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ABSTRACT. Let (X,d) denote a locally connected, connected separable metric space.

We say the X is S-metrizable provided there is a topologically equivalent metric

0 on X such that (X,0) has Property S, i.e. for any e > 0, X is the union of

finitely many connected sets of 0-diameter less than e. It is well-known that

S-metrizable spaces are locally connected and that if 0 is a Property S metric for

X, then the usual metric completion (,0) of (X,o) is a compact, locally connected,

connected metric space, i.e. (,) is a Peano compactification of (X,o). There

are easily constructed examples of locally connected connected metric spaces which

fail to be S-metrizable, however the author does not know of a non-S-metrizable

space (X,d) which has a Peano compactification. In this paper we conjecture that:

If (P,0) a Peano compactification of (X,01X), X must be S-metrizable. Several

(new) necessary and sufficient for a space to be S-metrizable are given, together

with an example of non-S-metrizable space which fails to have a Peano compactification.
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i. INTRODUCTION.

Throughout this note let (X,d) denote a locally connected, connected separable

metric space. We say that X is S-metrizable provided there is a topologically

equivalent metric 0 on X such that (X,0) has Property S, i.e. for any e > 0, X

is the union of finitely many connected sets of 0-dlameter less than e. It is

well-known that S-metrizable spaces are locally connected and that if 0 is a

Property S metric for X, then the usual metric completion (,) of (X,0) is a

compact, locally connected, connected metric space, i.e. ,0) is a Peano

compactification of (X,0) [8,p.154].

Property S metric spaces (X,p) have been studied extensively in [1,2,3,4,8].

There are easily constructed examples of locally connected, connected metric

spaces which fail to be S-metrizable, however the author does not know of a non-

S-metri’zable space (X,d) which has a Peano compactification. We therefore ask:

QUESTION I. If (P,p) is a Peano compactification of (X,01X) must X be S-

metr izab le ?

2. DEFINITIONS AND BASIC RESULTS A space Z is an extension of a space Y if

Y is a dense subspace of Z. If Z is an extension of Y, we say that Y is locally

connected, in Z if Z has a basis consisting of regions (that is, open connected

sets) whose intersections with Y are region& in Y. Z is a perfect extension of

Y if Z is an extension of Y and whenever a closed subset H of Y separates two

sets A, BcY in Y, the set cl H (the closure of H in Z) separates A, B in Z. [6]
z

For completeness we include the following:

THEOREM 2.1 [6]. Let Z be an extension of X. Then X is locally connected

in Z if and only if Z is a perfect locally connected extension of X.

THEOREM 2.2 [6]. Let (X,d) be a metric space. Then X is S-metrizable if
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and only if X has a metrizable compactification Z in which it is locally con-

nected.

THEOREM 2.3 [6]. A topological space is S-metrizable if and only if it has

a perfect locally connected metrizable compactification.

THEOREM 2.4 [6]. Let X be a space having a perfect S-metrizable extension.

Then X is S-metrizable.

THEOREM 2.5 [5]. Let X be a separable, locally connected, connected rim

compact metric space. Then X is S-metrizable.

THEOREM 2.6 [6]. Every countable product of S-metrizable connected spaces

XI, X2, ..., is S-metrizable.

3. RELATED RESULTS AND QUESTIONS.

THEOREM 3.1. Let (P,d) be a Peano space and let X be a dense, locally con-

nected, connected subset of P. Then there exists a G6-subset Y of P containing

X such that X is locally connected in Y (as an extension of X).

PROOF. Let n be a positive integer and define Z Y E P: if U is an open
n

connected subset of P containing y and 8(U)<2-n, then UX is not connected}.

(Here 6(U) denotes the d-diameter of U). We first assert that Z is closed. For

suppose Yl’ Y2’ is a sequence in Zn which converges to y E (P\Zn). Since

-nyZn, there exists an open connected subset U of P containing y and 8(U)<2

and IINZ t and this is a contradiction. Hence Z is closed.
n n

We next assert Z N X--. For let xX and let V be an open connected subset
n

2 "n.of X such that (clV)< Then U--int clV is open in P and contains x and

(U) <2
-n

Furthermore, UOX is connected since V=IIOX=clV and V is connected

Thus xZ and Z nX=.@.n n

Clearly ZICZ2cZ3
is a notonically increasing sequence and if for

each iI, Yi=PZi Y Y. is a connected G6-subset of P which contains X.
i=I i

We now assert that X is locally connected in Y, as an extension of X. For
-n

let >0 and let yY. Then there exists a positive integer n so that >2
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2-nand since yZ there exists an open connected subset U of P with 6(U)< and
n

such that UX is connected. This implies that W--intyclyU is an open connected

subset of Y. Thus Y has a basis, consisting of regions whose intersection with X

is connected. This completes the proof.

