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ABSTRACT. This paper involves characterizations of a class of continuous flows.
The flows considered are those in which the positive prolongation of each point
coincides with the trajectory through the point. The characterizations are based

on the theory of prolongation.
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1. INTRODUCTION.

The purpose of this paper is to study dynamical systems in which the posi-
tive prolongation of each point coincides with the trajectory through the point.
Ahmad [ 1] studied similar flows--flows in which the positive prolongationof each
point coincides with the closure of the positive semi-trajectory through the

point. He referred to such flows as flows of characteristic 0+. Other authors
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have studied these flows or similar ones (see [1], [2], [3], [5], [6]). Knight
[6], for example, gave characterizations of flows of characteristic 0, 1i. e.,
flows in which the prolongation of each point coincides with the closure of the
trajectory through the point. The author in [ 7] characterized flows in which
the positive prolongation of each point coincides with the positive semi-trajec-
tory through the point.

In this paper we give several characterizations of flows where the posi-
tive prolongation of each point coincides with the trajectory through the point.
We show that several seemingly different flows are all equivalent, thus making
it unnecessary to study all such flows. We also give a simple characterization
of our flows for the case where the phase space is restricted to the two dimen-

sional space R2.

2, DEFINITIONS AND NOTATIONS.

We shall let R, R+, R~ represent the real numbers, the non-negative real

numbers, and the non-positive real numbers, respectively. By a dynamical system

or a continuous flow is meant a pair (X,m), where X is a topological space, re-

ferred to as the phase space, and m: XxR - X is a mapping satisfying the follow-

ing three axioms:

1) m(x,0) = x,
) n(n(x,t),s) = w(x,t+s),
(3) m is continuous.

For convenience, we shall let w(x,t) be denoted by x-t, or simply xt. For each
X € X, C(x) = x.R, (C+(x) = x-R+), (CT(x) = x+.R”) represents the trajectory (pos-

itive semitrajectory) (negative semitrajectory) through x. A point x in X is

called a critical point if xt = x for all t in R. A non-critical point iscalled

a periodic point if there exists a number t, t >0, in R satisfying xt = x. A
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subset M of X is said to be positively invariant (negatively invariant) (in-

variant) if C+(M) = M(C (M) =M) (C(M) =M). For each x in X, we let K(x) =

c(x), K+(x) = C+(x), and K (x) = C"(x). The positive limit set of a point x
in X is denoted by L+(x), i, e., L+(x) = {y € X: xti-+ y for some net (ti) of
R+ with ti-* + oo}, Similarly, the negative limit set and the limit set of x

are denoted by L™ (x) and L(x), respectively. The positive prolongation of a

point x of X is denoted by D+(x), i.e., D+(x) = {y € X: there exist nets (xi)
of X and (ti) of Rt such that X, > X, X;t. > y}. Similarly, D (x) and D(x)

denote the pegative prolongation and the prolongation of x, respectively. The

positive prolongational limit set of a point x in X is denoted by J+(x), i.e.,

J+(x) = {y € X: there exist nets (xi) of X and (ti) of R+ such that X; > X,

t, > +oo, Xiti'» y}. Similarly, J (x) and J(x) denote the negative prolonga-

tional limit set and the prolongational limit set, respectively. Apoint x in

X is said to be positively Poisson stable if x ¢ L+(x). The negative and bi-

lateral versions are defined similarly. A point x in X is said to be nonwan-

dering if x € J+(x). A point x in X is said to be positively dispersive if

J+(x) = @. The negative and bilateral versions are defined similarly.
For more information on the above concepts and related notions pertinent
to this paper one is referred to the bibliography.

Throughout this paper, the phase space is always assumed to be Hausdorff.

3. CHARACTERIZATIONS OF FLOWS SATISFYING D+(x) = C(x).

THEOREM 3.1. Let (X,w) be any continuous flow. Then the following condi-
tions are equivalent:

(1) p¥(x) = c(x) for all x in X.

(2) J+(x) = C(x) for all x in X.

