equations (35) and (36)
are the same as in (4).

We shall now obtain solutions for the case of one disk at rest, namely, the case
with S = 0; Once again treating Reynolds number R to be samall, we expand the func-
tions G(n) and H(n) in a series in R as was done in (5). The zeroth, first and the

second order solutions are then given as follows:

(i) ZERO-ORDER SOLUTION

When M # 0 , the equations for G, and H, are

0 (]
¢'' - ¥ =0 (37)
0 0 ’
iv _ 2 vi_
Hy M H o . (38)

Solving (37) and (38) and using the boundary conditions (8), it can be easily seen

that

1 .
Go(n) = ST Sinh (Mn) , (39)
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and

Ho(n) =0 .

(ii) FIRST-ORDER SOLUTION

The functions Gl(n) and Hl' (n) satisfy the following equations:

6" -6 =0 ,
iv _ 2.4 = [ [PXK]
Hl M Hl 4G0G0 430 + 4K)G0G0 .

Solving them under the boundary conditions (13), we get

Gl(n) =0 ,
A B . .
H,(n) = C + Dn + — Cosh(Mn) + — sinh(Mn) + a, sinh(2Mn) ,
1 M2 M2 0
where
a0=—3—12— [1-M2(3(1+4K)] N
6M”“sinh™
a5 o
A= T M” [ (1 - Cosh M) sinh(2M) + 2(M Cosh M - sinh M)
0
+ 2(sinh(M) - M) Cosh(2M)]
20 2
B = b——M [2(1 - Cosh 2M) (Cosh M - 1) - sinh M(2M - sinh 2M)] .
0

a
C = b_o [ (Cosh M - 1) sinh 2M - 2(M Cosh M - Sinh M)
0
- 2 Cosh(2M) (Sinh M - M)]

a
D = BQM [- sinh(M)sinh(2M) + 2(Cosh M-1Y(1 + Cosh 2M)] ,
0

(40)

(41)

(42)

(43)

(44)

(45)

(46)

47

(48)

(49)
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and

b0 =M sinh(M) + 2(1°- Cosh M) .

(iii) SECOND-ORDER SOLUTION

The equation satisfied by Gz(n) is

6y - ul6,= (1 - MZK)HIG'— a+ Mza)HiGo + (@ + K H

1] \]
2 1%

Solving (51) under the appropriate boundary conditions, we have

Gz(n) = Pl{Cosh(Mn)-l} + P, sinh(Mn) + P_ nCosh(Mn)

2 3

+ Pa(ZCn + Dnz) sinh(Mn) + P_ sinh(3Mn) ,

5

where Pl’ PZ’ P3, P4 and P5 are given by
2
P] = ——a——L— (1 + M) ,
M”sinh (M)
" Cosh M 4 >
P, = croyp (1 - Cosh M) - = [—— {1+ v v
s sinh” (M)
D 2,y _ MDx 2C+D 2y
- B MK 5 ] el MTK)
aosinh(3M) . ’
+ 5 1 - M (3K + 20) s
16Msinh™ (M)
1 3a, 2 D 2 MDo.
Py smmgn (77 (LN Qe s Kiogg G- -SR]
- 1 2
P, = sy MR
and
a
P 0 {1-M2CK + 200} .

5 =~ 7 16M sinh(M)

191

(50)

(51)

(53)

(55)

(56)

(57)
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As for the case with M = 0, here also it can be verified that

M,(n) =0 . (58)

This completes the solution for the case of one disk at rest in the presence of tran-

verse magnetic field. The solutions for the case S # 0 will be presented separately.

5. DISCUSSION OF THE RESULTS

(i) tower disk held at nest on notating fastern than the upper disk:

Throughouﬁ our discussion we have taken the values of the Reynolds number R to
be R =0.2, 0.4, 0.6 and 0.8. For the sake of comparison, results are depicted for a
classical viscous fluid (o = 0, K = 0) and a typical viscoelastic fluid for which

o =0.1 and K = - 0.05.

Fig. 1 depicts the curves of H for a classical viscous fluid a =0, K =0
for S = 0 and 5.0. For the case S = 0, comparison is also made between the curves
of H when the Hartmann number M = 0 and 1.0. It is noted that when S = 0, the
function H representing the axial velocity is always positive whether M=0 or 1.0.
The effect of the tranverse magnetic field on the flow is to decrease the axial velo-
city for each value of the Reynolds number from R = 0.2 to R = 0.8, The profiles
are nearly parabolic in character. Whem S = 1, the whole system undergoes a rigid
body notation and as S increases further, the function M changes its sign. This may
be observed from the curves depicting axial velocity profiles for S = 5.0 and R=0.2,
0.4, 0.6 and 0.8 in Fig. 1.

