

MORPHISMS OF MISLIN GENERA INDUCED BY FINITE NORMAL SUBGROUPS

P. J. HILTON and P. J. WITBOOI

Received 20 March 2002

We correct an erroneous statement about induced morphisms of Mislin genera and give the correct statement, even under more general hypotheses.

2000 Mathematics Subject Classification: 20F18, 20E34.

As in [9], we denote the class of all finitely generated groups with finite commutator subgroups by \mathcal{X}_0 , and for an \mathcal{X}_0 -group H , we let $\chi(H)$ be the set of isomorphism classes of groups K for which $K \times \mathbb{Z} \cong H \times \mathbb{Z}$. If H is a *nilpotent* \mathcal{X}_0 -group, the Mislin genus (i.e., the genus as defined in [4]) of H is denoted by $\mathcal{G}(H)$. By a result of Warfield [6], we know that if H is a nilpotent \mathcal{X}_0 -group, then $\chi(H) = \mathcal{G}(H)$. Furthermore, for an \mathcal{X}_0 -group H , in [9] it is shown that there is an abelian group structure on $\chi(H)$ which coincides with the Hilton-Mislin group structure [3] on $\mathcal{G}(H)$ if H is nilpotent.

In [8, Section 3], it was shown how to define a function $\eta : \chi(H) \rightarrow \chi(H/F)$ if H is an infinite \mathcal{X}_0 -group and F is a finite normal subgroup of H . It was also shown that the function is not always a homomorphism [8, Example 5.4]. This is in conflict with [2, Theorem 1.3]. In fact there is an error in [2, Theorem 1.1] in that the function $\alpha_* : \mathcal{G}(N) \rightarrow \mathcal{G}(N/F)$ is not always well defined. The counterexample of [9] suggests a way to show explicitly how things may go wrong. (To merely show that α_* is not always well defined there are simpler examples, but for a simpler example one may find that there is nevertheless some epimorphisms $\mathcal{G}(N) \rightarrow \mathcal{G}(N/F)$.) We will show that the results of [2, Section 1] remain valid.

In order to ensure that the relation α_* of [2, Section 1] is a well-defined function, we could follow the option of replacing the domain $\mathcal{G}(N)$ with a different set, which we briefly describe as follows.

Let \mathcal{N}_0 be the subclass of \mathcal{X}_0 consisting of all infinite nilpotent groups. For an \mathcal{N}_0 -group H and a suitable finite group F , we fix a monomorphism $h : F \rightarrow H$ with $h(F) \triangleleft H$. Now let K be a group in the Mislin genus of H , and let $k : F \rightarrow K$ be any monomorphism with $k(F) \triangleleft K$ which admits, for every prime p , an isomorphism $f : K_p \rightarrow H_p$ for which $f \circ k_p = h_p$. We denote the class of all such pairs (K, k) by \mathcal{H}_0 . If $l : F \rightarrow L$ is another such homomorphism, then we say that $l \sim k$ if there is an isomorphism $\phi : L \rightarrow K$ for which $\phi \circ l = k$. Then \sim is an equivalence relation. Let $\mathcal{G}(H, h)$ be the set $\mathcal{G}(H, h) = \mathcal{H}_0 / \sim$ of all equivalence classes of such endomorphisms. Since $\mathcal{G}(H)$ is finite and since there are only finitely many embeddings of F into H , it is easy to prove that $\mathcal{G}(H, h)$ is a finite set. At least then we can follow [2, Theorem 1.1]. The association $(K, k) \mapsto K/k(F)$ determines a function $\alpha_* : \mathcal{G}(H, h) \rightarrow \mathcal{G}(H/h(F))$. There is of course the difficulty that

the set $\mathcal{G}(H, h)$ is not well understood, for example, we do not know whether $\mathcal{G}(H, h)$ has a suitable group structure. Anyway, we are interested in $\mathcal{G}(H)$, and we will follow a different option.

We know (see, e.g., [7]) that if F is a characteristic subgroup of the torsion subgroup T_H of H , then we do have a homomorphism $\mathcal{G}(H) \rightarrow \mathcal{G}(H/F)$, in fact, an epimorphism. In the calculation that leads up to [2, Theorem 3.1], the subgroup $\ker \alpha$ of N that is being factored out is, indeed, a characteristic subgroup of T (see [Proposition 7](#)). Further we note that \tilde{N} is of the form $H \times (\mathbb{Z}_2)$ for some group H , and then by [7, Corollary 4.2] we have an isomorphism $\mathcal{G}(H) \rightarrow \mathcal{G}(\tilde{N})$. For such a group H we have (see [1]) that $\mathcal{G}(H) = (\mathbb{Z}_7)^*/\{1, -1\}$. Thus it follows that [2, Theorem 3.1] is valid. In this paper, we will find a more general condition on the pair $F \triangleleft H$ in order to have a homomorphism $\mathcal{G}(H) \rightarrow \mathcal{G}(H/F)$, in fact, an epimorphism. Our result in this regard is more general in that we do not require the group H to be nilpotent.

We recall the following invariant of an \mathcal{X}_0 -group.

