

EXTREME POINTS AND ROTUNDITY OF ORLICZ-SOBOLEV SPACES

SHUTAO CHEN, CHANGYING HU, and CHARLES XUEJIN ZHAO

Received 28 February 2002

It is well known that Sobolev spaces have played essential roles in solving nonlinear partial differential equations. Orlicz-Sobolev spaces are generalized from Sobolev spaces. In this paper, we present sufficient and necessary conditions of extreme points of Orlicz-Sobolev spaces. A sufficient and necessary condition of rotundity of Orlicz-Sobolev spaces is obtained.

2000 Mathematics Subject Classification: 47L10.

DEFINITION 1. Let $A(u) = \int_0^{|u|} p(t)dt$, where $p(t)$ satisfies the following properties:

- (1) $p(t)$ is right-continuous and nondecreasing;
- (2) $p(t) > 0$ ($t > 0$);
- (3) $p(0) = 0$, $\lim_{t \rightarrow \infty} p(t) = \infty$.

Then $A(u)$ is called an N -function and $p(t)$ is called the right derivative of $A(u)$.

DEFINITION 2. Let $A(u)$ be an N -function, $p(t)$ the right derivative of $A(u)$. Let

$$q(v) = \sup \{u \geq 0 : p(u) \leq v\} = \inf \{u \geq 0 : p(u) \geq v\}. \quad (1)$$

Then $\bar{A}(v) = \int_0^{|v|} q(t)dt$ is called the complementary function of $A(u)$.

DEFINITION 3. Let $A(u)$ be an N -function, $u \in \mathbb{R}$, if $v, w \in \mathbb{R}$, $v + w = 2u$, $u \neq v$, implies $A((v + w)/2) < (1/2)(A(v) + A(w))$. Then u is called a strictly convex point of A . The set of strictly convex points of A is denoted by S_A .

DEFINITION 4. Let $A(u)$ be an N -function, $\Omega \subset \mathbb{R}^n$, Orlicz space is defined as follows:

$$L_A(\Omega) = \left\{ u(t) : \exists \lambda > 0, \text{ such that } \int_{\Omega} A(\lambda u(t))dt < \infty \right\}. \quad (2)$$

DEFINITION 5. Let $A(u)$ be an N -function, and Ω be a bounded and connected field of \mathbb{R}^n . Orlicz-Sobolev space is defined as follows:

$$W_{m,A}^0 = \{u \in L_A(\Omega) : \partial^{\alpha} u \in L_A(\Omega), |\alpha| \leq m\}, \quad (3)$$

where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$, $|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n$, $\partial^{\alpha} u$ is a distribution of u .

For $u \in W_{m,A}^0$, its norm is defined as

$$\|u\|_{m,A}^0 = \left\{ \sum_{0 \leq |\alpha| \leq m} (\|\partial^\alpha(u)\|^0)^p \right\}^{1/p}, \quad 1 \leq p < \infty. \quad (4)$$

Orlicz-Sobolev spaces with the norm defined above are Banach spaces, see [1].

DEFINITION 6. For any $x \neq 0$, $x \in L_A(\Omega)$, let

$$\begin{aligned} K_x^* &= \inf \left\{ K > 0 : \int_{\Omega} \bar{A}(p(kx(t))) dt \geq 1 \right\}, \\ K_x^{**} &= \sup \left\{ K > 0 : \int_{\Omega} \bar{A}(p(kx(t))) dt \leq 1 \right\}. \end{aligned} \quad (5)$$

Then $k_x^* \leq k_x^{**}$. We set $K(x) = [k_x^*, k_x^{**}]$.

DEFINITION 7. Let X be a Banach space, $B(X)$ the closed unit ball of X , and $S(X)$ its unit sphere. Let $x \in S(X)$. If $y, z \in B(X)$, $y + z = 2x$ implies $x = y = z$, then x is called an extreme point of $B(X)$. The set of extreme points of $B(X)$ is denoted by $\text{ext}B(X)$. If $S(X) = \text{ext}B(X)$, then X is called a rotund space.

LEMMA 8. For any $x \in L_A^0$, $\|x\|_A^0 = (1/k) \{1 + \int_{\Omega} A(kx(t)) dt\}$ if and only if $k \in K(x)$.

