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We consider the fuzzification of the notion of a positive implicative ordered filter in im-
plicative semigroups. We show that every fuzzy positive implicative ordered filter is both
a fuzzy ordered filter and a fuzzy implicative ordered filter. We give examples that a fuzzy
(implicative) ordered filter may not be a fuzzy positive implicative ordered filter. We also
state equivalent conditions of fuzzy positive implicative ordered filters. Finally, we estab-
lish an extension property for fuzzy positive implicative ordered filters.
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1. Introduction. The notions of implicative semigroup and ordered filter were in-

troduced by Chan and Shum [3]. The first is a generalization of implicative semilattice

(see Nemitz [10] and Blyth [2]) and has a close relation to implication in mathematical

logic and set theoretic difference (see Birkhoff [1] and Curry [4]). For the general de-

velopment of implicative semilattice theory, the ordered filters play an important role

which is shown by Nemitz [10]. Motivated by this, Chan and Shum [3] established some

elementary properties and constructed quotient structure of implicative semigroups

via ordered filters. Jun et al. [8] discussed ordered filters of implicative semigroups.

Also, Jun [6] studied implicative ordered filters of implicative semigroups. Jun and

Kim [7] introduced the notion of positive implicative ordered filters in implicative

semigroups and gave relations between (implicative) ordered filters and positive im-

plicative ordered filters. On the other hand, Jun, together with Kuresh and Huang, con-

sidered the fuzzification of the (implicative) ordered filter of implicative semigroups

(see [5, 9]). In this paper, we introduce the notion of fuzzy positive implicative or-

dered filters in implicative semigroups and give relations between fuzzy (implicative)

ordered filters and fuzzy positive implicative ordered filters. We provide characteriza-

tions of fuzzy positive implicative ordered filters and establish an extension property

for fuzzy positive implicative ordered filters.

2. Preliminaries. We recall some definitions and results. By a negatively partially

ordered semigroup (n.p.o. semigroup), we mean a set S with a partial ordering “≤” and

a binary operation “·” such that for all x,y,z ∈ S, we have the following:

(i) (x ·y)·z = x ·(y ·z),
(ii) x ≤y implies x ·z ≤y ·z and z ·x ≤ z ·y ,

(iii) x ·y ≤ x and x ·y ≤y .
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An n.p.o. semigroup (S;≤,·) is said to be implicative if there is an additional binary

operation ∗ : S×S → S such that for any elements x, y , z of S,

(iv) z ≤ x∗y if and only if z ·x ≤y .

The operation ∗ is called implication. From now on, an implicative n.p.o. semigroup

is simply called an implicative semigroup.

An implicative semigroup (S;≤,·,∗) is said to be commutative if it satisfies

(v) x ·y =y ·x for all x,y ∈ S, that is, (S,·) is a commutative semigroup.

In any implicative semigroup (S;≤,·,∗), x ∗x = y ∗y , and this element is the

greatest in S; it will be denoted by 1.

Some elementary properties of implicative semigroups are summarized by the fol-

lowing proposition.

Proposition 2.1 (see [3, Theorem 1.4]). Let S be an implicative semigroup. Then,

for every x,y,z ∈ S, the following holds:

(P1) x ≤ 1, x∗x = 1, x = 1∗x,

(P2) x ≤y∗(x ·y),
(P3) x ≤ x∗x2,

(P4) x ≤y∗x,

(P5) if x ≤y then x∗z ≥y∗z and z∗x ≤ z∗y ,

(P6) x ≤y if and only if x∗y = 1,

(P7) x∗(y∗z)= (x ·y)∗z,

(P8) if S is commutative then x∗y ≤ (s ·x)∗(s ·y) for all s in S.

Proposition 2.2 (see [7, Observation 1.5]). If S is a commutative implicative semi-

group, then for any x,y,z ∈ S,

(P9) x∗(y∗z)=y∗(x∗z),
(P10) x ≤ (x∗y)∗y ,

(P11) y∗z ≤ (z∗x)∗(y∗x),
(P12) y∗z ≤ (x∗y)∗(x∗z),
(P13) ((x∗y)∗y)∗y = x∗y .

