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1. Introduction. Andrijević [1] introduced the definition of semi-preopen sets in

general topological spaces. Thakur and Singh [8] extended this definition to fuzzy

topological spaces. In [4], using semi-preopen sets, we have introduced and studied a

good definitions of semi-precompactness in L-fuzzy topological spaces.

In this note, along the lines of this semi-precompactness, we introduce a definition

of SP -closedness in L-fuzzy topological spaces. Also, we obtain some of its properties.

SP -closedness is defined for arbitrary L-fuzzy subsets. It is a weaker form of semi-

precompactness, but it is a stronger form of P -closedness [3] and S∗-closedness [7].

2. Preliminaries. Throughout this note, X and Y will be nonempty ordinary sets,

and L= L(≤,∨,∧,′ )will denote a fuzzy lattice, that is, a completely distributive lattice

with a smallest element 0 and largest element 1 and with an order reversing involution

a→ a′ (a∈ L). We will denote by LX the lattice of all L-fuzzy subsets of X.

Definition 2.1 (Gierz et al. [6]). An element p of L is called prime if and only if

p ≠ 1, and whenever a,b ∈ L with a∧b ≤ p, then a≤ p or b ≤ p. The set of all prime

elements of L will be denoted by pr(L).

Definition 2.2 (Gierz et al. [6]). An element α of L is called union irreducible if

and only if whenever a,b ∈ L with α ≤ a∨b, then α ≤ a or α ≤ b. The set of all

nonzero union-irreducible elements of L will be denoted by M(L). It is obvious that

p ∈ pr(L) if and only if p′ ∈M(L).
Warner [9] has determined the prime element of the fuzzy lattice LX . We have

pr(LX) = {xp : x ∈ X and p ∈ pr(L)}, where, for each x ∈ X and each p ∈ pr(L),
xp :X → L is the L-fuzzy set defined by

xp(y)=


p if y = x,
1 otherwise.

(2.1)

These xp are called the L-fuzzy points of X, and we say that xp is a member of an

L-fuzzy set f and write xp ∈ f if and only if f(x)� p.
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Thus, the union-irreducible elements of LX are the function xα :X → L defined by

xα(y)=


α if y = x,
0 otherwise,

(2.2)

where x ∈ X and α ∈M(L). Hence, we have M(LX) = {xα : x ∈ X and α ∈M(L)}. As

these xα are identified with the L-fuzzy points xp of X, we will refer to them as fuzzy

points. When xα ∈M(LX), we will call x and α the support of xα (x = Suppxα) and

the height of xα (α = h(xα)), respectively. We will denote L-fuzzy topological space

by L-fts.

Definition 2.3 (Zhao [10]). Let (X,δ) be an L-fts. A net in (X,δ) is a mapping

S : D → M(LX), where D is a directed set. For m ∈ D, we will denote S(m) by Sm,

and the net S by (Sm)m∈D . If A ∈ LX and for each m ∈ D, Sm ≤ A, then S is called a

net in A. A net (Sm)m∈D is called an α-net (α ∈M(L)) if, for each λ ∈ β∗(α) (where

β∗(α) denotes the union of all minimal sets relative to α), the net h(S)= (h(Sm))m∈D
is eventually greater than λ, that is, for each λ ∈ β∗(α), there is m0 ∈ D such that

h(Sm)≥ λwheneverm≥m0, where h(Sm) is the height of L-fuzzy point Sm ∈M(LX).
If h(Sm)=α for all m∈D, then we will say that (Sm)m∈D is a constant α-net.

Definition 2.4 (Thakur and Singh [8]). Let (X,δ) be an L-fts and f ∈ LX . Then, f is

called semi-preopen if and only if there is a preopen set g [3, 5] such that g ≤ f ≤ g−
and semi-preclosed if and only if f ′ is semi-preopen. f� =

∨{g : g is semi-preopen,

g ≤ f} and f� =
∧{g : g is semi-preclosed, g ≥ f} are called the semi-preinterior and

semi-preclosure of f , respectively.

It is clear that every semi-open L-fuzzy set is semi-preopen and every preopen L-

fuzzy set is semi-preopen. None of the converses needs to be true [9].

