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ABSTRACT. Recently Chatterjea (1) has proved a theorem to deduce abilateral
generating function for the Ultraspherical polynomials. In the present paper an
attempt has been made to give a general version of Chatterjea's theorem. Finallys
the theorem has been specialized to obtain a bilateral generating function for a
class of polynomials {Pn (x; a,B )} introduced by Bhattacharjya (2).
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1. INTRODUCTION.
Using the following differential formula for the Ultraspherical polynomials
Pé (x) due to Tricomi,

P [x(2-7H2y = S .ll- (x2 -1'> +3 P (x2-1)"* (1.1

Chatterjea (1) has recently obtained a bilateral generating function for the

Ultraspherical polynomials in the form of following theorem.

THEOREM 1. If -
m +m pA
F(x,t) = 2 at t Pm (x),
m=o
then
TS =T S S R
o’ p _ r r ’ (1.2)
r=o
where
_ v r m _ 1/2
br(Y) = Z=o (m) a y,andp = (1- 2xt+t )

A closer look at the above relation (1.2) suggests the following interesting

general version of Chatterjea's theorem:

2. Let F o G be used to denote the composition F o 6{x) = F(G(x)). 1In
terms of this notation, we state

THEOREM 2, Suppose that there exist functions f, g, h andX and a
sequence of constants {cn} such that the sequence of functions {Qn} is generated

by the formula
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c £ g" Qo X = D", n= 0,1,2,...., 2.1)

(]

where D = d/dx. Define the generating function

F(x,t) = ) a thqQ (x). (2.2)
n=o 0 %
Then ) a
fF( X,gtz) |x+t = f X c, (gt) Qno X b, (2),
n=o !
where
v 2 Kk
by(2) = kgo ¢ (k! z-
PROOF. By Taylor's theorem,
£F( X,gt2) |, = et 7 (x,gt2). (2.3)

To evaluate the right hand side of (2.3), we shall use as our starting point the

relations (2.1) and (2.2), and the series expansion for etD. Thus
-]

etD fF(X,gtz) = etD f X a (gtz)n Qno X
n=o

had a
= e ] —2—— ()" 0" n

8

(an/cn) tn+m 2" Dn+m h/m!

=]

~
% 8
o

L]
Il o~1

o

(an/cn) (et)™™ ¢ £Q,.0X/m!

n+m

ek

(o]

=}

]
e~ 8

o

I c (D" qoxb_ (2),

n=o
_ % Jk
K=o ck(n-k)! :

(]
-Hh

where

|
o~ 8

b - (z)

It is worthwhile to remark here that if we choose Qn x) = Pg (x),

£ = 2D g = DY x @ = x6E-DY2, hx) = E-1)7? and

c, = n! /(-1)" then Theorem 2 would correspond to Chatterjea's theorem.
APPLICATIONS: Earlier, Bhattacharjya (2) introduced a new class of

generalized Legendre polynomials {Pn(x; a, B)} which are orthogonal with the
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weight function fo &
(1_x2) B - a)/z
are (2 , (6.6) and (6.8)):

om &2 6,8 )

. The Rodrigue's formulae for these polynomials

& a+l)/2 Q—&( B-a )/2
(-2m-( a-1)/2 )y
m-( B- a)/2 x-m-( a+l)/2 . (2.4)

P

v

. DR (1-x)

and
JI{m+1+ al/2 (l-x)( B-a )/2

(-2m-( at+l)/2 )m

-1/2
Pl

3 a,B)

i Dm[(l—x)m_(e -a)/2 B at3)/2 ] 2.5)
Here we note that the sequences {P (x-l/z; a-2n, B) } and { P (x-l/z;
2n 2n+1

@ -2n, B) } are amenable to a method of Theorem 2 for finding bilateral generating
i functions.

Let Qn (x) = P2n (x;a -2n, B) = P2n (x). For simplicity of notation, get

y = =-(o+l)/2 and & = ( a-B )/2. Then (2.1) holds with £(x) = ¥ (l-x) ° ,

1/2

g(x) = (l-x)-l, X (x) = x and c, = ¢ (n) = (-n-( a-l)/2)n. Upon replacing

t by -t and z by -y, we get

y [
X-t 1-(x-t) 1 _ yt - -t _.r .
=) O ) Loz TG rzo =) ¢
Py Db (9,206
where
1 t 7 t m -1/2
F §x1/2 > 1-x ) = mgo am( 1-x ) P2111 & )
and o
® a (-y)
b N = L my Gwr @.7)
1/2

Now replacing x by s and t/(1-x) by t in (2.6), we are led to the following

bilateral generating function for gerneralized even Legendre polynomials:

COROLLARY. 1: If

Fx,t) = [ a t" P, (x),
m=0
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then

y -]

[1-G3-1eT (146)8 F( S ) = 7 (-5 (x)-
(1-t(x"-1)) 1+t r=o
. Py (0) b (),

where bt (-y) is given by (2.7).
In the same way, let Qn (x) = P2n+1 (x; a-2n, B) = P2n+l (x), and set
Y= - (a+2)/2, & = (a-B )/2. Then (2.1) holds with £f(x) = ¥ (1-x)°

g(x) = (l-x)-l , X (x) = U2

and e, = Y(n) = (~n—(a+1)/2)n. Replacing t by -t and
z by -y and making the same substitution as before in (2.7), we are led to the

following bilateral generating function for generalized odd Legendre polynomials.

COROLLARY  2: if
F (x,t) = mzo amtm Pymer (X0
then
[1-(-1)e]° (1-t)° F( 7 24 ) = 7 0y @-
(1-t(x"-1)) 1+t r=o
. P2r+l (x) cr (‘Y)’
where o
I a -y)
e (V) = mzo ¥m) (eom) !

Taking a = B in Corollary 1 and 2, we can obtain bilateral generating functions
for generalized Legendre polynomials due to Dutta and More (3).

Next, we note that (2),

-"m! P
b Goi0) = -1) " m _Zm(x)
2m (-2m + %)m ’ (2.8)
and
-D"m! P (x)
- * o 2mtl s (2.9)
sz (x;0,0) =
(=2m- %)
where sz (x) and P2m+1 (x) are even and odd Legendre polynomials. Therefore, by

(2.8), (2.9) and the above two corollories we can obtain bilateral generating

functions for Legendre polynomials.
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