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ABSTRACT. For the pair of functional equations

(A) (r(t)y’(t))’ + p(t)h(h(g(t))) f(t)

and

(B) (r(t)y’(t))’ p(t)h(y(g(t))) 0

sufficient conditions have been found to cause all solutions of equation (A) to be

oscillatory. These conditions depend upon a positive solution of equation (B).
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I. INTRODUCTION.

Our main goal, in this work, is to seek the oscillatory behavior of the

equation
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(r(t)y’ (t)) + p(t)h(y(g(t))) f(t) (1.1)

via the nonoscillation of the equation

(r(t)y’ (t)) p(t)h(y(g(t))) 0. (1.2)

Oscillation properties of equation (I.i) were studied by Kartsatos [3] and

Kusano and Onose [4] by first "homogenizing" it and then using the techniques

known for homogeneous equations. In fact a function %(t) was sought to satisfy

(r(t) (y(t) %(t)) f(t). (1.3)

A similar approach was later used by this author [9] in finding conditions

for the oscillation of the equation

(n-l) n+l(r(t)y’ (t)) + (-i) p(t)y(g(t)) f(t). (1.4)

Recently Rankin [8] presented a new approach to study the oscillatory

behavior of the ordinary differential equation

y’’(t) + p(t)y(t) f(t), (1.5)

by using the transformation

y(t) $(t)z(t) (1.6)

where $(t) is a positive solution of the equation

y’’ (t) + p(t)y(t) 0. (1.7)

Transformations usually do not carry over to functional equations (i.I)

and (1.2). The failure in study of equation (i.i) leads us to this work in which

we present a different approach to study the oscillation of equation (i.I)

which may be sublinear, superlinear, retarded or advanced.

Since our results do not depend on the integral size of p(t), they are

different from those of Kartsatos [3], Kusano and Onose [4] and this author

[9]. Our results are also different than those of Rankin [8]. In fact the

following example shows that Rankin’s results are not true for the pair of

retarded equations
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y’’ (t) + 2
16t (t-n) 3/4

y(t-T) -100t sin 10t + 20 cos 10t

1/4 1/4
3 (t-) 3

+ + sin 10t,
8 2 2

t 16t
(1.8)

and

3y’’ (t) + 3/4
y(t-) 0. (1.9)

16t
2

Equation (1.9) has the nonoscillatory solution (t) t3/4 which satisfies the

conclusion of Rankin’s main theorem ([8, Theorem 2]) namely

t x

limtinf 2 (x) (s) f(s) dsdx -,
T T

(1.1o)

t x
lim sup )[ 21 )[ (s) f(s) dsdx ,
t (x)

T
T

(1.11)

and [ 2
dx < ,

T
(x)

for any large T > 0; where

f(t) -100t sin (10t) + 20 cos(10t) +
3(t-)

I/4
+ 3(t-)

8t
2

16t
2

1/4
sin(10t).

But equation (1.8) has the nonoscillatory solution

y(t) 2t + t sin(10t).

2. DEFINITIONS AND ASSUMPTIONS

Throughout this study we assume the following:

(i) g(t), r(t), p(t), h(t) and f(t) are C[R,R] where R denotes the

real line;

(ii) r(t)>0, r’ (t)<_0 and p(t)>0 for t>t0>0 where we shall assume tO

to be fixed arbitrarily, tO will be referred to in this study

without any further mention;
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(iii) g(t) as t+

(iv) sign h(t) sign t.

The term "solution" refers to nontrivial continuously extendable solutions

of equations under consideration over the interval [t0,). We call a function

Q(t) e c [[to,), R] oscillatory if Q(t) has arbitrarily large zeros on

[t0,); otherwise Q(t) is called nonoscillatory. Equations (i.i) and (1.2) are

called sublinear or superlinear

0 < h(t) < k
t

if 0 < < i or < 1 respectively where k is constant and is the ratio

of odd integers.

3. MAIN RESULTS

THEOREM i: In addition to (i)- (iv) suppose there exists a function (t)

which is continuous for t>_t0 and satisfies (r(t)’ (t))’> o (0 in any interval),

t s

limtinf ] 21(s) f (x) f(x)dxds =-, (3.1)

t S

limtsup 2 (s)
(x) f(x)dxds (3.2)

and

2(t
dt < (3.3)

Then all solutions of equation (i. i) are oscillatory.

PROOF: Suppose to the contrary that equation (i.i) has a nonoscillatory

solution y(t). Without any loss of generality suppose T>t0 is large enough

so that for t>T, y(g(t) )>0 and y(t)>0. Rewriting equation (I.i) after multi-

plication with (t) we have

(r(t)(t)y’ (t)) (r(t)’ (t))y’ (t) + p(t)(t)h(y(g(t))) (t) f(t) (3.4)
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Integrating (3.4) for t ) T we have

r(t)(t)y’ (t) r(T)(T)y’ (T) r(t)’ (t)y(t)

t
+ r(T)’ (T)M(T) + f (r(s)’ (s)) ’y(s)ds

T

t t
+ f p(s)(s)h(y(g(s)))ds f (s) f(s)ds.

T T

Set

K r(T)’ (T)y(T) r(T)(T)y’ (T).

Dividing (3.5) by 2(t) and rearranging terms we have

t
r(t)y’ (t) + K r(t)’ (t)y(t) + 1 [
(t) 2 (t) 2 (t) 2 (t) T

(r(s) ’ (s)) ’yds

t

2(t)
T

p(s)(s)h(y(g(s)))ds
2(t

t
,(s) f(s)ds.