Definition 2.5 (Aygün [2]). Let (X,δ) be an L-fts and g ∈ LX , r ∈ L. A collection

µ = {fi}i∈J of L-fuzzy sets is called an r -level cover of g if and only if (
∨
i∈J fi)(x)� r

for all x ∈ X with g(x)≥ r ′. If each fi is open, then µ is called an r -level open cover

of g. If g is the whole space X, then µ is called an r -level cover of X if and only if

(
∨
i∈J fi)(x)� r for all x ∈X. An r -level cover µ = {fi}i∈J of g is said to have a finite

r -level subcover if there exists a finite subset F of J such that (
∨
i∈F fi)(x)� r for all

x ∈X with g(x)≥ r ′.
Definition 2.6 (Bai [4]). Let (X,δ) be an L-fts and g ∈ LX . We call g semi-

precompact if and only if every p-level semi-preopen cover of g has a finite p-level

subcover, where p ∈ pr(L). If g is the whole space, then we say that the L-fts (X,δ) is

semi-precompact.

3. SP -closedness

Definition 3.1. Let (X,δ) be an L-fts and let g ∈ LX , r ∈ L. An r -level cover

µ = {fi}i∈J of g is said to have a finite r�-level subcover if there exists a finite subset

F of J such that (
∨
i∈F (fi)�)(x)� r for all x ∈X with g(x)≥ r ′.
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Definition 3.2. Let (X,δ) be an L-fts and let g ∈ LX . We call g SP -closed if and

only if every p-level semi-preopen cover of g has a finite p�-level subcover, where

p ∈ pr(L). If g is the whole space, then we say that the L-fts (X,δ) is SP -closed.

Theorem 3.3. Every semi-precompact set is SP -closed in an L-fts.

Proof. This immediately follows from Definitions 2.6 and 3.2.

Theorem 3.4. Every SP -closed set is not only P -closed [3] but also S∗-closed [7] in

an L-fts.

Proof. Since every preopen L-fuzzy set is semi-preopen and every semiopen L-

fuzzy set is semi-preopen, and since for every L-fuzzy set f we have f� ≤ f� and

f� ≤ f−, where f� = ∧{g : g is preclosed, g ≥ f} and f− =
∧{g : g is semiclosed,

g ≥ f}, this directly follows from the definitions of SP -closedness, P -closedness, and

S∗-closedness.

Theorem 3.5. Let (X,δ) be an L-fts. Then, g ∈ LX is SP -closed if and only if,

for every α ∈ M(L) and every collection (hi)i∈J of semi-preclosed L-fuzzy sets with

(
∧
i∈J hi)(x) � α for all x ∈ X with g(x) ≥ α, there is a finite subset F of J such that

(
∧
i∈F (hi)�)(x)�α for all x ∈X with g(x)≥α.

Proof. This follows immediately from Definition 3.2.

Definition 3.6. Let (X,δ) be an L-fts, xα be an L-fuzzy point in M(LX), and S =
(Sm)m∈D be a net. We call xα an SP -cluster point of S if and only if, for each semi-

preclosed L-fuzzy set f with f(x) � α and for all n ∈ D, there is m ∈ D such that

m≥n and Sm � f�, that is, h(Sm)� f�(SuppSm).

Theorem 3.7. Let (X,δ) be an L-fts. Then, g ∈ LX is SP -closed if and only if every

constant α-net in g, where α∈M(L), has an SP -cluster point in g with height α.

Proof

Necessity. Let α ∈M(L) and S = (Sm)m∈D be a constant α-net in g without any

SP -cluster point with height α in g. Then, for each x ∈ X with g(x) ≥ α, xα is not

an SP -cluster point of S, that is, there are nx ∈ D and a semi-preclosed L-fuzzy set

fx with fx(x) � α and Sm ≤ (fx)� for each m ≥ nx . Let x1, . . . ,xk be elements of X
with g(xi)≥α for each i∈ {1, . . . ,k}. Then, there are nx1 , . . . ,nxk ∈D, semi-preclosed

L-fuzzy set fxi with fxi(x
i) � α, and Sm ≤ (fxi)� for each m ≥ nxi and for each

i ∈ {1, . . . ,k}. Since D is a directed set, there is no ∈ D such that no ≥ nxi for each

i ∈ {1, . . . ,k} and Sm ≤ (fxi)� for i ∈ {1, . . . ,k} and each m ≥ no. Now, consider the

family µ = {fx}x∈X with g(x)≥α. Then, (
∧
fx∈µ fx)(y)�α for all y ∈X with g(y)≥

α because fy(y) � α. Also, for any finite subfamily ν = {fx1 , . . . ,fxk} of µ, there

is y ∈ X with g(y) ≥ α and (
∧k
i=1(fxi)�)(y) ≥ α since Sm ≤ ∧ki=1(fxi)� for each

m ≥ no because Sm ≤ (fxi)� for each i ∈ {1, . . . ,k} and for each m ≥ no. Hence, by

Theorem 3.5, g is not SP -closed.