THEOREM 9. Let $x \in S(W_{m,A}^0)$. If $\mu\{t \in \Omega : kx(t) \notin S_A\} = 0$, $k \in K(x)$, then $x \in \text{ext}B(W_{m,A}^0)$.

PROOF. Let $y, z \in B(W_{m,A}^0)$, and $y + z = 2x$. By the convexity of $f(u) = u^p$, $(1 \leq p < \infty)$

$$\begin{aligned} 1 &= \frac{(\|y\|_{m,A}^0)^p + (\|z\|_{m,A}^0)^p}{2} = \sum_{0 \leq |\alpha| \leq m} \frac{(\|\partial^\alpha y\|^0)^p + (\|\partial^\alpha z\|^0)^p}{2} \\ &\geq \sum_{0 \leq |\alpha| \leq m} \left(\frac{\|\partial^\alpha y\|^0 + \|\partial^\alpha z\|^0}{2} \right)^p \geq \sum_{0 \leq |\alpha| \leq m} \left(\left\| \frac{\partial^\alpha y + \partial^\alpha z}{2} \right\|^0 \right)^p \\ &= \sum_{0 \leq |\alpha| \leq m} (\|\partial^\alpha x\|^0)^p = 1^p = 1. \end{aligned} \quad (6)$$

So the equality holds in the above inequalities. Since for any $0 \leq |\alpha| \leq m$, we have

$$\frac{(\|\partial^\alpha y\|^0)^p + (\|\partial^\alpha z\|^0)^p}{2} \geq \left(\frac{\|\partial^\alpha y\|^0 + \|\partial^\alpha z\|^0}{2} \right)^p \geq \left(\left\| \frac{\partial^\alpha y + \partial^\alpha z}{2} \right\|^0 \right)^p. \quad (7)$$

From (6) and (7), we know that the equality holds in (7). In particular, when $p > 1$,

$$\|\partial^\alpha y\|^0 + \|\partial^\alpha z\|^0 = 2\|\partial^\alpha x\|^0. \quad (8)$$

Take $h \in K(\gamma)$, $l \in K(z)$, and let $k = hl/(h+l)$. Then

$$\begin{aligned}
2\|x\|^0 &= \|\gamma\|^0 + \|z\|^0 \\
&= \frac{1}{h} \left(1 + \int_{\Omega} A(h\gamma(t)) dt \right) + \frac{1}{l} \left(1 + \int_{\Omega} A(lz(t)) dt \right) \\
&= \frac{h+l}{hl} + \frac{1}{h} \int_{\Omega} A(h\gamma(t)) dt + \frac{1}{l} \int_{\Omega} A(lz(t)) dt \\
&= \frac{h+l}{hl} \left[1 + \int_{\Omega} \left(\frac{l}{h+l} A(h\gamma(t)) + \frac{h}{h+l} A(lz(t)) \right) dt \right] \\
&\geq \frac{h+l}{hl} \left[1 + \int_{\Omega} A \left(\frac{hl}{h+l} (\gamma(t) + z(t)) \right) dt \right] \\
&\geq 2 \cdot \frac{1}{2k} \left[1 + \int_{\Omega} A(2kx(t)) dt \right] \\
&\geq 2\|x\|^0.
\end{aligned} \tag{9}$$

So the equality holds in the above inequalities. Hence $2k \in K(x)$ and for a.e. $t \in \Omega$, $(l/(h+l))A(h\gamma(t)) + (h/(h+l))A(lz(t)) = A(2kx(t))$. By the known conditions, for almost all $t \in \Omega$, $h\gamma(t) = lz(t) = 2kx(t)$. Therefore,

$$l = l\|z\|_{m,A}^0 = \|lz\|_{m,A}^0 = \|h\gamma\|_{m,A}^0 = h\|\gamma\|_{m,A}^0 = h. \tag{10}$$

This implies $x = \gamma = z$. So $x \in \text{ext } B(W_{m,A}^0)$. \square

THEOREM 10. *Let $x \in S(W_{m,A}^0)$. If for any $i = 1, 2, \dots, n$, $\mu\{t \in \Omega : k_i \partial_i x(t) \notin S_A\} = 0$, where $K_i \in K(\partial_i x(t))$. Then $x \in \text{ext } B(W_{m,A}^0)$.*

PROOF. Let $\gamma, z \in B(W_{m,A}^0)$, and $\gamma + z = 2x$. By the proof of [Theorem 9](#), for any $0 \leq |\alpha| \leq m$ we have

$$2\|\partial^\alpha x\|^0 = \|\partial^\alpha \gamma\|^0 + \|\partial^\alpha z\|^0. \tag{11}$$