(3) J7(x)'= C(x) for all x in X.
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(4) J(x) = C(x) for all x in X.
(5) D(x) = C(x) for all x in X, and there are no positively dispersive
points.

(6) D (x) = C(x) for all x in X.

PROOF. Assume that (1) holds. Let x € X. Then J+(x) ¥ ¢. For, J+(x) =@
implies that DY (x) = ¢*(x) U J¥(x) = c*(x). It follows from (1) that C'(x) =
C(x). Therefore, x.(~1) = x.t for some t € R+, and hence x.(t+l) = x. This
shows that x is either a critical or a periodic point; in either case L+(x) =
ctx) # ¢ implies that ) ¢ @, which contradicts the assumption that JHx) =
@. We note that J+(x) C D+(x) = C(x). But, since J+(x) is an invariant set,
we must also have C(x) C J+(x). Hence, J+(x) = C(x), and (2) holds.

Assume that (2) holds. Let x ¢ X. Then x ¢ J+(x). Hence, x € J (x) since,
in general, x € J+(y) implies y € J (x) for any two points X, y in X. Since
J7(x) is invariant, we have C(x) C J (x). Now, let y € J"(x). Then x e J'(y) =
C(y), and hence y € C(x). This shows that J (x) C C(x). Therefore, J (x) =
C(x), and (3) holds.

Assume that (3) holds. Let x € X. Then C(x) = J (x) C J(x). Now, let
y € J+(x). Then, x € J (y) = C(y), and hence y € C(x). This shows that J+(x)
C C(x). Hence, we have J(x) = J+(x) UJ (x) C C(x). Consequently, J(x) =
C(x), and (4) holds.

Assume that (4) holds. Let x € X. Obviously, D(x) = C(x), since D(x) =
C(x) U J(x). To see that x is not positively dispersive, i. e., J+(x) $ 9,
we note that by (4), JT(x) = ¢ implies that x € J (x). But x € J (x) implies
that x ¢ J+(x), contradicting J+(x) = ¢, Thus, (5) holds.

Assume that (5) holds. Let x ¢ X. Then, ¢ # J'(x) C D(x) = C(x). Since

J+(x) is a nonempty invariant subset of C(x), we must have C(x) C J+(x). Hence,



A CLASS OF CONTINUOUS FLOW 271

X € J+(x), and, consequently, x € J (x). This shows that C(x) C J (x). There-
fore, C(x) C D (x) since J (x) C D (x). It is obvious from (5) that D (x) C
C(x). Thus, we have D (x) = C(x), and (6) holds.

Finally, assume that (6) holds. Let x ¢ X. We note that J (x) = ¢ would
imply that C™(x) = C(x) since D (x) = C (x) U J (x). But, as was shown earlier,
C (x) = C(x) would imply that x is a critical or a periodic point, thus contra~
dicting J7(x) = @§. Thus, we have @ # J (x) C D (x) = C(x). Again, since J (x)
is invariant, we must have C(x) C J (x). This implies that x € J (x), and hence,
xe J(x). Therefore, C(x) C e ¢ D+(x). Now, 1let y ¢ D+(x). Then,

x € D (y) = C(y). But, x € C(y) implies that y ¢ C(x). This shows that pt(x)
C C(x). Therefore, D+(x) = C(x), and hence (1) holds. This completes the proof
of the theorem.

We note that if D{x) = C(x), then D(x) = K(x) since C(x) C K(x) C D(x).
Thus, the equivalence of statements (1) and (5) in the preceding theorem shows
that the class of flows that we are studying here form a subclass of flows of
characteristic 0 (recall [6] that a flow is said to have characteristic 0 if
D(x) = K(x) for all x in the phase space), In addition, we showed in the pre-
ceding theorem that pt(x) = C(x) implies that Jt(x) # 4. since J+(x) is in-

variant, we must have C(x) C J+(x). Therefore, we have

COROLLARY 3.2. If D+(x) = C(x) for each x in X, then the flow is a non-

wandering flow of characteristic O.

