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ABSTRACT. Let G be an irreducible subgroup of the linear translation complement
of a finite translation plane of order qd where q 1is a power of 2. GF(q) 1is
in the kernel and d=2°r where r is an odd prime. A prime factor of |G|
d d
must divide (q +1) I (¢ -1).
i=1

One possibility (there are no known examples) is that G has a normal sub-
group W which is a w-group for some prime w.

The maximal normal subgroup O0(G) satisfies one of the following:

1. Cyclic. 2. Normal cyclic subgroup of index r and the nonfixed-point-free

elements in 0(G) have order r. 3. O0(G) contains a group W as above.
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If r=3 and W exists then w =3. or W 1is elementary abelian and of
order Wz. If r=3, s=2 and if G 1is nonsolvable and contains no ;ffine
elations, let S be the subgroup generated by the 2-elements. Then § =SL(2,2b)
or S/0(S) = PSL(2,u) for u=5, 11, 13, or 19 and O0(S) is trivial unless
u=5.

We include some corrections to our paper 'Translation planes of odd order

and odd dimension'.

1. INTRODUCTION.

For definitions of "spread", 'translation complement', and other special
terminology with respect to translation planes, see [9]. The reader is reminded
that if the spread is defined on a vector space of dimension 2d, so that the
components of the spread have dimension d then it is customary to say that the
translation plane has dimension d (over its kernel). The class of known finite
translation planes is very large but they tend to fall into a few classes and the
members of each class are very much like each other. The class of linear groups
which are known to act as subgroups of the translation complement is very limited.
For translation planes of order pr (p is prime) many have subgroups of small
index which are subgroups of TL(Z,pr) (the translation complement for
Desarguesian planes). In a few cases, they are direct products of such groups.
This is the case in the irregular nearfield planes and some related to them. In
the semifield planes of order pr, there are normal elementary abelian subgroups
of order pr (affine elations -or shears). The Suzuki groups come in when p =2
and d=2. The only other cases which come to the author's mind are SL(2,7)
and SL(2,13). The question arises: Which groups can act as subgroups of linear
translation complements of translation planes? It may be unrealistic to expect
a complete answer to this question. Nevertheless either there must be some more

translation planes around that are quite different from the known ones and that
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admit different kinds of groups or there must be undiscovered restrictions on
translation complements.

Let G be a subgroup of the linear translation complement of a finite
translation plane. A reasonable strategy would seem to be to identify certain
key normal subgroups (and how they act on the plane): the minimal normal non-
solvable subgroups if G 1is nonsolvable, the group generated by 2-elements if
lGI is even. Group theoretic arguments often give us factor groups of these
subgroups with respect to normal subgroups of G which are maximal in some sense.
To understand the action of the minimal normal nonsolvable subgroup or the sub-
group generated by the 2-elements, we must determine what the subgroups at this
second stage are like. For instance, we may need to know something about the
maximal normal subgroup of odd order.

In general, what happens is one of the following: (1) The "Second-level"
normal subgroup is cyclic (2) G is imprimitive and has a normal noncyélic
elementary abelian group (3) G has a normal extra-special group.

Theorems that certain classes of groups cannot act on any finite translation
plane are hard to come by. In practice we shall have to reword our question to
read: For a given class of values of q and of d, which groups can act on a
translation plane of dimension d over GF(q)? (For instance, we can go quite
a long way towards answering this question when q and d are both odd.) What
we end up with is a set of theorems which screen out certain groups. We should
like then to have results which say that the survivors, if they do act on certain
planes, must act in specified ways which are well enough defined for us to
specify explicit representations which may enable us to construct the planes or,
perhaps, to show that a plane admitting a particular group acting in a particular
way cannot, in fact, exist.

In this paper we investigate the case where q is a power of 2, G is
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irreducible, and d =25r for some odd prime r.

We do not claim to have any spectacular results. We believe that we use
methods which can be developed and used to investigate other cases. We do have
results as to how the groups act on the (possible) planes. We need more knowledge
of representations to carry out the last phase of the program. Indeed the
representation theory we need is probably quite different from that included in
standard representation theory.