DEFINITION 1 (see [9]). For an \mathcal{X}_0 -group H , let n_1 be the exponent of the torsion subgroup T_H , let n_2 be the exponent of the group $\text{Aut}(T_H)$, and let n_3 be the exponent of the torsion subgroup of the center of H . We define the natural number $n(H) = n_1 n_2 n_3$.

Note that if H is an \mathcal{X}_0 -group and K is a group for which $K \times \mathbb{Z} \cong H \times \mathbb{Z}$, then K is also an \mathcal{X}_0 -group and $T_K \cong T_H$, so that $n(K) = n(H)$. Also note that for such groups H and K , if $\epsilon : H \rightarrow K$ is an embedding then the index $[K : \epsilon(H)]$ is finite.

THEOREM 2. *Let H be an infinite \mathcal{X}_0 -group, and let $n = n(H)$. Let F be a finite subgroup of H . The following two conditions are equivalent:*

- (1) *given any embedding $\phi : H \rightarrow H$ such that $[H : \phi(H)]$ is relatively prime to n , $\phi(F) = F$;*
- (2) *if L is any group for which $L \times \mathbb{Z} \cong H \times \mathbb{Z}$, and β_1 and β_2 are any two embeddings of L onto subgroups K_1 and K_2 , respectively, of H , with both $[H : K_1]$ and $[H : K_2]$ relatively prime to n , then $\beta_1^{-1}(F) = \beta_2^{-1}(F)$.*

PROOF. Assume that condition (1) holds and suppose that we are given L , β_1 , and β_2 as in (2). Then F is contained in both K_1 and K_2 . In order to prove (2), it suffices to show that, given any isomorphism $\beta : K_1 \rightarrow K_2$, $\beta(F) = F$. By [9, Theorem 4.2] it follows that there is an embedding $\gamma : H \rightarrow K_1$ such that $[K_1 : \gamma(H)]$ is relatively prime to n (note that $n(H) = n(K_1)$). Let $\epsilon : K_1 \rightarrow H$ and $\delta : K_2 \rightarrow H$ be the inclusions. Then we have embeddings $\epsilon \circ \gamma$ and $\delta \circ \beta \circ \gamma$ of H into H . By (1), it follows that $\epsilon \circ \gamma(F) = F$ and $\delta \circ \beta \circ \gamma(F) = F$. Moreover, $\epsilon(F) = F$ and $\delta(F) = F$, and consequently we have $\beta(F) = F$. So we have proved that (1) implies (2). □

The converse implication is clear. □

REMARK 3. Notice that for any infinite \mathcal{X}_0 -group H and any group L for which $L \times \mathbb{Z} \cong H \times \mathbb{Z}$, L is an \mathcal{X}_0 -group and $n(L) = n(H)$. It is then not hard to see that conditions (1) and (2) of [Theorem 2](#) are equivalent to the following condition:

- (3) *if β_1 and β_2 are any two embeddings of H onto subgroups K_1 and K_2 , respectively, of L , with $[L : K_1]$ and $[L : K_2]$ relatively prime to n , then $\beta_1(F) = \beta_2(F)$.*

We are now able to state and prove a significant result on induced morphisms.

THEOREM 4. *Let H be an \mathcal{X}_0 -group, and let $n = n(H)$. Let F be a finite subgroup of H with the property that, given any embedding $\phi : H \rightarrow H$ such that $[H : \phi(H)]$ is relatively prime to n , $\phi(F) = F$. Then, for subgroups K of H with $[H : K]$ relatively prime to n , the association $K \mapsto K/F$ defines an epimorphism $\eta : \chi(H) \rightarrow \chi(H/F)$.*

PROOF. We first note that, by implication, F must be a normal subgroup of H . By the equivalence of (1) and (2) in [Theorem 2](#), it follows that η is well defined. The proof is completed in a way similar to the proof of [[7](#), Theorem 2.1] using [[9](#), Proposition 6.1]. \square

For an \mathcal{X}_0 -group H , T_H has finite characteristic subgroups $[T_H, T_H]$ and ZT_H to which [[7](#), Theorem 2.1] applies. We point out some other subgroups to which the more general [Theorem 4](#) is applicable.

THEOREM 5. *Let H be an infinite \mathcal{X}_0 -group. Let $F = [H, H] \cap T_H$. Then H , together with F , satisfies condition (1) of [Theorem 2](#).*

PROOF. Let $\phi : H \rightarrow H$ be any embedding such that $[H : \phi(H)]$ is relatively prime to n . Then $\phi[H, H] = [\phi H, \phi H] < [H, H]$. Also $\phi(T_H) < T_H$. Thus $\phi(F) < F$. Since F is finite, it follows that $\phi(F) = F$. \square

THEOREM 6. *Let H be an infinite \mathcal{X}_0 -group. Let $F = ZH \cap T_H$. Then H together with F satisfies condition (1) of [Theorem 2](#).*

PROOF. Let $\phi : H \rightarrow H$ be any embedding such that $[H : \phi(H)]$ is relatively prime to n . Then ϕ can be extended to an isomorphism $\psi : H \times \mathbb{Z}^k \rightarrow H \times \mathbb{Z}^k$ for some $k \in \mathbb{N}$ (see the proof of [[9](#), Theorem 4.1]). Now $Z(H \times \mathbb{Z}^k) = (ZH) \times \mathbb{Z}^k$. Since the isomorphism ψ preserves centers and preserves torsion, it follows that $\psi(F) = F$. Since the induced homomorphism ϕ maps T_H isomorphically onto T_H , it follows that $\phi(F) = F$. \square

The following result offers an alternative approach to [[2](#), Theorem 3.1], or to a generalization of it.