COROLLARY 3.1.1. Every dense, locally connected, connected G6-subset of

Peano continuum is S-metrizable if and only if dense, locally connected, con-

nected subset of a Peano continuum is S-metrlzable.

PROOF. This follows from (2.1), (2.4) and (3.1).

Since every nested ntersection of countably many sets can be represented

as an inverse limit space and since every Y. above is S-metrizable, by (2.5),

we ask:

QUESTION 2. If [Yi’ fl,j’ is an inverse limit sequence of S-metrizable

spaces and continuous maps (blcontlnuous injections), must Y inv lira {Yi’

flj’ be S-metrizable?

Of course an affir=mtlve answer to Question 2 would yield an affirnmtlve

answer to Question i.

THEOREM 3.2. Let (X,d) be a locally connected, connected separable metric

space, let X denote the Stone-ech compactlflcatlon of X. Then X is S-metrlz-

able if and only if there exists a Peano compactiflcation P of X such that f,

the continuous extension of the identity injection f:X P to X, is monotone.

PROOF. Recall that a map between compact Hausdorff spaces is monotone if

every point inverse is connected. Suppose that (X,d) is S-metrizable, say p is

an S-metrlc for X. By (2.3), there exists a Peano compactiflcation P of X and X

is locally connected In P. Let f’X P be the continuous extension of the

-I
identity map f:X P to X. We need to show that for y E P, 8f (y) is connected.

But since P is a metric space and X is locally connected in P, there exists

neighborhood basis for y in P, Ui}i=I such that for i E q, cl UI+I cU i
and
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UINX is connected. Then, if Bf’l(ui) =Wi, 8f-l(uInX) =f-l(UINX) is connected

-i
and WiOX=Sf (UINX). Thus by (1.4) of [7], W

i
is connected. It then follows

-I
that 8f (y) cl W is connected and that completes the proof of the necessity

i=l i

Now suppose (P,o) is a Peano compactification of X and Bf:BX P is a mono-

tone map. Let y 6 P "and let V be an open connected subset of P containing y.
-ISince 8f is monotone, 8f (V) =W is a connected open subset of 8X. Again, by

(1.4) of [7], WnX is connected. This implies that 8f(WNX) =f(WX) =VX is

connected and so X is locally connected in P. By "(2.3), S is S-metrizable.

4. AN EXAMPLE. This is an example which fails to be S-metrlzable, however

it also fails to have a Peano compact ificat ion.

Let L
i
be the llne in 2 defined by Li=[(x,y)-y=x/i,Oxl and let X

iLi
with the relative topology inherited from 1

2
We first assert that X is

not S-metrizable. For in any (Hausdorff) compactification Z of X, Ui=Li\[0,0)]
Iis an open subset of Z and since A=[(0,O)] is compact, A and B =i_l[(l,i" ) are

subsets of X whose closures are disjoint in Z. Thus if Z is a metric space with

metric r and the distance from A to ClzB is , then >0. It then follows that

no finite collection of connected sets with r-diameter less than /2 fails to

cover Z. Thus r is not a Property S metric for Z and X is not S-metrizable.

We will now show that X fails to have a locally connected metric compactl-

fication. Suppose (Z,r) is a locally connected metric compactlflcatlon of X.

Let U and V be open subsets of Z containing (0,0) such that clUcVc (Z\clB) (B

is defined above). Then each L
i

intersects bd U and bd V and contains a subarc

S
i

such that Sic (cl VU) and Si meets each of bd V and bdU in a single point,

say Sibd V [ai} and S QbdU [b ] Without loss of generality we may supposei i

that [el]i=1 converges to a point a6bd V and [bi]i=1 converges to a point bbd

b6bdU. Then L lira sup [Si:i is a connected set subset of cl VU meeting

bdU and bdV[8, p. 14]. Then since every point of L\(bdUUbdV) is a limit
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point of U__IS i and each S
i

is a component of cl U, Z fails to be locally con-
i

nected at any point of L\(bd U U bd V). Thus X fails to have a Peano ompactifi-

cation.
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