Section II deals with the nonsolvable case without restriction on the
dimension. Much of it is just a summary of previous results except that the
connection with extra-special groups is clarified.

In Section III we do restrict the dimension (and characteristic of the
field) as mentioned above. Our main result in this section is Theorem (3.7)
which gives the possibilities for the maximal normal subgroup of odd order 0(G)
in terms of (1), (2), and (3) above.

In Section IV we look at planes still more explicitly, especially for the
case r=3. With respect to the general question as to which subgroups of
GL(2d,p) can be subgroups of the translation complement for a translation plane
of order pd, Theorem (4.8) says that certain primes cannot divide the order of
the translation complement even if they divide |GL(2d),p)|. We also make use of
some results of Hering and Ho [5] for translation planes of dimension 2r over
GF(q), where r 1is odd and q 1is even. Let S be the subgroup of the linear
translation complement which is generated by the 2-elements. Hering and Ho
determine the nature of S/0(S). With r restricted to be prime we can say more
about the possible nature of O0(S) and how S acts on the plane if a plane does
exist admitting a grouﬁ S in Hering and Ho's list. We have not been able to
construct new planes furnishing examples but we can narrow down the possibilities.

Some, but not all, of the other papers in the same spirit and the cases with
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which they deal are: odd order, odd dimension [12]; dimension 2 and character-
istic 2 with all involutions Baer [7]; odd order, dimension 2 [11]; kernel GF(q)
admitting SL(2,q) [15], [14], [8]. We hope that these results are explicit
enough to suggest to someone either how other types of planes may be constructed
or how to obtain stronger nonexistence theorems.

This research was supported in part by the National Science Foundation.

The rest of this Introduction consists of preliminary definitions and

results, as well as some matters of notation.

(1.1) DEFINITION. Let G be a group of nonsingular linear transformation acting
on a vector space V. Then G 1is said to be fixed-point-free (f.p.f.) if no

nontrivial member of G fixes any nonzero vector.

(1.2) DEFINITION. Let G be a group of nonsingular linear transformations
acting on a vector space V. Then a normal subgroup G0 is said to be minimal
non-f.p.f. with respect to G 1if GO is not f.p.f. but every normal subgroup
of G properly contained in G0 is f.p.f.

(1.3) DEFINITION. With G, V as (1.2) a subspace V0 of V 1is called a
minimal G-space if G leaves V0 invariant and acts irreducibly on it. A
subspace V1 is a homogeneous G-space if V1 is invariant under G and all

of the minimal G-spaces in V1 are isomorphic as G-modules. (When there is no

doubt as to which group is being referred to, the G may be omitted.)

REMARK . An f.p.f. group is a Frobenius complement. It is well known that
the Sylow subgroups of odd order in a Frobenius complement are cyclic and the
Sylow 2-groups are either cyclic or generalized quaternion.

Notation:

We shall be looking at vector spaces over the field GF(q) where q is a

power of the prime p.
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The order of the group G 1is denoted by |G|.

We use 0(G) to denote the maximal normal subgroup of odd order.

If H 1is a subgroup of Gl’ C(H) 1is the centralizer of H in the full
group G . If G1 is a subgroup, the centralizer of H in G1 will be denoted
by C@H) N Gl'

If o 1is a linear transformation acting on a vector space V, V(o) denotes

the subspace consisting of all fixed points of 0O.

Fit G 1is the Fitting subgroup of G.

2. THE NONSOLVABLE CASE.

(2.1) LEMMA. Let G be a nonsolvable group of linear transformations acting
on a finite dimensional vector space V over a finite field F =GF(q) and let
GO be a minimal nonsolvable normal subgroup. Then every normal cyclic subgroup

of G included in G, is in Z(G The Fitting subgroup of G, 1is equal to

0 0)° 0

Z(GO) if it is fixed point free.
PROOF. See Lemmas (2.1) and (2.2) in [12].