Definition 2.3 (see [3, Definition 2.1]). Let S be an implicative semigroup and let

F be a nonempty subset of S. Then, F is called an ordered filter of S if it satisfies the

following conditions:

(F1) x ·y ∈ F for every x,y ∈ F ; that is, F is a subsemigroup of S;

(F2) if x ∈ F and x ≤y , then y ∈ F .

The following result gives an equivalent condition of an ordered filter.

Proposition 2.4 (see [8, Proposition 2]). Suppose S is an implicative semigroup.

Then, a nonempty subset F of S is an ordered filter if and only if it satisfies the following

conditions:

(F3) 1∈ F ,

(F4) x∗y ∈ F and x ∈ F imply y ∈ F .

Definition 2.5 (see [6]). Let S be an implicative semigroup. A nonempty subset F
of S is called an implicative ordered filter of S if it satisfies (F3) and for all x,y,z ∈ S,

(F5) x∗(y∗z)∈ F and x∗y ∈ F imply x∗z ∈ F .
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Note that every implicative ordered filter is an ordered filter (see [6, Proposition

3.3]).

Definition 2.6 (see [5, 9]). A fuzzy set µ in an implicative semigroup S is called

a fuzzy ordered filter of S if it satisfies the following conditions:

(F6) µ(1)≥ µ(x), for all x ∈ S,

(F7) µ(y)≥min{µ(x∗y),µ(x)}, for all x,y ∈ S.

A fuzzy set µ in an implicative semigroup S is called a fuzzy implicative ordered

filter of S if it satisfies condition (F6) and

(F8) µ(x∗z)≥min{µ(x∗(y∗z)),µ(x∗y)}, for all x,y ∈ S.

Note that every fuzzy ordered filter is order preserving (see [5, Lemma 3.2]), and

every fuzzy implicative ordered filter is a fuzzy ordered filter (see [5, Theorem 3.7]).

3. Fuzzy positive implicative ordered filters. In what follows, let S denote an im-

plicative semigroup unless otherwise specified. Jun and Kim [7] introduced the no-

tion of positive implicative ordered filters in implicative semigroups as follows in the

paper.

Definition 3.1 (see [7]). A nonempty subset F of S is called a positive implicative

ordered filter of S if it satisfies (F3) and for all x,y,z ∈ S,

(F9) x∗((y∗z)∗y)∈ F and x ∈ F imply y ∈ F .

We consider the fuzzification of positive implicative ordered filter as in the follow-

ing definition.

Definition 3.2. A fuzzy set µ in S is called a fuzzy positive implicative ordered

filter of S if it satisfies condition (F6) and for all x,y,z ∈ S,

(F10) µ(y)≥min{µ(x∗((y∗z)∗y)),µ(x)}.
Example 3.3. Consider an implicative semigroup S = {1,a,b,c,d} with Cayley ta-

bles (Tables 3.1 and 3.2) and Hasse diagram (Figure 3.1) (see [7]).

It is easy to check that a fuzzy set µ in S defined by µ(1) = µ(a) = µ(b) = 0.6 and

µ(c)= µ(d)= 0.2 is a fuzzy positive implicative ordered filter of S.

Theorem 3.4. Every fuzzy positive implicative ordered filter is a fuzzy ordered filter.

Proof. Let µ be a fuzzy positive implicative ordered filter of S and let x,y ∈ S.

Then,

µ(y)≥min
{
µ
(
x∗((y∗y)∗y)),µ(x)}, by (F10)

=min
{
µ(x∗y),µ(x)}, by (P1)

(3.1)

and so µ is a fuzzy ordered filter of S.

Lemma 3.5 (see [5, Theorem 3.3]). Let µ be a fuzzy set in a commutative implicative

semigroup S. Then µ is a fuzzy ordered filter of S if and only if x ·y ≤ z implies

µ(z)≥min{µ(x),µ(y)}.
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Table 3.1

· 1 a b c d
1 1 a b c d
a a a d c d
b b d b d d
c c c d c d
d d d d d d

Table 3.2

∗ 1 a b c d
1 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1
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Figure 3.1

Theorem 3.6. Let S be a commutative implicative semigroup. Then, every fuzzy

positive implicative ordered filter of S is a fuzzy implicative ordered filter.