In particular, if $|\alpha| = 1$, then $2\|\partial_i x\|^0 = \|\partial_i \gamma\|^0 + \|\partial_i z\|^0$. Take $h_i \in K(\partial_i \gamma)$, $l_i \in K(\partial_i z)$, and let $k_i = h_i l_i / (h_i + l_i)$. By the proof of [Theorem 9](#), we have

$$h_i \partial_i \gamma(t) = l_i \partial_i z(t) = 2k_i \partial_i x(t), \quad i = 1, 2, \dots, n \tag{12}$$

and $l_i = h_i = 2k_i$. Hence $\partial_i \gamma(t) = \partial_i x(t) = \partial_i z(t)$. Thus there exists a constant c such that $\gamma(t) = x(t) + c$, $z(t) = x(t) - c$. Now, we show that $c = 0$. If not, $c \neq 0$. Without loss of generality, we may assume that $c > 0$. If $|x| < c$, then $\gamma(t) > 0$, $z(t) < 0$. Since $0 \in S_A$, when $a > 0$, $b < 0$, for any $\lambda \in (0, 1)$, we have $A(\lambda a + (1-\lambda)b) < \lambda A(a) + (1-\lambda)A(b)$. By (9), $|x(t)| < c$ does not hold. Then for a.e. $t \in \Omega$, $|x(t)| \geq c$.

Let $E_1 = \{t \in \Omega : x(t) \geq c\}$, $E_2 = \{t \in \Omega : x(t) \leq -c\}$. Then $\mu(E_1 \cup E_2) = \mu\Omega$. Since Ω is connected, for any $p \in E_1$, $q \in E_2$, p can continuously move to q in Ω by a transform of finite single-variable. If $\mu E_1 > 0$ and $\mu E_2 > 0$, there exists at least a $p \in E_1$, $q \in E_2$ such that the connecting line between p and q over $E_1 \cup E_2$ is condense. So there exists a line $l = \{(t_1, t_2, \dots, t_{i-1}, \lambda t_{i+1}, \dots, t_n) \mid \lambda \in [a, b]\}$ on that connecting line, such that $l \cap E_1 \neq \emptyset$, $l \cap E_2 \neq \emptyset$. But $x(t) \geq c$ over E_1 and $x(t) \leq -c$ over E_2 whereas $E_1 \cup E_2$ is condense of l . This is a contradiction to the fact that $\partial_i x(t) \in L_A \subset L_1$ implies that $x(t)$ is absolutely continuous with respect to t_i . So, either $\mu E_1 = 0$ or $\mu E_2 = 0$. Without loss of generality, let $\mu E_2 = 0$. Then for almost all $t \in \Omega$, $x(t) \geq c$. So, $y(t) > x(t)$. Thus $\|y\|_{m,A}^0 > \|x\|_{m,A}^0 = 1$. This contradicts $y \in B(W_{m,A}^0)$. From above, we know that $c = 0$. So $x(t) = y(t) = z(t)$. This means $x \in \text{ext } B(W_{m,A}^0)$. \square

THEOREM 11. *Let $x \in S(W_{m,A}^0)$. For any $i = 1, 2, \dots, n$,*

$$\mu\{t \in \Omega : kx(t) \notin S_A\} \cap \{t \in \Omega : k_i \partial_i x(t) \notin S_A\} = 0, \quad k_i \in K(\partial_i x), \quad k \in K(x), \quad (13)$$

then $x \in \text{ext } B(W_{m,A}^0)$.

PROOF. Let $y, z \in B(W_{m,A}^0)$ and $y + z = 2x$. Let $B = \{t \in \Omega : kx(t) \notin S_A\}$, $B_i = \{t \in \Omega : k_i \partial_i x(t) \notin S_A\}$, and $y(t) = x(t) + \delta(t)$.

CASE 1. For almost all $t \in \Omega \setminus B$, $\delta(t) = 0$ by [Theorem 10](#). Therefore $x(t) = y(t) = z(t)$.