(2.2) LEMMA. In the notation of the previous Lemma, let H be a normal subgroup

of G included in G0 but not equal to G0 and let H be maximal with respect

to this property. Then GO/H is a direct product of isomorphic simple groups.

If Fit G is fixed point free themn H=Fit G

0 0 =Z(G0).

PROOF. See the proof of Theorem (2.3) in [12].

(2.3) LEMMA. 1In the notation of the previous Lemmas, suppose that Fit CO is

not fixed point free. Then G0 includes a subgroup W which is minimal
non-f.p.f. group with respect to G, where W 1is a w-group for some prime w.
If W is a maximal normal subgroup of G included in W but not equal to W,

0
then WO E_Z(GO) and W/WO is elementary abelian.
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PROOF. See Lemma (2.8) in [12].
(2.4) LEMMA. Suppose that W of the previous Lemma is nonabelian. Then Wo is
cyclic and equal to Z(W).

PROOF. Note that W, 1s a fixed-point-free w-group. Thus if w is odd,

0
WO must be cyclic. We already have that wo E.Z(GO) by (2.1) so wo c Z(W).
If W is nonabelian Z(W) C W must be included in WO so Wo =Z(W) if w 1is odd.
If w 1is even, then Wo is either cyclic or generalized quaternion. If

WO is cyclic we can use the same argument that we used for odd w. If WO is

generalized quaternion, then WO $-Z(GO) and Go must induce a nonsolvable

group of automorphisms on W, contrary to the fact that the automorphism group

0

of a generalized quaternion group is nonsolvable.
(2.5) LEMMA. If W is nonabelian then W is extra-special. Furthermore:

(a) W= W/W, has square order; W_. has order w.

0 0
(b) W is a symplectic space; if |W| = wentl
the automorphism group induced on W by G 1is a subgroup of Sp(2m,w).
(c) W is a central product of subgroups Wl, Wz,..., Wm, where
|Wi| =w3 and W£ is elementary abelian of order wz.

PROOF. This is essentially Satz 13.7 in Huppert [6].

+
(2.6) LEMMA. Suppose that W is nonabelian and that |W| =w2m 1. Then w"

divides the dimension of the vector space if G 1is irreducible.

PROOF. Let W1 be a subgroup of order w3, where W

abelian of order wz. Let Wo =<v>. Let W

1 is elementary

1 =<p,0>, let p,0 be pre-

images of 5; I respectively so that W1 = <p,0,v>. Without loss of generality,

V(o) is nontrivial. Since Wl is nonabelian but ﬁl

can, without loss of generality, assume p—lcp =gv. Then ov- fixes V(G)ol

is elementary abelian we

pointwise and

V(G) + V(0)p +...4 V()" L V(o) ® V(0)p &...8 V(o)p* L.
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Thus we have a vector space of dimension w dim V(o) which is invariant under

W1 . Call this vector space Vl. Now W2 centralizes Wl and hence leaves

each of V(o) ,V(0)p, etc. invariant. In fact, each of V(0), etc. contains a

subspace of dimension divisible by w which is invariant under Wl. Thus
WIW2 has invariant subspace whose dimension is a multiple of w2.
By induction, W=W.,W W_ has invariant subspace whose dimension is a

W -Wy

multiple of w'. If G 1is irreducible on V, then w" divides the dimension V.
REMARK. 1In [12] we obtained results similar to (2.5) and (2.6) by a more
complicated argument.
In Lemmas (2.1) - (2.6) we assumed that G was nonsolvable. The next Lemma
requires no assumption as to whether or not G 1is solvable.
(2.7) LEMMA. Let G be an irreducible group of linear transformations acting
on a vector space V of dimension n over the field F. Let U be a cyclic
normal subgroup of C. Then the index of C(U) in G divides n if ()
is faithful on the homogeneous U-spaces.
PROOF. By Clifford's Theorem, we can write V as a direct sum
V=V, &...®V of homogeneous U-spaces, where n =k dim V, and the stabil-

1 k 1

izer of V1 has index k in G and C(¥) 1leaves V1 invariant. By Hering

[4] the index of C(¥) in the stabilizer of Vv, divides dimV,.