T

Integrating (3.7) between T and t we have

t

r(t)y(t)(t) r(T)y(T)(T) + I r(s)2’ (s)y(s)

T
(s)

as
t r’ (s) y(s)

(s)
as

t t
+ K/2(s)ds f r(s)’(s)y(s)2(s) ds

T T

t X

2
[(r(s)’ (s)) ’y(s) + p(s)(s)h(y(g(s))) ]dsdx

T
(x)

T

(3.5)

(3.6)

(3.7)

t X

T T

which leads to

r(t)y(t)
(t)

(s) f(s) dsdx

r(T)y(T)
(T)

t
r’ (s)y (s)
(s)

as

(3.8)
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t
+ K i/2 (s) ds

T

t X

+ [(r(s)’ (s)) ’y(s) + p(s)(s)h(y(g(s))) ]dsdx
2 (x)

T T

t X

2(x) f (s) f(s)dsdx.

T T

(3.9)

Since third, fourth and fifth terms on the left hand side of (3.9) are either

nonnegative or finite, we immediately reach a contradiction in view of (3.1) and

(3.2). The proof is complete.

COROLLARY i. Suppose (i)-(iv) hold. Further suppose that equation

a positive solution (t) satisfying (3.1), (3.2) and (3.3). Then all solutions

of equation (i.i) are oscillatory.

PROOF. Since (r(t) ’ (t)) > 0 conclusion follows from Theorem i.

and

EXAMPLE i. Consider the equations

2t-’ny’’ (t) + ey(t-) 4e2tcost + 3e2tsint e sint (3.10)

y’’ (t) ey(t-) 0 (3.11)

tfor t > . Equation (3.11) has y(t) e as a solution which satisfies (3.1),

(3.2) and (3.3). Thus all solutions of equation (3.10) are oscillatory. In fact

y(t) e2tsint is one such solution.

REMARK. In Rankin’s work ’’ (t) < 0 where as here ’’ (t) > 0 when

r(t) I.

THEOREM 2. Suppose r(t) 1 and (i)-(iv) hold. Further suppose that

equation (1.2) has a positive solution (t) such that ’ (t) > 0 ( 0 in any

subinterval) for t > to Let (3.1) and (3.2) of Theorem (i) hold. Then all

solutions of equation (i.I) are oscillatory.
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PROOF: Since

’’(t) > 0, ’(t) > 0 and (t) > 0 (3.12)

for t > to, there exist positive numbers cI and c2 such that (t) > clt + c2,

and consequently (t) satisfies (3.3). The proof is complete. We now have

the following corollary.

COROLLARY 2: Suppose equation (1.2) has a positive nonoscillatory solution

z(t) such that z’ (t) > 0. Further suppose that equation (i.i) has a non-

oscillatory solution. Then either

t s
lim inf f 1

i z(x) f(x)dxds >
t z

2
(s)

(3.13)

or

1
s

lim sup [ [ z(x) f(x)dxds <
t ) z

2
(s)

(3.14)

EXAMPLE 2. The equation

4
y’’ (t) +

t
z(t) -sin t +

t
z: +

t2
2sin t. (3.15)

has the nonoscillatory solution y(t) 2 + sin t. Now consider

2
y’’ (t) --- y(t) 0

t
(3.16)

which has z (t) t
2

as a nonoscillatory solutions satisfying the conditions and

conclusion of Corollary 2.

4. ASYMPTOTIC NONOSCILLATION

Example 2 shows that when (3.1) and (3.2) are relaxed then equation (i.I)

may have nonoscillatory solutions. In this section we give conditions when

nonoscillatory solutions of (i.i) approach limits.

HEOREM 3: Suppose (i)-(iv) hold. Let (t) be a positive solution of

equation (1.2) such that ’ (t) > 0 ( 0 in any subinterval of t for t > to)
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t X

limtinf 2(x)
(s) f(s)dsdx < 0 (4.1)

and

t X

limtsup 2 (x)
(s) f (s) dsdx > 0. (4.2)

Let y(t) be a bounded solution of equation (i.i). If y(t) is nonoscillatory

then y(t) tends to a finite limit.

PROOF. Without any loss of generality, let T > tO be large enough so that

y(t) > 0 and y(g(t)) > 0 for t > T. Suppose to the contrary that

lira inf y(t) < lim sup y(t).
t t

(4.3)

Then there exists a sequence "Tn such that Tn + as n and
n=l

y’ (Tn) o. Let k be a large positive integer such that

y (Tk) r (Tk) < Min
-lim inf
t

(Tk)

t
1 (s)f(s)dsdx

Tk
2(x) Tk

t
1

x

Tk Tk

Following the proof of Theorem i, we obtain from (3.9)

t t
r (t) y(t)(t) r’ s) y (s)aScs) + r(Tk) Tk) y (Tk) f 1

Tk Tk 2 (x)

dx

(4.4)

t X

p(s) (y(s)h((g(s))) + (s)h(y(g(s))))dsdx+
2 (x)

Tk Tk

t X

Tk Tk

y (Tk) r (Tk)
(Tk)

(4.5)
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In view of (4.1), (4.2) and (4.4), we reach a contradiction in (4.5). The

proof is complete.

REMARK. Example 2 shows that conditions (4.1) and (4.2) cannot be weakened.

COROLLARY 3. Suppose conditions of Theorem 3 hold. Let y(t) be any

solution of equation (i.i) such that y(t)
0 as t . If y(t) is non-

Ct)

oscillatory then y(t) tends to a finite or infinite limit as t + .
REMARK. Recently Graef and Spikes [i], Hammett [2], Kusano and Onose [5,6],

Philos and Starkos [7], this author [i0,ii] have studied asymptotic nonoscilla-

tion with regard to equation (i.i). However all these results make use of an

integral condition on p(t). Theorem 3 and Corollary 3 present a different

approach.
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