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We consider the problem of minimizing the moments of order p for a subclass of loghar-
monic mappings.
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1. Introduction. Let H(U) be the linear space of all analytic functions defined on
the unit disc U = {z =x+1iy: |z| < 1}. A logharmonic mapping is a solution of the
nonlinear elliptic partial differential equation

fz=(aflf)fz (1.1)

where the second delatation function a is in H(U) and |a(z)| <1 forall z € U. If f
does not vanish on U, then f is of the form

f=H-G, (1.2)

where H and G are in H(U). On the other hand, if f vanishes at 0 but has no other
zeros in U, then f admits the representation

f(z) =zmz|*"h(2)g(2), (1.3)

where

(a) m is nonnegative integer,

(b) B=a(0)(1+a(0))/(1-]a(0)|?) and therefore, Rf > —1/2,

(c) h and g are analytic in U, g(0) =1, and h(0) = 0.
Univalent logharmonic mappings on the unit disc have been studied extensively. For
details see [1, 2, 3, 4, 5, 6, 7, 8]. Suppose that f is a univalent logharmonic mapping
defined on the unit disc U. Then, if f(0) = 0, the function F(Z) = log(f(e%)) is uni-
valent and harmonic on the half plane {T : ReC < 0}. For more details on univalent
harmonic mappings defined in the unit disc U, see [9, 10, 11, 12].

In this note, we consider the problem of minimizing the moments of order p over a
subclass of the class logharmonic mappings defined over the unit disc U. It is interest-
ing to note that the extremal functions are univalent starlike logharmonic mappings.

2. Moments of order p

THEOREM 2.1. Let f = zh(z)g(z) be logharmonic mapping defined on the unit disc
U such that h(0) = g(0) = 1. Let M, (v, f) denote the moment of order p, p = 0. Then,

1,-p+2 Tp+4
p+2 p+4>'

M, (r,f) = 2n< 2.1)
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Equality holds if and only if

(1+((p+2)/(p+4))z)

h& =2 (2 /(p+a))z)

or one of its rotations 1 f1(nz).

(2.2)

REMARK 2.2. If p = 0 in Theorem 2.1, then we have the problem of minimizing the

area. Moreover, if p = 2, then we obtain the minimum of the moment of inertia.

PROOF. Let f = zh(z)g(z) be logharmonic mapping defined on the unit disc U.
Then, f satisfies (1.1) for some a € H(U) such that |a(z)| < 1 and a(0) = 0. Hence,

using Schwarz’s lemma, we have

M, (r,f) > J: J:" |f|”(|fz|2— |fz|2)pd9dp
[ [T e pa0ds

v 21
ZI p(l—pZ)J \FI7 | f-]°dodp.
0 0

Writing (h-g)?/?-(zh)' - g = 1+ X5, ckz¥, we have
21 5 ® 5
J, 1P a0 = 2mpr (14 3 e 2%)
k=1

and therefore,

21 7,,g+2 Vp+4
M, (r,f) = 2m p”(lpz)dp:2n< )
0

p+2 p+4
Equality holds if and only if
(h)r’/Z . (g)(p+2>/2 =1
and a(z) = nz, |n| = 1. This implies that
(h)(n+2)/2 . (g)p/Zg' =n

and then,

@) (p2)(1-(hg) 7D 4 52)
oz B 2

The solution of the differential equation

(p+2)-u(z)  (p+2)(1+nz),
2 2 ’

z-u(z) + u0) =1

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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isu(z) = (h(z2)g(2)P*2/2 =1+ ((p+2)/(p+4))nz. Together with (2.6), we get

g9(z) _ n
gz) (A+({(p+2)/(p+4))nz)

and therefore,

(p+4)/(p+2)
_ p+2
g(z)<l+p+4nz> ,
z

zh(z) = )

@) (1+({(p+2)/(p+4))nz)

which leads to the solution 1.f1(nz). Since
zh(z) z

P(z) = =

9(2) (1""((P+2)/(}’J+4))nz)(2p+6)/(’“2>

(2.10)

(2.11)

(2.12)

is a starlike univalent analytic, it follows from [4, Theorem 2.1] that f; is a starlike

univalent logharmonic mapping.
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