Proof. Let µ be a fuzzy positive implicative ordered filter of S and let x,y,z ∈ S.

Since

x∗(y∗z)=y∗(x∗z)≤ (x∗y)∗(x∗(x∗z)) (3.2)

by (P9) and (P12), we have (x∗ (y ∗z)) · (x∗y) ≤ x∗ (x∗z) using (P7). It follows

that

min
{
µ
(
x∗(y∗z)),µ(x∗y)}

≤ µ(x∗(x∗z)) by Lemma 3.5

= µ(x∗(((x∗z)∗z)∗z)) by (P13)

= µ(((x∗z)∗z)∗(x∗z)) by (P9)

= µ(1∗(((x∗z)∗z)∗(x∗z))) by (P1)

=min
{
µ
(
1∗(((x∗z)∗z)∗(x∗z))),µ(1)} by (F6)

≤ µ(x∗z) by (F10).

(3.3)

Hence, µ is a fuzzy implicative ordered filter of S.
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The following example shows that the converses of Theorems 3.4 and 3.6 may not

be true.

Example 3.7. Let S be the implicative semigroup in Example 3.3. Note that S is

commutative. Define a fuzzy set µ in S by µ(1) = µ(b) = 0.8 and µ(a) = µ(c) =
µ(d)= 0.08. Then, µ is a fuzzy implicative ordered filter, and hence a fuzzy ordered

filter of S. But it is not a fuzzy positive implicative ordered filter of S, since

µ(a)= 0.08< 0.8=min
{
µ
(
b∗((a∗d)∗a)),µ(b)}. (3.4)

Now we give equivalent conditions for a fuzzy ordered filter (fuzzy implicative

ordered filter) to be a fuzzy positive implicative ordered filter.

Theorem 3.8. Let µ be a fuzzy ordered filter of S. Then, µ is a fuzzy positive im-

plicative ordered filter of S if and only if

µ(x)≥ µ((x∗y)∗x), ∀x,y ∈ S. (3.5)

Proof. Assume that µ is a fuzzy positive implicative ordered filter of S and let

x,y ∈ S. Then

µ(x)≥min
{
µ
(
1∗((x∗y)∗x)),µ(1)}

= µ(1∗((x∗y)∗x))

= µ((x∗y)∗x).
(3.6)

Conversely, let µ be a fuzzy ordered filter of S satisfying (3.5). Using (3.5) and (F7), we

get

µ(y)≥ µ((y∗z)∗y)≥min
{
µ
(
x∗((y∗z)∗y)),µ(x)}, (3.7)

for all x,y,z ∈ S. Hence, µ is a fuzzy positive implicative ordered filter of S.

Proposition 3.9. Let µ be a fuzzy positive implicative ordered filter of S. If S is

commutative, then µ satisfies the following inequality:

µ
(
(y∗x)∗x)≥ µ((x∗y)∗y), ∀x,y ∈ S. (3.8)

Proof. Let µ be a fuzzy positive implicative ordered filter of a commutative im-

plicative semigroup S. Since x ≤ (y∗x)∗x by (P4), it follows from (P5) that

(
(y∗x)∗x)∗y ≤ x∗y. (3.9)

Using (P11), (P9), and then (P5) on (3.9), we have

(x∗y)∗y ≤ (y∗x)∗((x∗y)∗x)

= (x∗y)∗((y∗x)∗x)

≤ (((y∗x)∗x)∗y)∗((y∗x)∗x).
(3.10)
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Since µ is order preserving, it follows from (F6), (F10), and (P1) that

µ
(
(y∗x)∗x)

≥min
{
µ
(
1∗((((y∗x)∗x)∗y)∗((y∗x)∗x))),µ(1)}

= µ((((y∗x)∗x)∗y)∗((y∗x)∗x))

≥ µ((x∗y)∗y).

(3.11)

This completes the proof.