PROPOSITION 7. *Let $n \in \mathbb{N}$, and let*

$$T = \langle x, y, z \mid x^2 = y^2 = z^{2n} = 1, [x, y] = z^n, [x, z] = 1 = [y, z] \rangle. \quad (1)$$

Then the subgroup $F = \langle x, y, z^n \rangle$ of T is a characteristic subgroup of T .

PROOF. We note that F is generated by elements of order 2 and every element of order 2 in T is contained in F . Therefore F is a characteristic subgroup of T . \square

PROPOSITION 8. *Let $n, u \in \mathbb{N}$ be such that u is relatively prime to $2n$. Let t be the multiplicative order of $u \pmod{2n}$, and let \tilde{t} be the multiplicative order of $u \pmod{n}$. Let T and F be the groups of [Proposition 7](#), and let ζ be the action of \mathbb{Z} on T defined (for $a \in \mathbb{Z}$) by*

$$(a, z) \mapsto z^{(u^a)}, \quad (a, x) \mapsto x, \quad (a, y) \mapsto y. \quad (2)$$

Then, for the group $H = T \rtimes_{\zeta} \mathbb{Z}$, $F \triangleleft H$ and we have an epimorphism $\chi(H) \rightarrow \chi(H/F) = (\mathbb{Z}_{\tilde{t}})^*/\{1, -1\}$.

In particular, if $\tilde{t} = t$, then $\chi(H) \simeq \chi(H/F)$.

PROOF. Our conditions ensure that indeed ζ is an action. By [Proposition 7](#), F is a characteristic subgroup of T , and thus by [Theorem 4](#), there is an epimorphism $\chi(H) \rightarrow \chi(H/F)$. The group H/F is isomorphic to the group

$$\langle a, b \mid a^n = 1, bab^{-1} = a^u \rangle \quad (3)$$

and therefore by [\[5, Theorem 3.8\]](#) we have $\chi(H/F) = (\mathbb{Z}_{\tilde{t}})^*/\{1, -1\}$.

By [\[8, Theorem 2.6\]](#) there is an epimorphism

$$(\mathbb{Z}_{\tilde{t}})^*/\{1, -1\} \longrightarrow \chi(H), \quad (4)$$

and so, if $\tilde{t} = t$, then $\chi(H) \simeq \chi(H/F)$. \square

REFERENCES

- [1] C. Casacuberta and P. Hilton, *Calculating the Mislin genus for a certain family of nilpotent groups*, Comm. Algebra **19** (1991), no. 7, 2051–2069.
- [2] P. Hilton, *On induced morphisms of Mislin genera*, Publ. Mat. **38** (1994), no. 2, 299–314.
- [3] P. Hilton and G. Mislin, *On the genus of a nilpotent group with finite commutator subgroup*, Math. Z. **146** (1976), no. 3, 201–211.
- [4] G. Mislin, *Nilpotent groups with finite commutator subgroups*, Localization in Group Theory and Homotopy Theory, and Related Topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974), Lecture Notes in Math., vol. 418, Springer, Berlin, 1974, pp. 103–120.
- [5] D. Scevenels and P. Witbooi, *Non-cancellation and Mislin genus of certain groups and H_0 -spaces*, J. Pure Appl. Algebra **170** (2002), no. 2-3, 309–320.
- [6] R. B. Warfield Jr., *Genus and cancellation for groups with finite commutator subgroup*, J. Pure Appl. Algebra **6** (1975), no. 2, 125–132.
- [7] P. J. Witbooi, *Epimorphisms of non-cancellation groups*, in preparation.
- [8] ———, *Non-cancellation for groups with non-abelian torsion*, in preparation.
- [9] ———, *Generalizing the Hilton-Mislin genus group*, J. Algebra **239** (2001), no. 1, 327–339.

P. J. HILTON: SUNY AT BINGHAMTON, BINGHAMTON, NY 13902-6000, USA

Current address: UNIVERSITY OF CENTRAL FLORIDA, ORLANDO, FLORIDA 32816, USA

E-mail address: marge@math.binghamton.edu

P. J. WITBOOI: UNIVERSITY OF THE WESTERN CAPE, PRIVATE BAG X17, 7535 BELLVILLE, SOUTH AFRICA

E-mail address: pwitbooi@uwc.ac.za

Special Issue on Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/jamds/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	June 1, 2009
First Round of Reviews	September 1, 2009
Publication Date	December 1, 2009

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be