(2.8) LEMMA. Suppose that G 1is irreducible and has a normal abelian non-f.p.f.
w-group W, where w is prime. Then G 1is imprimitive with subspaces of
imprimitivity Vl’ VZ"’ such that each Vi is a homogeneous W-space and is
pointwise fixed by some nontrivial subgroup W(Vi) of W.

PROOF, Each homogeneous W-space is a direct sum of minimal W-spaces that

are isomorphic as W-modules. If W is elementary abelian (not cyclic) then W

is not f.p.f. on any of its invariant subspace. If O €W and V(o) N V1 is
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nontrivial then V(o) is invariant under W and includes a minimal W-space.

Thus 0 fixes pointwise all minimal W-spaces in V1 and hence fixes Vl pointwise.
Here we would like to make certain corrections to [12]. 1In the proof of

(2.9) in [12], we denoted G/C (W) by G , where W was a non-f.p.f. w-group

normal in G and W, was the maximal fixed point free normal subgroup of G

0
included in W. We wished to show that, under the hypotheses, WO had to be
trivial. We disposed of the case where the subgroup of 60 which centralizes

W was nonsolvable but did not include the argument where this group might be
solvable.
Let ﬁl be the subgroup of 60 which centralizes W. If ﬁl is solvable,

then 60/ﬁ1 must be nonsolvable since 6 must be nonsolvable. ' Then 60/ﬁ1

0
is isomorphic to a nonsolvable subgroup of the automorphism group of ﬁ and
hence to a nonsolvable subgroup of GL(2,w). By hypotheses, the Sylow 2-groups
of G/Z(G) are dihedral and this implies that the Sylow 2-groups of 60/ﬁ1

are cyclic or dihedral. But the nonsolvable subgroups of GL(2,w) do not have
cyclic or dihedral Sylow 2-groups. This disposes of the case where ﬁl is
solvable.

LEMMA (3.3) and Theorem (3.4) of [12] should be deleted - the proofs do not

appear to be correct. The statement of (3.5) should be altered to read:

THEOREM. Let II be a translation plane of order qd with kernel GF(q),
where q and d are odd. Let G be a subgroup of the linear translation

complement. Suppose that G 1is irreducible and is faithful on its subspaces

of imprimitivity or is primitive. Suppose also that d is the product of

distinct primes. Let Go be a minimal nonsolvable normal subgroup of G. Then

either G0 =8L(2,u) for some odd u or G0 = A6 or A7. Here GO = GO/Z(GO).
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3. GROUPS OF ODD ORDER; DIMENSION HAS ONLY ONE ODD PRIME FACTOR.

In this section G 1is again assumed to be acting irreducibly on a vector
space V of dimension n over GF(q) =F.
(3.1) Definition. The dimension will be assumed to be a power of 2 times an
odd number. Specifically the dimension n 1is equal to 2°r where s 1is an
integer and r 1is an odd prime or is equal to 1. Also F =GF(q) where
q=2% tz 1.
(3.2) LEMMA. If |Gl is odd and ¥ is a maximal cyclic normal subgroup of G,
then C @) has index in G which divides r provided C (¥) is faithful on

the homogeneous ¥U-spaces.

PROOF. Use Clifford's theorem to write V as a direct sum of homogeneous
U-spaces. The number of homogeneous U-spaces must divide both n and |G|
and hence must divide r. As in the proof of (2.7), the index of C(G) in
the stabilizer of a homogeneous U-space must also divide (n, |G|). The
remainder of the proof is also similar to the proof of (2.7).

(3.3) LEMMA. Suppose that |G| is odd and that G is irreducible. Then G
is cyclic if G is f.p.f. If Fit G is f.p.f. but G is not, then the non-
f.p.f. elements in G have order r and Fit G 1is a cyclic normal subgroup of
index r.