Sufficiency. Suppose that g is not SP -closed. Then by Theorem 3.5, there exist

α∈M(L) and a collectionµ=(fi)i∈J of semi-preclosed L-fuzzy sets with (
∧
i∈J fi)(x)�

α for all x ∈X with g(x)≥α, but for any finite subfamily ν of µ, there is x ∈X with
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g(x)≥α and (
∧
f∈ν(fi)�)(x)≥α. Consider the family of all finite subsets of µ, 2(µ),

with the order ν1 ≤ ν2 if and only if ν1 ⊂ ν2. Then 2(µ) is a directed set. So, writingxα as

Sν for every ν ∈ 2(µ), (Sν)ν∈2(µ) is a constant α-net in g because the height of Sν for all

ν ∈ 2(µ) is α and Sν ≤ g for all ν ∈ 2(µ), that is, g(x)≥α. Also, (Sν)ν∈2(µ) satisfies the

condition that for each semi-preclosed L-fuzzy set fi ∈ ν we have xα = Sν ≤ (fi)�. Let

y ∈X with g(y)≥α. Then (
∧
i∈J fi)(y)�α, that is, there exists j ∈ J with fj(y)�α.

Let νo = {fj}. So, for any ν ≥ νo,

Sν ≤
∧

fi∈ν

(
fi
)
� ≤

∧

fi∈νo

(
fi
)
� =

(
fj
)
�. (3.1)

Thus, we get a semi-preclosed L-fuzzy set fj with fj(y) ≥ α and νo ∈ 2(µ) such that

for any ν ≥ νo, Sν ≤ (fj)�. That means that yα ∈ M(LX) is not an SP -cluster point

(Sν)ν∈2(µ) for all y ∈ X with g(y) ≥ α. Hence, the constant α-net (Sν)ν∈2(µ) has no

SP -cluster point in g with height α.

Corollary 3.8. An L-fts (X,δ) is SP -closed if and only if every constant α-net in

(X,δ) has an SP -cluster point with height α, where α∈M(L).
Theorem 3.9. Let (X,δ) be an L-fts and g,h ∈ LX . If g and h are SP -closed, then

g∨h is SP -closed as well.

Proof. Let {fi}i∈J be a p-level semi-preopen cover of g∨h, where p ∈ pr(L). Then,

(
∨
i∈J fi)(x) � p for all x ∈ X with (g∨h)(x) ≥ p′. Since p is prime, we have (g∨

h)(x)≥ p′ if and only if g(x)≥ p′ or h(x)≥ p′. So, by the SP -closedness of g and h,

there are finite subsets E, F of J such that (
∨
i∈E(fi)�)(x)� P for all x ∈X with g(x)≥

p′ and (
∨
i∈F (fi)�)(x) � P for all x ∈ X with h(x) ≥ p′. Then, (

∨
i∈E∪F (fi)�)(x) � P

for all x ∈ X with g(x) ≥ p′ or h(x) ≥ p′, that is, (
∨
i∈E∪F (fi)�)(x) � P for all x ∈ X

with (g∨h)(x)≥ p′. Thus, g∨h is SP -closed.

Theorem 3.10. Let (X,δ) be an L-fts and g,h ∈ LX . If g is SP -closed and h is

semi-preclopen, then g∧h is SP -closed.

Proof. Let {fi}i∈J be a p-level semi-preopen cover of g∧h, where p ∈ pr(L). Then,

(
∨
i∈J fi)(x) � p for all x ∈ X with (g∧h)(x) ≥ p′. Thus, µ = {fi}i∈J ∪{h′} is a p-

level semi-preopen cover of g. In fact, for each x ∈ X with g(x) ≥ p′, if h(x) ≥ p′,
then (g∧h)(x) ≥ p′, which implies that (

∨
i∈J fi)(x) � p, thus (

∨
k∈µ k)(x) � p. If

h(x) � p′ then h′(x) � p which implies (
∨
k∈µ k)(x) � p. From the SP -closedness of

g, there is a finite subfamily ν of µ, say ν = {f1, . . . ,fn,h′} with (
∨
k∈ν k�)(x)� p for

all x ∈X with g(x)≥ p′. Then, (
∨n
i=1(fi)�)(x)� p for all x ∈X with (g∧h)(x)≥ p′.