EXAMPLE 3.3. Consider the flow (R2,7) defined by the system of differ-

ential equations %=1

y=0

It is easy to verify that this flow satisfies the condition D(x) = C(x) for
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all x in R? and is of characteristic 0. But any point x has the property D+(x)
# C(x). This shows that our flows form a proper subclass of flows of character-

istic O.

REMARK 3.4. A trivial example of a flow of characteristic 0 that sat-

isfies the condition D+(x) = C(x) is a global Poincaré center.

THEOREM 3.5. Let (X,7) be a dynamical system where the phase space X is
either a locally compact metric space or a complete metric space. Further, as-
sume that D+(x) = C(x) for each x in X. Then the set of periodic and critical

points is dense in X.

PROOF. Obviously, if x is either periodic or critical, then x € C(x) =
L+(x) = L (x). On the other hand, suppose that there is a point x, which is
Poisson stable but neither periodic nor critical. If x ¢ L+(x), then since
L+(x) is invariant, we have C(x) C L+(x) C D+(x) = C(x). Therefore, L+(x) =
C(x). But this contradicts a known result (see, e. g., [4]) that if X is ei-
ther locally compact and metric or complete metric, then every point that is
neither periodic nor critical satisfies L+(x) - C(x) = L+(x). A similar ar-
gument shows that if x € L™ (x), then x is either periodic or critical. Thus,
we have shown that the set of points that are either periodic or critical co-
incides with the set of Poisson stable points. We further note that by Corol-
lary 3.2, all points of X are non-wandering. The proof of our theorem now
follows from a known result (see, e. g., [4]) that if the phase space X is
either locally compact and metric or complete metric, and if all points are

nonwandering, then the set of Poisson stable points is demse in X.
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THEOREM 3.6. Let (X,m) be any dynamical system, where, X C R2. Then
D+(x) = C(x) for all x in X if and only if the flow has characteristic 0 and

there are no positively dispersive points.

PROOF. The "only if" part follows from Corollary 3.2. Now, suppose that
the flow has characteristic 0 and J+(x) # @ for each x in X. We have J'(x)
C D(x) = K(x). First let us assume that L(x) = @#. Then, K(x) = C(x), and hence
i+(x) CC(x). But @ # J+(x) C C(x) implies that C(x) C J+(x). Hence, J+(x) =
C(x), which implies that D+(x) = C(x). Now, let us assume that L(x) # @¢. Let
y € L(x). Then y € J(x) and, hence, x ¢ J(y) C D(y) = K(y). But, since L(x)
is a closed invariant set, we must have K(y) C L(x). Therefore, x € L(x). Hence
X is either a critical or a periodic point. This implies that D(x) = K(x) =
C(x). Thus, D+(x) cCc(x) = L+(x) C D+(x). This shows that D+(x) = C(x), and

the proof is complete.

NOTATION. Let (RZ,r) be any continuous flow and S be the set of critical
points. For any s € S we shall hence forth let

N = {x € R%: x = 8 or x is periodic and S N int C(x) = {s}}

REMARK 3.7. Knight showed in [5] that there are six basic types of planar

flows having characteristic 0. These are

(1) parallelizable flows,

(2) flows having a global Poincaré center,

(3) flows where S consists of one local Poincaré center s, Ns is un-
bounded and 8Ns is a single trajectory. The restriction of the flow
to RZ - Ns is parallelizable,

(4) flows similar to Example 3 of [5],

(5) flows similar to Example 3 of [5], except that W, = aN, where
1 2
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S = {sl, 82}, and

(6) flows having only critical points.

From this and from theorem 3.6, it follows that there are three basic
types of flows (RZ,m) satisfying D+(x) = C(x) for each x € R2. These are
the flows in (2), (5) and (6).

The author is grateful to Professor Shair Ahmad for suggesting this prob-
lem. His guidance and suggestions have been invaluable. The author also

thanks the referee for his appropiate suggestions concerning the revision of
this paper.
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