PROOF. Let H=Fit G. Then H is fixed point free and thus is a
Frobenius complement. The Sylow subgroups of odd order in a Frobenius comple-
ment are cyclic and H 1is the direct product of its Sylow subgroups so H is
cyclic. Let Hl = (C(H). Then Fit Hl =H. The Fitting subgroup of a solvable
nonabelian group is strictly greater than its center. This would imply that H
is strictly greater than Z(Hl) if H were not cyclic. This would be a
contradiction so H, 1is cyclic and H, =H. Hence (3.2) implies that H has

1 1

index in G which divides r .
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Thus if G is non-f.p.f., the non -f.p.f. elements in G must have
order r. If G is f.p.f. and |G| is odd, then G is a Z-group -i.e., all
of its Sylow subgroups are cyclic.

Thus, G 1is generated by two elements p and O of relatively prime order,
<0> is normal in G and |G| =|o||p|. See Passman [13], p. 106. Let T

be an element of order r. If <1> C <0> then <1> < G and G=<T1,H> so
G 1is cyclic. Otherwise <T> C <p>. By the argument on the top of p. 197 in
Passman <T> must centralize <0> in this case. But <71 > must also

centralize p if <T> C <p>. We conclude that G is cyclic if G is f.p.f.

(3.4) LEMMA. If |G| 1is odd, if G is irreducible and Fit G is not f.p.f.,
then G has a minimal non -f.p.f. group W, where W 1is a w—grc;up for some
prime w. Either (a) |W| =r3, w=r, W/ Z(W) 1is elementary abelian of order r2
or (b) W is elementary abelian and G is imprimitive with r homogeneous

W-spaces as subspaces of imprimitivity..

PROOF. Let WO be the maximal f.p.f. normal subgroup of G included in

W if W 1is nonabelian. Note that w must be odd if q 1is a power of 2 and
G 1is irreducible. 1If C(WO) is faithful on the homogeneous WO spaces, it

follows from (2.7) that the index of C(WO) in G divides 2°r so the

m+1
w

index of C(Wo)ﬂw in W must divide r. If |W]= then

CW.)| zw". Them C(W.) < G and is not f.p.f. If W is min. non -
0 0

f.p.f. with respect to G then W= C(WO) Nw, i.e. WO cz(w.

Note that if C(WO) N W 1is not f.p.f., then it is equal to W, since W
is a minimal non - f.p.f. group with respect to G. 1In this case we again have

Wy © Z(W).

If C(Wo) NW is f.p.f., we must have C(WO) nNw =W0. Then C(Wo) nw

is faithful on the minimal wo—spaces, so we can apply (2.7) to conclude that

WO =(WO) N W has index r in W. Suppose that wo is cyclic of order wb ,
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generated by v. We must have r=b and an element ¢ in W such that

-1 a

-~ W w
0 v=v, a#l and v=0 = vo =v2

, SO a” 21 mod wb. This implies
a =1 mod wb and v?=1. That is, W must centralize WO and we again have

W, C .
The rest Of the proof is eSSentially the same as for the nOnSOlVable case.

See (2.3) -(2.6) and (2.8).

(3.5) COROLLARY. 1If the n is a power of 2 and |G| is odd and G is
irreducible then G 1is cyclic.

PROOF. Put r=1 in (3.3) and (3.4). If r=1 in conclusion (b) of (3.4)
then G 1is reducible, contrary to hypothesis.
(3.6) DEFINITION. Let S be the subgroup of G generated by its 2-elements
and let 0(S), 0(G) the maximal normal subgroups of odd order in S, G
respectively.
(3.7) THEOREM. Let G be an irreducible group of linear transformations acting
on a vector space of dimension 2°r over GF(q), where q 1is a power of 2 and
either r=1 or r 1is an odd prime. Then the following hold:

(a) If 0(S) is f.p.f., then O0(S) 1is cyclic and the index of C [0(S)]
in G divides 2°r unless C [0(S)] is not faithful on the minimal 0(S) - spaces.

(b) If O0(S) 1is not f.p.f. but Fit 0(S) =Fit G is f.p.f. then 0(S) has
a normal cyclic subgroup of index r and the non -f.p.f. elements in O0(S) have
order r.