In fact, if (g∧h)(x) ≥ p′, then g(x) ≥ p′, hence (
∨
k∈ν k�)(x) � p. So, there is k ∈ ν

such that k�(x)� p. Moreover, h(x)≥ p′ as well, that is, h′(x)≤ p. Since h is semi-

preopen, then h′ is semi-preclosed, that is, h′ = (h′)�. So, h′(x) ≤ p implies that

(h′)�(x) ≤ p′. Consequently, (
∨n
i=1(fi)�)(x) � p for all x ∈ X with (g∧h)(x) ≥ p′.

Hence, g∧h is SP -closed.

Corollary 3.11. Let (X,δ) be an SP -closed space and g be a semi-preclopen L-

fuzzy set. Then g is SP -closed.
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Definition 3.12. Let (X,δ) and (Y ,τ) be L-fts’s. A function f : (X,δ)→ (Y ,τ) is

called

(1) semi-preirresolute if and only if f−1(g) is semi-preopen in (X,δ) for each semi-

preopen L-fuzzy set g in (Y ,τ);
(2) weakly semi-preirresolute if and only if f−1(g) ≤ (f−1(g�))� for each semi-

preopen L-fuzzy set g in (Y ,τ).

Theorem 3.13. Let f : (X,δ)→ (Y ,τ) be a semi-preirresolute mapping with f−1(y)
is finite for every y ∈ Y . If g ∈ LX is SP -closed in (X,δ), then f(g) is SP -closed in (Y ,τ)
as well.

Proof. Let {fi}i∈J be a p-level semi-preopen cover of f(g), where p ∈ pr(L). Be-

cause f is semi-preirresolute, {f−1(fi)}i∈J is a p-level semi-preopen cover of g. By

the SP -closedness of g, {f−1(fi)}i∈J has a finite p�-level subcover, that is, there is a

finite subset F of J such that (
∨
i∈F (f−1(fi))�)(x) � p for all x ∈ X with g(x) ≥ p′.

We are going to show that {fi}i∈J has a finite p�-level subcover of f(g), that is,

(
∨
i∈F (fi)�)(y) � p for all y ∈ Y with f(g)(y) ≥ p′. Since f−1(y) is finite for ev-

ery y ∈ Y , f(g)(y) ≥ p′ implies that there is x ∈ X with g(x) ≥ p′ and f(x) = y .

Again, f is semi-preirresolute. Thus, we have

∨

i∈F

(
fi
)
�


(y)=


∨

i∈F

(
fi
)
�


(f(x))=


∨

i∈F
f−1((fi

)
�
)

(x)

=

∨

i∈F

(
f−1((fi

)
�
))
�


(x)≥


∨

i∈F

(
f−1(fi

))
�


(x)� p.

(3.2)

This has proved that {fi}i∈J has a finite p�-level subcover of f(g). Hence, f(g) is

SP -closed.

Theorem 3.14. Let f : (X,δ)→ (Y ,τ) be a weakly semi-preirresolute mapping with

f−1(y) is finite for every y ∈ Y . If g ∈ LX is semi-precompact in (X,δ), then f(g) is

SP -closed in (Y ,τ).

Proof. Let {fi}i∈J be a p-level semi-preopen cover of f(g), where p ∈ pr(L). Be-

cause f is weakly semi-preirresolute, for every i ∈ J, f−1(fi) ≤ (f−1((fi)�))�. Then,

{(f−1((fi)�))�}i∈J is a p-level semi-preopen cover of g. By the semi-precompactness

of g, {(f−1((fi)�))�}i∈J has a finite p-level subcover, that is, there is a finite subset

F of J such that (
∨
i∈F (f−1((fi)�))�)(x)� p for all x ∈X with g(x)≥ p′.

We are going to show that {fi}i∈J has a finite p�-level subcover of f(g), that is,

(
∨
i∈F (fi)�)(y)� p for all y ∈ Y with f(g)(y)≥ p′. In fact, if f(g)(y)≥ p′ and since

f−1(y) is finite for every y ∈ Y , there is x ∈X with g(x)≥ p′ and f(x)=y . So,

∨

i∈F

(
fi
)
�


(y)=


∨

i∈F

(
fi
)
�


(f(x))=


∨

i∈F
f−1((fi

)
�
)

(x)

≥

∨

i∈F

(
f−1((fi

)
�
))
�


(x)� p.

(3.3)

Hence, f(g) is SP -closed.
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