CASE 2. For any $i = 1, 2, \dots, n$, $\mu(B \cap B_i) = 0$, so for almost all $t \in B$, $t \notin B_i$. Hence $\partial_i x(t) \in S_A$. By the proof of [Theorem 10](#), we know that $\partial_i \delta(t) = 0$, when $\delta(t) = c$. Similarly, $x(t) = y(t) = z(t)$ by [Theorem 10](#). By Cases 1 and 2 we know $x \in \text{ext } B(W_{m,A}^0)$. \square

THEOREM 12. *Let $x \in S(W_{m,A}^0)$. If there exists an affine interval (a_α, b_α) and $\epsilon > 0$ such that*

$$\text{int} \bigcap_{0 \leq |\alpha| \leq m} \{t \in \Omega : \partial^\alpha k_\alpha x(t) \in (a_\alpha + \epsilon, b_\alpha - \epsilon)\} \neq \emptyset, \quad (14)$$

then $x \notin \text{ext } B(W_{m,A}^0)$.

PROOF. Let $G = \bigcap_{0 \leq |\alpha| \leq m} \{t \in \Omega : k_\alpha \partial^\alpha x(t) \in (a_\alpha + \epsilon, b_\alpha - \epsilon)\}$ and $\text{int } G \neq \emptyset$. Take $t', t'' \in \text{int } G$, $r > 0$ such that $B(t', r) = B_1 \subset G$, $B(t'', r) = B_2 \subset G$, and $B_1 \cap B_2 = \emptyset$. For any $t^* \in \Omega$ satisfying $B(t^*, r) \subset \Omega$. Define

$$J_{t^*}(t) = \begin{cases} e^{-1/(r^2 - \sum_{i=1}^n (t_i - t_i^*)^2)}, & t \in B(t^*, r), \\ 0, & t \in \Omega \setminus B(t^*, r). \end{cases} \quad (15)$$

Then $J_{t^*}(t)$ is an infinitely differentiable function on Ω and for any $0 \leq |\alpha| \leq m$, $\partial^\alpha J_{t^*}(t) = 0$ on $\Omega \setminus B(t^*, r)$. Let

$$c = \epsilon \min_{0 \leq |\alpha| \leq m} \left\{ \frac{1}{\max_{t \in \Omega} |\partial^\alpha J_{t^*}(t)|} \right\}. \quad (16)$$

Then $c > 0$ and for all $t \in \Omega$, $c\partial^\alpha J_{t^*}(t) \leq \epsilon$. Define

$$y(t) = x(t) + cJ_{t'}(t) - cJ_{t''}(t), \quad z(t) = x(t) - cJ_{t'}(t) + cJ_{t''}(t). \quad (17)$$

Then $y, z \in W_{m,A}^0$, and $y + z = 2x$, $y \neq z$. Let $A(u) = h_\alpha u + b_\alpha$ on $(a_\alpha + \epsilon, b_\alpha - \epsilon)$. For any $k_\alpha \in K(\partial^\alpha x)$,

$$\begin{aligned} \|\partial^\alpha y\|^0 &= \frac{1}{k_\alpha} \left[1 + \int_{\Omega} A(k_\alpha \partial^\alpha y(t)) dt \right] \\ &= \frac{1}{k_\alpha} \left[1 + \int_{\Omega \setminus (B_1 \cup B_2)} A(k_\alpha \partial^\alpha x(t)) dt + \int_{B_1} A(k_\alpha \partial^\alpha x(t) + k_\alpha \partial^\alpha (cJ_{t'}(t))) dt \right. \\ &\quad \left. + \int_{B_2} A(k_\alpha \partial^\alpha x(t) - k_\alpha \partial^\alpha (cJ_{t''}(t))) dt \right] \\ &= \frac{1}{k_\alpha} \left[1 + \int_{\Omega \setminus (B_1 \cup B_2)} A(k_\alpha \partial^\alpha x(t)) dt \right. \\ &\quad \left. + \int_{B_1} (h_\alpha k_\alpha \partial^\alpha x(t) + b_\alpha) dt + \int_{B_1} h_\alpha k_\alpha \partial^\alpha (cJ_{t'}(t)) dt \right. \\ &\quad \left. + \int_{B_2} (h_\alpha k_\alpha \partial^\alpha x(t) + b_\alpha) dt - \int_{B_2} h_\alpha k_\alpha \partial^\alpha (cJ_{t''}(t)) dt \right] \\ &= \frac{1}{k_\alpha} \left[1 + \int_{\Omega} A(k_\alpha \partial^\alpha x(t)) dt \right] \\ &= \|\partial^\alpha x\|^0. \end{aligned} \quad (18)$$

Hence for any $0 \leq |\alpha| \leq m$, we have $\|\partial^\alpha y\|^0 = \|\partial^\alpha x\|^0$.