(c) 1If Fit 0(S) 1is not f.p.f. then G has a normal subgroup W sat-
isfying the conditions of (3.4).

(d) If O0(S) is f.p.f. and S is nontrivial then S contains a subgroup
S, which is generated by its 2-elements and is a minimal (normal) non -f.p.f.

1

subgroup with respect to G. If S1 is nonsolvable then Sl/O(S) n S1 is a

direct product of isomorphic simple nonabelian groups and 0(S) ﬂSl =Z(Sl).
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In each of the above 0(S) can be replaced by 0(G).

PROOF. If G 1is irreducible then the dimension of a minimal invariant
subspace for any normal subgroup must divide the ZSr, so that the previous
Lemmas apply to S and 0(S) so that (a) - (c) are direct results of the
previous Lemmas. Note that a normal subgroup of G does not fix any subspace
pointwise if G is irreducible.

In case (d) note that no group of even order is f.p.f. when the char-

acteristic of F 1is 2. Hence if S is a minimal non -f.p.f. group with respect

1

to G, then S1 must be a minimal nonsolvable normal subgroup of G so that (2.2)

applies. The details are left to the reader.

4. TRANSLATION PLANES.

(4.1) DEFINITION. In this section G is a subgroup of the linear translation
complement of a translation plane 7 of order qd, where q 1is a power of 2
and d =25_1r, r 1is an odd prime and s=22. G 1is irreducible and no component
of the spread defining 7 has an orbit of length 2; no proper subplane has an
orbit of length 2.

REMARK. The dimension of the vector space on which G is defined is
2%r=2d so that (3.7) applies to G. Translation planes of order 26 are
frequent possible exceptions to theorems, so the case q=s =2, r=3 has special
interest.

(4.2) LEMMA. Suppose that G has a normal subgroup W, where W  is a 3-group.
Then W has at least three invariant components; if o0 € W is non-f.p.f.,

then V(o) 1is a subplane; the partial spread consisting of those elements of the
spread fixed by W is invariant under G.

PROOF. If q is a power of 2, then q2 =1 mod 3. The number of components
of the spread is qd-+1 so that, if d 1is even, a 3-group in G must fix at

least two components. If W is normal, G must permute the components fixed
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by W. By (4.1), W has at least three fixed components. The rest of the proof

is left to the reader.

(4.3) LEMMA. If r=3 and G has a normal nonabelian group w-group W as in

(3.4) for some prime w then w=3 and W satisfies the conclusions of (4.2).

PROOF. See (3.4) and (4.2).

(4.4) LEMMA. If s=q=2 in (4.1) and if G has a normal subgroup W where
W is an elementary abelian w-group of order >w, then w=3 or 5 and the

dimension of a homogeneous W-space is 2 or 4.

PROOF. The vector space on which 7 is defined has dimension 4r, so a
minimal W-space has dimension 1,2,4,r,2r, or 4r. If W should.fix a minimal
W-space pointwise, then G could not be reducible. Thus if a minimal W-space
has dimension i, then w must divide Zi -1. Thus i=1 4is impossible and w
divides 24 -1=3.51if'1i =2 or 4.

If a minimal W-space has dimension which is a multiple of r then a
homogeneous W-space must also have dimension which is a multiple of r. Since
W is not faithful on homogeneous W-spaces the case 4r does not happen (the
whole vector has dimension 4r).

A subplane in this context is a vector space of even dimension. Thus a
homogeneous W-space is either an r-dimensional subspace of a component or has
dimension 2r. In the latter case there will be just two homogeneous W-spaces,
contrary to the assumptions in (4.1) that no component or subplane has an orbit
of length two.

Welare left with the possibility that there are precisely 4 homogeneous
W-spaces and that théy are r-dimensional subspaces of four distinct lines.
Furthermore, Clifford's theorem implies that every minimal W-space is in one of

these 4 homogeneous W-spaces.
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Let 0 be any element of W such that V(o) is nontrivial. Then V(o)
must be a Baer subplane. If there are precisely 4 minimal W-spaces then four
of the 2F +1 components of V(0) are invariant under W and w must divide
(2r +1)-4. But also we must have 2 =1 mod w. This implies w=2 which is a
contradiction. The only possibilities left are w=3 or 5.