In Fig. 2, we have drawn the axial velocity profilés for a viscoelastic fluid
o=0.1, K=-0.,05 for S =0 and 5.0. The values of R are same as in Fig. 1.
The character of the profiles is similar to those for a classical Newtonian fluid.
It is interesting to note that in the presence of viscoelasticity in the fluid, the
effect of tranverse magnetic field is to decrease the axial velocity much more than

for a Newtonian liquid. This may be easily observed from the curves of H for M = 1.0
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and comparing them with the corresponding curves in Fig. 1 for a = 0, K = 0. Here also
for § = 5.0, i.e. when the lower disk rotates five times faster the upper disk, the
axial velocity becomes completely negative.

Fig. 3 represents the curves for the function H' for S = 0 and a = 0.1, K=-0.05.
It may be recalled that the radial velocity is actually designated by -H'. For each
value of the Reynolds number R from R = 0.2 to 0.8, H' is positive in the lower
half region whereas it is negative in the upper half region between the two disks. The
increase in R gives rise to increase in H' in the lower half region. The reverse is
true in the upper half region. Once again, it is observed that the presence of  tran-—
verse magnetic field decreases H' for each R in the lower half region and that the
reverse holds for the upper half region.

In Fig. 4. we have drawn the profiles of the function H' for o = 0.1, K = -0.05
and S = 5.0. Comparing these curves with the corresponding curves for S = 0 in Fig.4,
we note that the flow field is reversed and now H' is negative in the lower half region
whereas it is positive in the upper. half region between the two disks.

Fig, 5 represents the curves of the tranverse velocity function G for the case of
lower disk held at rest i.e. S = 0, the fluid parameters being o = 0.1, K = -0.05.
Choosing the value of the Reynolds number R = 0.2, comparison is made for Hartmann
number M = 0 and 1. In the absence of magnetic field, G varies linearly from G =0
at the lower disk to G = 1 at the upper disk. The tranverse velocity is increased when
magnetic field is applied as it is clear from the curve of G for M = 1.0. The situation
is contrary in Fig. 6, which shows curves of G for R = 0.4 and o = 0.1, K = -0.05,
the lower disk rotating five times faster than the upper disk, G now decreases linear-

1y between the two disks from G = 5 at the lower disk to G = 1 at the upper disk.
(ii) Two disks rotating in cpposite directions and with different angular veloci-
ties:

We now discuss some results for a viscoelastic fluid o = 1, K = -0.05 when the
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two disks rotate in opposite directions and with different angular velocities i.e.
S is non-zero negative.

Fig. 7 depicts the curves of the axial velocity function H for R = 0.2, 0.4,
0.6, 0.8 and different negative values of S. When S = -0.5, H is completely posi-
tive and increases in the entire region with increase in R. However, when S = -1.0,
i.e. when the two disks rotate with same angular velocity but in opposite senses,
H is positive but only in the upper half region. In the lower half region, it
takes negative values. They are not shown in the figure because of their extreme
smallness. For S = -0.5, the region of positive H completely disappears and the
axial velocity becomes negative in the entire region between the two disks. In
this case, therefore H decreases with increase in R.

In Fig. 8, we have drawn the curves of H' for S = -0.5 and -1.0. When S = -0.5,
H' takes both positive and negative values. The point where H' vanishes lies in
the upper half region (n = 0.57). The increase in R increases H' in the lower
region and reverse is true for the upper region. The situation no longer remains
so when S = -1.0. The flow region is now divided into three parts with the appear-
ance of a central core in which H' is positive for all values of R considered. 1In
the other two regions, one near the lower disk and the other near the upper disk,
H' is negative. Thus for this case, we have two points where H' vanishes; one lies
in the lower half plane whereas the other lies in the upper half plane.

From Fig. 9 showing the curves of H' for S = -0.5, we observe that the central
core has disappeared. Now H' is negative in the lower region whereas it is positive
in the upper region. The point where H' vanishes lies in the lower half plane.

The increase in R causes increase in H' in the upper half region while the reverse
is true for the lower half plane between the two disks.

Fig. 10 represents the graph for the function G depicting the tranverse velo-
city for R = 0.6, S = -5.0 and a = 0.1, K = -0.05. It is observed that G varies
linearly from -5.0 at n = 0 to 1.0 at n = 1.0. This behaviour is similar to those
for S = 0 as S = 5.0 in the absence of magnetic field.

The numerical computations were carried out on the University of Campinas

PDP 10 computer.
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*The paper was presented at the IUTAM Symposium on Non-Newtonian fluid Mechanics

held at Louvain~la-Neuve, Belgium from Aug. 28 to Sept. 1, 1978.
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