Likewise, for any $0 \leq |\alpha| \leq m$, we have $\|\partial^\alpha z\|^0 = \|\partial^\alpha x\|^0$. Then

$$\|y\|_{m,A}^0 = \|z\|_{m,A}^0 = \|x\|_{m,A}^0 = 1. \quad (19)$$

Therefore $y, z \in S(W_{m,A}^0)$. We know that $x \notin \text{ext } B(W_{m,A}^0)$ since $y \neq z$. \square

THEOREM 13. *We show that $W_{m,A}^0$ is rotund if and only if A is strictly convex.*

PROOF

SUFFICIENCY. It is immediately obtained from [Theorem 9](#).

NECESSITY. Suppose A is not strictly convex. Then there exists $0 < a < b$ such that $A(u)$ is an affine function on (a, b) . Since Ω is bounded, we can take $t' \in \bar{\Omega}$, $t'' \in \bar{\Omega}$ such that

$$\sum_{i=1}^n t'_i = \inf_{(t_1, t_2, \dots, t_n) \in \Omega} \sum_{i=1}^n t_i, \quad \sum_{i=1}^n t''_i = \sup_{(t_1, t_2, \dots, t_n) \in \Omega} \sum_{i=1}^n t_i. \quad (20)$$

(1) When $\int_{\Omega} \bar{A}(p((a+b)/2)) dt < 1$, we set $g(c) = \int_{\Omega} \bar{A}(p(((a+b)/2)e^{c \sum_{i=1}^n (t_i - t'_i)})) dt$. Then by the continuity of \bar{A} and the right continuity of p , $g(c)$ is right continuous

with respect to c and $g(0) = \int_{\Omega} \bar{A}(p((a+b)/2))dt < 1$, $\lim_{c \rightarrow \infty} g(c) = \infty$. Take $c_0 = \inf\{c > 0 : g(c) \geq 1\}$, then the following two statements hold:

- (a) $g(c_0) \geq 1$, so $c_0 > 0$;
- (b) for any $l \in (0, 1)$, $\int_{\Omega} \bar{A}(p(((a+b)/2)le^{c_0 \sum_{i=1}^n (t_i - t'_i)}))dt < 1$.

Indeed, take $c_n \searrow c_0$ such that $g(c_n) \geq 1$. Then $g(c_0) = \lim_{n \rightarrow \infty} g(c_n) \geq 1$ since $g(c)$ is right continuous. So (a) holds.

Let $\lambda = \sup_{(t_1, t_2, \dots, t_n)} \sum_{i=1}^n (t_i - t'_i)$. Then for any $t \in \Omega$, $\lambda \geq \sum_{i=1}^n (t_i - t'_i) > 0$. For any $0 < l < 1$, since $\ln l < 0$,

$$0 < l \frac{a+b}{2} e^{c_0 \sum_{i=1}^n (t_i - t'_i)} = \frac{a+b}{2} e^{\ln l + c_0 \sum_{i=1}^n (t_i - t'_i)} \leq \frac{a+b}{2} e^{(c_0 + \ln l/\lambda) \sum_{i=1}^n (t_i - t'_i)}. \quad (21)$$

By the definition of c_0 ,

$$\int_{\Omega} \bar{A}\left(p\left(l \frac{a+b}{2} e^{c_0 \sum_{i=1}^n (t_i - t'_i)}\right)\right)dt \leq g\left(c_0 + \frac{\ln l}{\lambda}\right) < 1. \quad (22)$$

Let $x(t) = ((a+b)/2)e^{c_0 \sum_{i=1}^n (t_i - t'_i)}$. By the above discussion, $1 \in K(x)$. Then $\|x\|^0 = 1 + \int_{\Omega} A(x(t))dt$. Let $x_0(t) = x(t)/\|x\|_{m,A}^0$. Then $x_0(t) \in S(W_{m,A}^0)$ and

$$\begin{aligned} \|x_0\|^0 &= \frac{\|x\|^0}{\|x\|_{m,A}^0} = \frac{1}{\|x\|_{m,A}^0} \left(1 + \int_{\Omega} A(x(t))dt\right) \\ &= \frac{1}{\|x\|_{m,A}^0} \left(1 + \int_{\Omega} A(\|x\|_{m,A}^0 x_0(t))dt\right). \end{aligned} \quad (23)$$