Lemma 3.10 (see [5, Lemma 3.14]). Every fuzzy implicative ordered filter µ of S
satisfies the following inequality:

µ(x∗y)≥ µ(x∗(x∗y)), ∀x,y ∈ S. (3.12)

Theorem 3.11. If S is commutative, then every fuzzy implicative ordered filter µ of

S satisfying (3.8) is a fuzzy positive implicative ordered filter of S.

Proof. In view of Theorem 3.8, it is sufficient to show that µ satisfies condition

(3.5). Note from (P11) that

(x∗y)∗x ≤ (x∗y)∗((x∗y)∗y), ∀x,y ∈ S, (3.13)

and from (P4) and (P5) that

(x∗y)∗x ≤y∗x, ∀x,y ∈ S. (3.14)

Since µ is order preserving, it follows from (3.8) and Lemma 3.10 that

µ
(
(y∗x)∗x)≥ µ((x∗y)∗y)

≥ µ((x∗y)∗((x∗y)∗y))

≥ µ((x∗y)∗x),
(3.15)

so that

µ(x)≥min
{
µ
(
(y∗x)∗x),µ(y∗x)} by (F7)

≥min
{
µ
(
(x∗y)∗x),µ(y∗x)}

= µ((x∗y)∗x) by (3.14).

(3.16)

Hence, µ is a fuzzy positive implicative ordered filter of S.

Corollary 3.12. Let µ be a fuzzy implicative ordered filter of a commutative im-

plicative semigroup S. Then, µ is a fuzzy positive implicative ordered filter of S if and

only if it satisfies (3.8).

The following lemmas will be needed in the sequel.

Lemma 3.13 (see [5, Theorem 3.17]). Let µ and ν be fuzzy ordered filters of a com-

mutative implicative semigroup S such that µ(1)= ν(1) and µ ≤ ν , that is, µ(x)≤ ν(x)
for all x ∈ S. If µ is a fuzzy implicative ordered filter of S, then so is ν .
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Lemma 3.14 (see [5, Theorem 3.16]). Let µ be a fuzzy set in a commutative implica-

tive semigroup S. Then, µ is a fuzzy implicative ordered filter of S if and only if µ is a

fuzzy ordered filter of S that satisfies

µ
(
(x∗y)∗(x∗z))≥ µ(x∗(y∗z)), ∀x,y,z ∈ S. (3.17)

We finally give an extension property for fuzzy positive implicative ordered filters.

Theorem 3.15. Let µ and ν be fuzzy ordered filters of a commutative implicative

semigroup S such that µ(1)= ν(1) and µ ≤ ν , that is, µ(x)≤ ν(x) for all x ∈ S. If µ is

a fuzzy positive implicative ordered filter of S, then so is ν .

Proof. Since every fuzzy positive implicative ordered filter is a fuzzy implicative

ordered filter (see Theorem 3.6), it follows from Lemma 3.13 that ν is a fuzzy implica-

tive ordered filter of S. For any x,y ∈ S, let a := (x∗y)∗y . Then

ν
((
(a∗y)∗x)∗x)≥ µ(((a∗y)∗x)∗x)

≥ µ((x∗(a∗y))∗(a∗y)) by (3.8)

= µ((a∗(x∗y))∗(a∗y)) by (P9)

≥ µ(a∗((x∗y)∗y)) by (3.17)

= µ(1) by (P1)

= ν(1).

(3.18)

On the other hand, using (P10) and (P11) we have

(x∗y)∗y = a≤ (a∗y)∗y ≤ (((a∗y)∗x)∗x)∗((y∗x)∗x), (3.19)

and so

ν
(
(x∗y)∗y)≤ ν((((a∗y)∗x)∗x)∗((y∗x)∗x)). (3.20)

Applying (3.18), (3.20), (F6), and (F7), we get

ν
(
(y∗x)∗x)≥min

{
ν
(((
(a∗y)∗x)∗x)∗((y∗x)∗x)),ν(((a∗y)∗x)∗x)}

≥min
{
ν
(
(x∗y)∗y),ν(1)}

= ν((x∗y)∗y).
(3.21)

It follows from Theorem 3.11 that ν is a fuzzy positive implicative ordered filter of S.
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