We conclude that each homogeneous W-space has dimension 2 or 4. But W
must be faithful and hence w must divide 24 -1=3°5.

(4.5) LEMMA. If d=6 in (4.1) and if G has a normal subgroup W where W

is an elementary abelian w-group of order >w then IWI =w2 or |W| =3 with

IA

m=4.

PROOF. By (4.4), either w=3 or w=5 and if w=5 there are just 3

homogeneous W-spaces (each of dimension 4 in this case). Let Vl’ V2, V3 be

three homogeneous W-spaces whose direct sum is invariant under O0(G). An element

of W which is non -f.p.f. on V1 must fix a minimal W-space pointwise and

hence fix V1 pointwise. An elementary abelian group of order wm, m >1 cannot
be f.p.f. Hence if |W| =wm, V1 is pointwise fixed by a subgroup of order wm—l.

Suppose m 2 3. Then the subgroup fixing V. pointwise has a subgroup of order

1

wm-'2 which fixes V., and V2 pointwise. A similar phenomenon works for each

1
minimal O0(G) space; the result is that there is a subgroup of order wm—2
whose fixed point space has dimension greater than d. (Recall that 7 has
order qd.) This cannot happen so W' ° must be the identity.
If w=3 and there are 6 homogeneous W-spaces, again take !W| =w". By
reasoning to the above there is a subgroup of order wm-a (if m >4) which fixes

four homogeneous W-spaces pointwise. But the pointwise fixed subspace of a non-

trivial element cannot have dimension exceeding 6 if d=6. Hence m=4.
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(4.6) LEMMA. Suppose that r=3 and s =2 and that G has a normal subgroup
W as described in (3.4). Let 0 € W and let V(o) be nontrivial. Then V(0)
is a subplane.

PROOF. If W is nonabelian apply (4.3). If W is abelian then (4.5)
implies that IW| =w2. Furthermore, the number of homogeneous W-spaces is equal
to 3 and each element of W which does not fix a homogeneous W-space pointwise
must be f.p.f. on it. The dimension of a homogeneous W-space must divide 4, so
q4—150 mod w.

If 0€ W and V(o) 1is nontrivial but not a subplane then V(o) is
included in some component £ . Suppose that V(o) has dimension 4. Then
q6 —q4 =q4(q2 -1) Z0 mod w and q2 =1 mod w. Likewise if V(o). has dimension
1 or 2, q2 =1 mod w.

But if q2 =1 mod w, then q64+1 Z2 mod w, so W fixes at least two compo-
nents of the spreéd. As in the proof of (4.2), W fixes at least three compo-
nents so that V(0) must be a subplane.

REMARK. 1f q2-+1 = 0 mod w we cannot guarantee that any components of the
spread are invariant under W.

Hering and Ho [5] have investigated the case where s=2 and r is odd
but not necessarily prime. In their Theorem (5.7), they have given information
about S. They come up with the following cases when all involutions are Baer
involutions. They also include the situation where there are affine elations
in G; the nature of the group generated by affine elations is known from Hering's
earlier work [3]. We shall leave this case out, although there is more informa-
tion than what is implied immediately by Hering's work on elations. They make

no assumptions of irreducibility; we state these results in the form that they

take if we assume (4.1).
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The Hering and Ho cases (with the restrictions mentioned above):

1. S/0(S) is elementary abelian of order 4; C [0(S)]Nns = z[0o(s)].

2. S8/0(S) = PSL(2,u) u= *3 mod 8.

3. |s| is not divisible by 4.

4. (S 1is elementary abelian. This case is void if C‘ is irreducible.)

5. S = SL(2,2b) for some b.

We would know more about the action of G on the plane in the first three cases
if we knew more about 0(S). Here (3.7) of this paper is some help.

These results are sharpened by (4.3), (4.5) and (4.6) if r=3 and s =2.
(The order of the plane is q6.) We also have the following:

(4.7) LEMMA. Assume (4.1) and that r =3, s=2, Suppose that $/0(S) =PSL(2,u),
where uZ=u*3 mod 8. Then ;.=3, 5, 11, 13 or 19. Furthermore O0(S) is
trivial unless u=3 or 5.
PROOF. It follows from Harris and Hering [2] that u=s 2 *12+1 =25,
If u=%*3 mod 8, and u 1is a prime power then u=3, 5, 11, or 13, or 19.

Note that S/0(S) 1is simple unless u=3. Thus if u#3, S is a minimal
normal nonsolvable subgroup. If O0(S) is f.p.f., then O0(S) = Z(S) by (3.7)(d).
Furthermore O0(S) 1is a subgroup of the Schur multiplier; the Schur multiplier
has order 2 so 0(S) must be trivial if u#3 and 0(S) is f.p.f. Suppose that
0(S) satisfies case (b) of (3.7). Then O0(S) has a normal cyclic subgroup U
of index 3. But U is normal in G; by (2.7) ¢ (¥) has index in G which
divides 12. Hence S/ C(¥) N S is solvable. If S/0(S) 1is simple this implies
that C (M) N S=S. This is a contradiction.

Suppose that O0(S) satisfies case (c) of (3.7) so that W of (3.4) exists.
If W 1is nonabelian then (4.3) implies that w=3 and W/W0 is elementary
abelian of order 9. Then S induces a subgroup of SL(2,3) on W/Wo. But

SL(2,3) 1is solvable, so the centralizer of w/wo must be nonsolvable.
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Since S must be a minimal nonsolvable normal subgroup of G, this implies
that S centralizes w/wo. The reader may verify that a 2-element centralizes
W/W0 if and only if it centralizes W. But S 1is generated by its 2-elements
so S must centralize W. This is a contradiction since W 1is nonabelian and
in S.

If W is elementary abelian then (4.5) and (4.6) apply. Furthermore W
has exactly 3 homogeneous subspaces, each of dimension 4. Let these subspaces

be Vl, v The normal subgroup of G, call it H, which fixes all three

29 V3.
must have index dividing 6, since G induces a transitive permutation group on
Vl’ VZ’ V3. Then SNH has index dividing 6 so S/H is solvable. Hence HNS
is a nonsolvable normal subgroup of G. Hence SC H. Thus S fixes V1 of
dimension at most 4. Applying Harris and Hering [2] again, u=2+4+1=9.
Hence u =5.

(4.8) THEOREM. Let T be a translation plane of order qd, where GF(q) 1is a

subfield of the kernel. Let O be an element of the intersection of the trans-

lation complement with GL(2d,q) such that |o| is a prime u. Then u divides

d-1
q(qd-+1) Il (qd_i-l). In particular if q 1is a prime p and u is a prime
1=0 a, 41 ay
factor of the translation complement, then u divides p(p +1) 1T (p ~-1)

i=0
and u cannot be a p-primitive divisor of pe—l for d<e<2d.

PROOF. We may think of ™ as being represented on a vector space of
dimension 2d over GF(q). If u does not divide qu—l then 0 has fixed
points other than the zero vector. In particular O fixes some component £
of the spread. If o fixes & pointwise, then u must divide qd-l. Other-
wise & N V(o) is a vector space of some dimension i, where 0< i < d.

Then ¢ must act regularly on the qd -q1 points of £ not in V(0),

. i, d-i . . coe d-i
so u divides q (q "-1). But u is prime, so u divides q(q ~-1). This

establishes the first point of the theorem. The specialization to q=p is
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obvious. It follows from [1] that if u is a prime p-primitive divisor of

pe—l, then u does not divide pa-l for a< 0 < e. Furthermore if u divides

pb—l then b 1is a multiple of e so that u does not divide p2d—1 if

d < e < 2d.
(4.9) COROLLARY. If q=2 in (4.7), then u=3, 5, or 13.

PROOF. The reader may verify that neither 11 nor 19 divides

5 s
@®+1y 1 @i,
1=0
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