Therefore $\|x\|_{m,A}^0 \in K(x_0(t))$. Set $1/b_0 = \|x\|_{m,A}^0$. Since $(t_1, t_2, \dots, t_n) \in \Omega$, $x(t) \rightarrow (a+b)/2$ as $t_i \rightarrow t'_i$, we can choose a ball $B \subset \Omega$ such that $x(B) \subset (a, b)$. It means that

$$\{t \in \Omega : x(t) \notin S_A\} \supset B. \quad (24)$$

Therefore,

$$\left\{t \in \Omega : \frac{1}{b_0} x_0(t) \notin S_A\right\} \supset B. \quad (25)$$

On the other hand, as $1 \leq |\alpha| \leq m$,

$$\partial^{\alpha} x_0(t) = \frac{\partial^{\alpha} x(t)}{\|x\|_{m,A}^0} = \frac{c_0^{|\alpha|}}{\|x\|_{m,A}^0} x(t) = b_{\alpha} x(t), \quad (26)$$

where $b_{\alpha} = c_0^{|\alpha|} / \|x\|_{m,A}^0$. By [Lemma 8](#), $1/b_{\alpha} \in K(\partial^{\alpha} x(t))$. So

$$\left\{t \in \Omega : \frac{1}{b_{\alpha}} \partial^{\alpha} x_0(t) \notin S_A\right\} \supset B. \quad (27)$$

Then,

$$\text{int} \bigcap_{0 \leq |\alpha| \leq m} \left\{ t \in \Omega : \frac{1}{b_\alpha} \partial^\alpha x_0(t) \notin S_A \right\} \neq \emptyset. \quad (28)$$

By **Theorem 12**, we know $x_0 \notin \text{ext} B(W_{m,A}^0)$. This is a contradiction.

(2) When $\int_{\Omega} \bar{A}(p((a+b)/2)) dt \geq 1$.

Set $g(c) = \int_{\Omega} \bar{A}(p(((a+b)/2)e^{c \sum_{i=1}^n (t_i - t_i'')}) dt$. Then $g(c)$ is left-continuous with respect to c . For any $(t_1, t_2, \dots, t_n) \in \Omega$, $\sum_{i=1}^n (t_i - t_i'') < 0$, and $g(0) = \int_{\Omega} \bar{A}(p((a+b)/2)) dt \geq 1$, $\lim_{c \rightarrow \infty} g(c) = 0$. Take $c_0 = \sup\{c > 0 : g(c) \leq 1\}$. As in (1), we can prove $g(c_0) \leq 1$ and for any $l > 1$,

$$\int_{\Omega} \bar{A}\left(p\left(l \frac{a+b}{2} e^{c_0 \sum_{i=1}^n (t_i - t_i'')}\right)\right) dt \geq 1. \quad (29)$$

Let $x(t) = ((a+b)/2)e^{c_0 \sum_{i=1}^n (t_i - t_i'')}, x_0(t) = x(t)/\|x\|_{m,A}^0$. Then $x_0 \in S(W_{m,A}^0)$. Likewise, we can show $x_0 \notin \text{ext} B(W_{m,A}^0)$. This is also a contradiction.

By (1) and (2) we know that A is strictly convex. \square

ACKNOWLEDGMENT. This work was supported by the Chinese Science Foundation and Heilongjiang Province Science Foundation.

REFERENCES

[1] R. A. Adams, *Sobolev Spaces*, Pure and Applied Mathematics, vol. 65, Academic Press, 1975.

SHUTAO CHEN: DEPARTMENT OF MATHEMATICS, HARBIN NORMAL UNIVERSITY, HARBIN 150080, CHINA

CHANGYING HU: DEPARTMENT OF MATHEMATICS, HARBIN NORMAL UNIVERSITY, HARBIN 150080, CHINA

CHARLES XUEJIN ZHAO: DEPARTMENT OF MATHEMATICS, P.O. BOX 20047, SAVANNAH STATE UNIVERSITY, SAVANNAH, GA 31404, USA

E-mail address: czhao@tigerpaw.savstate.edu

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	February 1, 2009
First Round of Reviews	May 1, 2009
Publication Date	August 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk