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L’INTERPRÉTATION MATRICIELLE DE LA THÉORIE
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On explicite l’approche de Cohn (1955) de la théorie de Markoff. On montre en particu-
lier comment l’arbre complet des solutions de l’équation diophantienne associée apparaît
comme quotient du groupe GL(2,Z) des matrices 2× 2 à coefficients entiers et de dé-
terminant ±1 par un sous-groupe diédral D6 à 12 éléments. Différents développements
intermédiaires sont faits autour du groupe Aut(F2) des automorphismes du groupe libre
engendré par deux éléments F2.

Classification 2000 des Sujets Mathématiques: 11H50, 11H55, 20E05, 20F05, 20F12, 20F28.

1. Introduction. La théorie de Markoff concerne la résolution en nombres entiers

de l’équation diophantienne

m2+m2
1+m2

2 = 3mm1m2,
(
m,m1,m2

)∈ (N−{0})3. (1.1)

Elle a été découverte à partir de calculs faits sur les fractions continues par Markoff

[26]. Elle a ensuite été mise en forme au moyen de formes quadratiques par Cassels [4].

Puis une interprétation géométrique plus profonde en a été donnée par Cohn [7, 8].

Dans la période récente, de nouveaux développements sont apparus. Ils sont liés à

l’étude des groupes libres à deux générateurs [6, 9], à la dynamique symbolique [39],

au théorème d’Atiyah-Singer [17], à la théorie de Teichmüller de certaines surfaces

de Riemann [21], à l’étude de leur géodésiques [38], et avec [37] à l’étude de fibrés

exceptionnels d’un espace projectif P2.

Des synthèses récentes de la théorie ont été écrites [14, 25]. On trouve aussi dans

[10] un résumé de différents points de vue sur l’interprétation à donner à cette théorie.

Dans le présent article, on présente une approche directe de l’interprétation matri-

cielle donnée par Cohn à la théorie de Markoff. On approfondit le lien avec le groupe

libre à deux éléments et on en tire différentes conséquences.

On laisse de côté tout lien avec la cohomologie des groupes [40]. On évite les déve-

loppements possibles autour des quaternions entrant dans la perspective de certains

travaux sur les groupes fuchsiens [44]. On n’aborde non plus les applications du théo-

rème de Dyer et Formanek [23, page 24].
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Figure 2.1

2. Présentation matricielle de la théorie de Markoff

2.1. Le problème de la présentation matricielle. On ne revient pas sur l’étude de

l’équation de Markoff (1.1). Tous les éléments relatifs à cette question sont disponibles

dans [4] ou [14].

L’arbre deses solutions de privilégié ici est l’arbre des triplets de Cohn [13]. Ses

sommets sont les solutions (m,m1,m2) ∈ (N−{0})3, triplets d’entiers positifs qui

vérifient les inégalités

m≥m1 ≥m2 ≥ 1. (2.1)

Cet arbre ne contient pas toutes les solutions possibles. Il en élimine beaucoup grâce

aux permutations qui transforment toute solution en une autre. Il se construit à partir

du triplet (1,1,1) en engendrant à partir de tout triplet de solutions (m,m1,m2) deux

nouveaux triplets qui en descendent à gauche et à droite,

(
mG,mG

1 ,m
G
2

)
= (3mm1−m2,m,m1

)
,(

mD,mD
1 ,m

D
2

)
= (3mm2−m1,m,m2

)
.

(2.2)

En haut de l’arbre, ces deux triplets se confondent. C’est ainsi que les deux formules

donnent à partir de (1,1,1) le triplet (2,1,1), puis (5,2,1). Mais à partir de ce dernier

les triplets à droite et à gauche se distinguent, donnant naissance à un véritable arbre :

Présenter matriciellement la théorie de Markoff signifie ici qu’à chaque triplet (m,
m1,m2), de niveau supérieur à un niveau donné dans l’arbre précédent, on est capable

d’associer un triplet (M,M1,M2) de matrices de SL(2,Z) liées entre elles par le fait que

l’une d’elles est produit des deux autres et vérifiant ces égalités pour les traces

tr(M)= 3m, tr
(
M1

)= 3m1, tr
(
M2

)= 3m2. (2.3)

La notation SL(2,Z) désigne le groupe multiplicatif des matrices de déterminant 1

à coefficients dans Z, l’ensemble des nombres entiers positifs ou négatifs.
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L’équation de Markoff apparaît alors comme une conséquence de la relation de

Fricke (FR1) suivante, valable pour deux matrices W et V de SL(2,Z) :

tr(W)2+tr(V)2+tr(WV)2 = tr(W)tr(V)tr(WV)+tr
(
WVW−1V−1)+2. (2.4)

La condition déterminante est d’avoir

tr
(
WVW−1V−1)=−2. (2.5)

En divisant par 9, on retrouve l’équation (1.1) à partir de la relation de Fricke (FR1).
Le problème qui se pose est donc d’indiquer comment construire, de niveau en

niveau de notre arbre, des triplets de matrices vérifiant les conditions requises.

Cette façon d’interpréter la théorie de Markoff, en rapprochant l’équation diophan-

tienne correspondante des relations de Fricke, a été découverte par Cohn dans [7],

puis complètement explicitée dans [9, théorème 5.1].

2.2. Une solution partielle du problème précédent. Une solution du problème

posé est maintenant donnée. Elle est construite à partir des périodes (2,2) et (2,1,1,2)
des développements en fraction continue des premiers nombres algébriques de degré

2 mis en évidence par la théorie de Markoff. On associe ainsi au triplet (5,2,1) les

matrices

M =
[

13 5

5 2

]
=
[

2 1

1 0

][
1 1

1 0

][
1 1

1 0

][
2 1

1 0

]
,

M1 =
[

5 2

2 1

]
=
[

2 1

1 0

][
2 1

1 0

]
.

(2.6)

La troisième matrice du triplet (M,M1,M2) est calculée avec la condition

M =M2M1. (2.7)

On en déduit une matrice à gauche,

MG =MM1 =
[

75 31

29 12

]
. (2.8)

D’où le triplet correspondant à la solution à gauche (29,5,2)

(
MM1,M,M1

)
. (2.9)

On a aussi une matrice à droite,

MD =M2M =
[

34 13

13 5

]
. (2.10)

Le triplet correspondant à la solution à droite (13,5,1) est

(
M2M,M,M2

)
. (2.11)
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La construction se poursuit pas à pas, pour les triplets issus de (5,2,1), grâce à

une autre relation de Fricke (FR2) valable également pour deux matrices W et V de

SL(2,Z),

tr
(
V 2W

)= tr(VW)tr(V)−tr(W)= tr
(
WV 2)= tr(WV)tr(V)−tr(W). (2.12)

Ces expressions donnent les transformations à gauche et à droite vues avant, grâce

à une simple division par un facteur égal à 3.

(i) Pour M = M2M1 on utilise à gauche la dernière égalité de (FR2) avec W = M2

et V =M1. À droite, on pose au contraire W =M1 et V =M2 et on utilise la première

égalité de (FR2).
(ii) Dans le cas où M =M1M2, qui correspond par exemple à la situation obtenue

avant à gauche, on utilise encore l’une des égalités (FR2) avec W = M1 et V = M2. À

droite, on pose au contraire W =M2 et V =M1.

Cette construction conduit par récurrence à énoncer le théorème suivant.

Théorème 2.1. Pour tout triplet (m,m1,m2) de l’arbre des triplets de Cohn, il existe

un triplet de matrices (M,M1,M2) de SL(2,Z) tel que l’on a

(
m,m1,m2

)= ((tr(M)/3
)
,
(
tr
(
M1

)
/3
)
,
(
tr
(
M2

)
/3
))
,

M =M1M2 ou M =M2M1.
(2.13)

En remontant dans l’arbre au dessus de (5,2,1), le triplet (2,1,1) correspond au

triplet de matrices suivant :

[5 2

2 1

]
,
[

3 1

−1 0

]
,
[

3 −1

1 0

]. (2.14)

Il donne à droite et à gauche le triplet de matrices déjà vu, correspondant à (5,2,1).
Mais la difficulté est que maintenant les deux dernières matrices de ce triplet ne

donnent pas la première par produit. Ceci ne permet pas de remonter au triplet

(1,1,1). Le théorème précédent est donc établi par le raisonnement par récurrence

fait avant, à l’exception des deux premiers triplets (1,1,1) et (2,1,1).
On va cependant voir dans section 3 comment corriger cette situation.

Remarque 2.2. Les deux formules (FR1) et (FR2) découlent de l’application répé-

tée de la formule suivante (FR0), valable pour deux matrices quelconques W et V de

SL(2,Z)

tr(WV)+tr
(
WV−1)= tr(W)tr(V). (2.15)

Cette dernière égalité est spécifique aux matrices 2×2.
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Remarque 2.3. Le groupe de matrices utilisé avant est SL(2,Z), non GL(2,Z), le

groupe multiplicatif des matrices à coefficients entiers et de déterminant ±1. Dans

ce dernier groupe, il existe aussi des formules généralisant les formules de Fricke

précédentes, mais elles comprennent des signes. Le groupe SL(2,Z) est un sous-groupe

normal d’indice 2 de GL(2,Z). Dans la terminologie de [12], GL(2,Z) est le groupe

unimodulaire et SL(2,Z) le groupe modulaire.

3. D’autres présentations matricielles

3.1. Quelques remarques préalables. On approfondit ici la lecture du plus ancien

article de Cohn [7]. S’inspirant de ses notations, on pose avec les matrices M , M1, M2,

que l’on a introduites avant,

B∗ =M−1 =
[

2 −5

−5 13

]
, A∗ =M1 =

[
5 2

2 1

]
, C∗ =M2 =

[
3 −1

1 0

]
. (3.1)

Ceci revient à considérer le triplet de matrices(
M,M1,M2

)= (B∗−1,A∗,B∗−1A∗−1). (3.2)

Ces trois matrices de SL(2,Z) donnent un peu plus que le seul produit du théorème

2.1. On trouve en fait les deux relations de Cohn suivantes [7, 9], définissant l’unité 1

de SL(2,Z) et la matrice K :

A∗B∗C∗ =
[

1 0

0 1

]
= 1, C∗B∗A∗ =

[−1 −6

0 −1

]
=K. (3.3)

Considérons alors le groupe engendré par les deux matrices A∗ et B∗,

G = gp(A∗,B∗). (3.4)

Les matrices C et K introduites avant sont dans le groupe G. En effet, on a

C = B∗−1A∗−1, K = B∗−1A∗−1B∗A∗. (3.5)

Ce dernier terme est le commutateur de B∗ et A∗, noté comme dans [2] :

K = [B∗,A∗]. (3.6)

Le groupe G agit dans le demi-plan de Poincaré H. Pour cela, on considère l’action

induite par celle de toute matrice V ∈ SL(2,Z) s’écrivant [20, 33, 45] :

V =
[
a11 a12

a21 a22

]
. (3.7)

Une telle matrice agit sur tout z ∈H par l’opération suivante, qui s’étend d’ailleurs

au bord du demi-plan de Poincaré :

Vz = a11z+a12

a21z+a22

(
noté aussi zV

)
. (3.8)
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p à l’infini p à l’infini

Domaine fondamental

α s = 0 β

Figure 3.1

On dispose alors d’un domaine fondamental [41, page 128] pour l’action du groupe

image de G dans SL(2,Z)/{±1}. C’est un quadrilatère curviligne dont les sommets

peuvent être calculés [7] comme suit :

−
(

2
5

)
=∞B∗ , 0= (∞A∗)B∗ = (∞B∗)A∗ , (

5
2

)
=∞A∗ ,∞. (3.9)

Ces quatre points, notés simplement ici α=∞B∗ , s = 0, β=∞A∗ , p =∞, sont situés

au bord de H. Ils vérifient les égalités

A∗(α)= s, A∗(p)= β, B∗(β)= s, B∗(p)=α. (3.10)

Pour les calculer, il suffit donc d’en déterminer un. Et à partir de l’expression des

matrices A∗ et B∗ on s’assure par exemple que p =∞ avec

K(p)= B∗−1A∗−1B∗A∗(p)= p. (3.11)

On a ainsi la représentation suivante du domaine fondamental pour l’action du

groupe G dans le demi-plan H :

Le quotient du demi-plan de Poincaré H par le groupe G est, en tant que surface de

Riemann [22, 45], un tore percé d’un trou en un point. Le trou correspond aux quatre

points α, s, β, p, que l’on vient de déterminer sur le bord de H.

3.2. Nouvelles présentations matricielles de la théorie de Markoff. Comme Cohn

[7, 9], il est maintenant possible de considérer de nouvelles matrices de SL(2,Z) :

A0 =
[

1 1

1 2

]
, B0 =

[
1 −1

−1 2

]
. (3.12)

On complète par

C0 = B−1
0 A

−1
0 = C =

[
3 −1

1 0

]
. (3.13)
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Avec des formules comparables à celles d’avant, on pose maintenant

(
M′,M′

1,M
′
2

)
=
(
B−1

0 ,A0,B−1
0 A

−1
0

)
=
[2 1

1 1

]
,
[

1 1

1 2

]
,
[

3 −1

1 0

]. (3.14)

On a encore

M′
2M

′
1 =M′. (3.15)

En utilisant sur ces matrices des formules identiques à celles qui ont conduit à

énoncer le théorème 2.1, on trouve grâce aux traces un nouvel arbre de triplets. Il est

analogue à l’arbre des triplets de Cohn considéré avant, mais contient plus de triplets.

Il contient en particulier le triplet (1,1,1) au sommet d’un arbre analogue à celui de

la figure 2.1. Ceci complète la démonstration du théorème 2.1 et donne une nouvelle

présentation matricielle.

On fait aussi apparaître de cette façon des triplets de matrices non déjà rencontrés,

tels que le suivant : [3 4

2 3

]
,
[

2 1

1 1

]
,
[

1 1

1 2

]. (3.16)

En d’autres termes, le problème de trouver des triplets de matrices correspondant à

un même triplet de l’arbre de Cohn admet en général plusieurs solutions. On en déduit

qu’à quelques triplets près situés dans les plus bas niveaux de l’arbre, il y a plusieurs

façons de présenter matriciellement la théorie de Markoff.

En regardant de près le triplet de matrices que l’on vient de considérer, on trouve

à nouveau les relations de Cohn suivantes :

A0B0C0 = 1, C0B0A0 =K. (3.17)

De plus, en comparant aux matrices que l’on avait antérieurement, on a le lien sui-

vant entre toutes les matrices introduites :

A∗ = C0B−1
0 , B∗ = B0C−2

0 , C∗ = C0. (3.18)

Ces relations peuvent être complétées avec les égalités suivantes :

A0 = C∗−2A∗, B0 =A∗−1C∗, C0 = C∗. (3.19)

Ceci conduit plus généralement à énoncer la proposition suivante.

Proposition 3.1. Soient V1, V2, V3, trois matrices 2×2 vérifiant les deux égalités

suivantes, où L est une matrice 2×2 donnée et 1 désigne la matrice unité :

V1V2V3 = 1, V3V2V1 = L. (3.20)

Supposons que l’on pose

W1 = V−2
3 V1, W2 = V−1

1 V3, W3 = V3. (3.21)
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p à l’infini

Domaine fondamental

−1 s = 0 1

Figure 4.1

Alors on a aussi

W1W2W3 = 1, W3W2W1 = L. (3.22)

Une vérification directe de ce résultat est facile. Et une application répétée de cette

dernière proposition permet, avec les mêmes formules qu’avant, de donner une infi-

nité d’autres interprétations matricielles de la théorie de Markoff, éventuellement à

un nombre fini de triplets près.

4. Identification du groupe dans lequel on travaille

4.1. Le groupe et son domaine fondamental. Considérons maintenant le groupe

G = gp(A∗,B∗) engendré par les deux matrices A∗ et B∗ définies avant. Les matrices

C et K que l’on a introduites sont aussi dans le groupe G. En effet, on a

C = B∗−1A∗−1, K = [B∗,A∗]= B∗−1A∗−1B∗A∗. (4.1)

Il en résulte que toutes les matrices déduites de l’application répétée de la proposition

3.1 sont aussi des éléments du groupe G. On voit ainsi que le groupe G est un groupe

à deux générateurs, engendré aussi par les deux matrices A0 et B0,

G = gp(A0,B0
)
. (4.2)

Avec ces deux dernières matrices, et par la même méthode qu’avant, on peut cal-

culer un domaine fondamental pour l’action dans le demi-plan H du groupe image

de G dans le groupe modulaire projectif Γ = SL(2,Z)/{±1}. On trouve figure 4.1, qui

apparaît aussi dans [7].

Ce nouveau domaine est différent de celui déjà donné pour l’action de G dans H. Il

détermine encore au quotient pour surface de Riemann un tore percé d’un point.
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4.2. Comparaison avec le domaine fondamental modulaire. Le domaine que l’on

vient de mettre en évidence est plus vaste que le domaine fondamental habituellement

donné pour l’action dans H du groupe modulaire projectif [41, page 128],

Γ = PSL(2,Z)= SL(2,Z)/{±1}. (4.3)

Ce dernier groupe possède deux générateurs qui sont les classes S = {±S} et T =
{±T} des éléments suivants de SL(2,Z) :

S =
[

0 −1

1 0

]
, T =

[
1 1

0 1

]
. (4.4)

Il admet une présentation qui en fait un produit libre d’un groupe cyclique C2 d’or-

dre 2 et d’un groupe cyclique C3 d’ordre 3,

Γ =
〈
S,T | S2 = (ST)3 = 1

〉
�
〈
S | S2 = 1

〉
∗
〈
ST | (ST)3 = 1

〉
� C2∗C3. (4.5)

Remarquons que l’action de Γ dans H est induite par l’action introduite avant de

SL(2,Z) dans H. Le passage à Γ vient de ce que l’on a pour tout z ∈H

(−1)z =
[−1 0

0 −1

]
z = z(≠−z). (4.6)

Pour comparer l’action dans H des deux groupes G et Γ , une question sur laquelle

on reviendra est de savoir si l’on a −1∈G.

4.3. Détermination du groupe. Le groupeG est contenu dans SL(2,Z). Il est normal

dans ce dernier groupe, comme le montrent les relations suivantes, faciles à vérifier

de façon directe :

SA0S−1 =A−1
0 , SB0S−1 = B−1

0 , TA0T−1 = B−1
0 , TB0T−1 =A0B0. (4.7)

Ceci permet de considérer le groupe quotient (SL(2,Z)/G).
Sur la figure 4.1, la comparaison des domaines fondamentaux pour G et SL(2,Z)

indique que le groupe quotient (SL(2,Z)/G) est fini à 6 éléments au moins.

Ce groupe quotient est engendré par les deux éléments SG classe modulo G de S
et TG classe modulo G de T . Or ces deux classes commutent, d’après les expressions

suivantes, des commutateurs que l’on peut vérifier de façon directe :

[
S−1,T−1]= STS−1T−1 = [T−1,S−1]−1 = B0,

[S,T]= S−1T−1ST = [T ,S]−1 =A0.
(4.8)

Le groupe (SL(2,Z)/G) est donc commutatif. En particulier, G est un sous-groupe

du groupe dérivé [SL(2,Z),SL(2,Z)], le sous-groupe normal engendré par tous les

commutateurs de SL(2,Z) [2, chapitre 1, page 67].
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Remarquons que l’on a aussi

[
S,T−1]= S−1TST−1 = [T−1,S

]−1 = S−1B−1
0 S = B0,[

S−1,T
]= ST−1S−1T = [T ,S−1]−1 = T−1B−1

0 T =A0,
(4.9)

avec des expressions valables pour toutes matrices V1, V2, V3, dans SL(2,Z), telles que

[
V1V2,V3

]= (V−1
2

[
V1,V3

]
V2

)[
V2,V3

]
,[

V1,V2V3
]= [V1,V3

](
V−1

3

[
V1,V2

]
V3

)
,[

V1,V2
]= V−1

1

[
V2,V−1

1

]
V1 =

[
V2,V1

]−1.

(4.10)

Tout crochet de deux mots écrits avec S et T est donc dans G, ce qui garantit que

l’on a en réalité

G = [SL(2,Z),SL(2,Z)
]
. (4.11)

4.4. Image dans le groupe modulaire projectif. On considère la classique présen-

tation [24, page 46] du groupe modulaire SL(2,Z),

SL(2,Z)= 〈S,T | S4 = 1, S2 = (ST)3〉� C4∗C2 C6. (4.12)

Dans le groupe quotient (SL(2,Z)/G), on a par la commutativité des classes SG et

TG de S et T l’égalité

SG = T−3
G . (4.13)

Ceci résulte en effet de la relation amalgamant les groupes cycliques à 4 et 6 élé-

ments notés respectivement C4 et C6,

S2
G =

(
SGTG

)3. (4.14)

Le groupe quotient est engendré par TG, avec de plus la condition

T 12
G = S−4

G = 1. (4.15)

On a donc affaire à un sous-groupe du groupe cyclique à 12 éléments C12, possédant

par ce qui précède au moins 6 éléments, c’est-à-dire 6 ou 12 éléments.

Lorsque l’on quotiente par {±1}, puisque S2 =−1, la classe de T n’est que d’ordre

6 dans Γ = SL(2,Z)/{±1}. Comme −1 commute avec tous les éléments de SL(2,Z),
l’image de G dans Γ n’est autre que [Γ ,Γ], le sous-groupe normal dérivé de Γ , engendré

par les commutateurs de ce dernier groupe. Au quotient, on obtient avec la comparai-

son des domaines fondamentaux faite avant, un groupe cyclique à 6 éléments C6.

Ceci permet d’énoncer le théorème suivant.
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Théorème 4.1. Le groupe G = gp(A0,B0) engendré par les deux matrices A0 et

B0 est le groupe [SL(2,Z),SL(2,Z)], sous-groupe normal dérivé de SL(2,Z). Son image

dans le groupe modulaire projectif Γ = SL(2,Z)/{±1} est le sous-groupe normal dérivé

[Γ ,Γ] de Γ . Le quotient du groupe modulaire projectif par son sous-groupe dérivé est le

groupe cyclique à 6 éléments C6,

Γ/[Γ ,Γ]� C6. (4.16)

4.5. Remarques sur les présentations de groupe utilisées. En pratique, les pré-

sentations de groupe utilisées, d’où la détermination effective des classes de Γ/[Γ ,Γ],
peuvent être calculées. En effet, toute matrice de GL(2,Z) peut, grâce à l’algorithme

d’Euclide, être décomposée en un produit des trois matrices suivantes :

T =
[

1 1

0 1

]
, O =

[−1 0

0 1

]
, I =

[
0 1

1 0

]
. (4.17)

Considérons une matrice quelconque du groupe unimodulaire GL(2,Z),

V =
[
α β
γ δ

]
. (4.18)

(i) Si δ= 0 et γ = 1, on trouve

V =
TαI, si β= 1,

TαOI, si β=−1.
(4.19)

(ii) Si δ= 0 et γ =−1, on applique le résultat précédent à VO, puis O2 = 1.

(iii) Si γ = 0 et δ= 1, on applique le résultat précédent à VI, puis I2 = 1.

(iv) Si γ = 0 et δ=−1, on applique le résultat précédent VIO, puis O2 = I2 = 1.

(v) Si γδ≠ 0, la condition αδ−βγ =±1 permet l’application de l’algorithme

γ =α1δ+r1 avec 0≤ r1 < |δ|, α=α1β+s1,
δ=α2r1+r2 avec 0≤ r2 < |r1|, β=α2s1+s2,

...

rn−1 =αn+1rn+rn+1 avec 0≤ rn+1 = 1, sn−1 =αn+1sn+sn+1.

(4.20)

D’où la décomposition suivante, permettant d’appliquer à tous les termes apparai-

ssant le résultat précédent :

V =
[
sn+1 sn−rnsn+1

1 0

][
rn 1

1 0

][
αn+1 1

1 0

]
···

[
α1 1

1 0

]
. (4.21)

Ceci donné, toutes les vérifications complémentaires étant faciles, on a :

Proposition 4.2. Le groupe GL(2,Z) admet la présentation

〈
I,O,T | I2 =O2 = (OT)2 = (OI)4 = 1; (OI)2 = (OIT)3〉. (4.22)



204 SERGE PERRINE

Les présentations de SL(2,Z) et PSL(2,Z) rappelées avant s’en déduisent avec la

remarque que l’on a

det(I)= det(O)=−1, det(T)= 1, S =OI, S2 =−1. (4.23)

On peut, avec des transformations de Tietze [19], choisir d’autres générateurs et

donner l’ensemble des relations correspondantes. Par exemple GL(2,Z) peut être pré-

senté avec les triplets de générateurs suivants :

(O,S,T) ou (I,S,TS). (4.24)

On peut même voir que (I,T) engendre GL(2,Z) et en donner la présentation asso-

ciée.

On peut considérer aussi le groupe unimodulaire projectif,

PGL(2,Z)= GL(2,Z)/{±1}. (4.25)

La dernière remarque faite donne pour ce qui le concerne :

Proposition 4.3. Le groupe PGL(2,Z) admet la présentation〈
I,O,T | I2 =O2 = (OT)2 = (OI)2 = (OIT)3 = 1

〉
. (4.26)

Le théorème 4.1 conduit naturellement à la question de savoir si tout élément de

Γ = PSL(2,Z) s’écrit sous forme suffixe W(A0,B0)Wk(S,T) où

W
(
A0,B0

)∈ [Γ ,Γ],
Wk

(
S,T

)∈ {1,S,ST ,STS,STST ,STSTS}, (k= 0,1, . . . ,5).
(4.27)

L’existence d’une telle décomposition paraît démontrable en utilisant comme trans-

ducteur les expressions suivantes applicables sur les mots en S et T modulo [Γ ,Γ] qui

apparaissent comme suit :

ST = B0TS, TS = B0
−1ST , ST−1 =A0TS, T−1S =A0

−1ST−1. (4.28)

Ces expressions permettent de remplacer un mot de deux lettres en S et T par un

mot en les mêmes deux lettres, aux termes en A0 et B0 près, c’est-à-dire modulo [Γ ,Γ].
Ceci peut conduire à des simplifications. Au pire, donc, la longueur des mots en S et T à

considérer se conserve. Au mieux elle se raccourcit. La question posée revient à savoir

si l’on peut toujours raccourcir ces mots modulo [Γ ,Γ] et pourquoi on n’aboutirait que

sur les seules possibilités données pour Wk(S,T).
Cette question est traitée dans la suite de l’article (voir proposition 8.8).

4.6. Un domaine fondamental hexagonal. Il est possible, à partir de la figure 4.1

et en considérant des transformés des différents triangles curvilignes apparaissant,

de construire un nouveau domaine fondamental hexagonal pour l’action du groupe

G. Sur la figure suivante, on a superposé les deux domaines pour permettre leur com-

paraison :
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∞ ∞ ∞ ∞

Représentation des deux
domaines du groupe

−2 −1 0 1 2 3 4

Figure 4.2

Grâce à l’expression matricielle de T , on visualise les 6 sommets de cet hexagone et

le groupe cyclique à 6 éléments du théorème 4.1. En notant en effet de droite à gauche

θ, η, ζ, ε, δ, γ, 	 les pointes du domaine représenté ci-dessus, on a

T−1(θ)= η, T−1(η)= ζ, T−1(ζ)= ε,
T−1(ε)= δ, T−1(δ)= γ, T−1(γ)=	. (4.29)

Le point	 est identifié au point θ grâce à la matrice K qui vaut avec les expressions

données avant

K =−T 6 = S2T 6 =
[−1 −6

0 −1

]
∈G. (4.30)

5. Relation avec le groupe libre à deux générateurs. On retrouve de façon directe

l’essentiel des résultats de Cohn [9] liant la théorie de Markoff au groupe libre à deux

générateurs.

5.1. Introduction du groupe libre F2. SoientA1, B1, C1, L des matrices quelconques

de SL(2,Z) vérifiant les égalités de Cohn écrites ici sous la forme

A1B1 = C−1
1 , B1A1 = C−1

1 L. (5.1)

Compte tenu que le déterminant de L est égal à 1, on en déduit que

tr
(
A1B1A−1

1 B
−1
1

)
= tr

(
B1A1B−1

1 A
−1
1

)
= tr(L)= tr

(
L−1). (5.2)

Dans le cas où la trace de la matrice L vaut−2, la formule de Fricke (FR1) se simplifie

sous la forme

tr
(
A1
)2+tr

(
B1
)2+tr

(
A1B1

)2 = tr
(
A1
)
tr
(
B1
)
tr
(
A1B1

)
. (5.3)

On trouve dans [35] des développements autour de cette égalité. L’essentiel de ces

résultats est établi de façon directe dans ce qui suit.

En fait, la dernière égalité reliant des traces est valable pour tout couple de matrices

engendrant le sous-groupe G = [SL(2,Z),SL(2,Z)].



206 SERGE PERRINE

Proposition 5.1. Le groupe [SL(2,Z),SL(2,Z)] est libre à deux générateurs. Pour

tout couple (A,B) de ses générateurs, on a la relation

tr(A)2+tr(B)2+tr(AB)2 = tr(A)tr(B)tr(AB). (5.4)

En effet on a vu avant que (A0,B0) est un couple de générateurs du groupe G. On

pose

x =
[

0 −1

1 0

]
= S, y =

[
1 −1

1 0

]
= TS. (5.5)

Un calcul direct donne

A0 =y−1x−1yx = [y,x]=
[

1 1

1 2

]
,

B−1
0 =y−2x−1y2x = [y2,x

]= [2 1

1 1

]
.

(5.6)

Mais on peut établir de façon directe [24, pages 97–98] que ces deux éléments en-

gendrent aussi un groupe libre à deux éléments que l’on note F2. Ceci établit une partie

de la proposition précédente,

G = [SL(2,Z),SL(2,Z)
]= F2. (5.7)

Pour tout autre couple (A,B) de générateurs du groupe F2, il existe alors un au-

tomorphisme ϕ de ce groupe transformant A0 en A et B0 en B. Il en résulte par un

résultat de Nielsen [24, théorème 3.9, page 165] que l’on a

tr
(
ABA−1B−1)= tr

(
A0B0A−1

0 B
−1
0

)
=−2. (5.8)

On retrouve ainsi la possibilité d’appliquer la formule de Fricke (FR1). Et ceci ter-

mine la démonstration de notre proposition.

En particulier [5, page 14], tout élément V de notre groupe s’écrit de façon unique

sous la forme d’un mot réduit en A0 et B0 :

V =
i=n∏
i=1

xεii où xi ∈
{
A0,B0

}
, εi =±1,

εi+1 ≠−εi si xi+1 = xi.
(5.9)

On note parfois, grâce à cette propriété,

V = V(A0,B0
)
. (5.10)

Si l’on veut que le mot réduit considéré ne contienne que des puissances εi égales

à 1, on peut écrire accessoirement

V = V
(
A0,A−1

0 ,B0,B−1
0

)
. (5.11)
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5.2. Conséquences pour l’arbre complet de l’équation de Markoff. Par construc-

tion, on a, a priori, dans la proposition 5.1

(
tr(A),tr(B),tr(AB)

)∈ Z3. (5.12)

Il est facile de s’assurer, avec des congruences modulo 3, que la relation qui lie ces

nombres n’est possible qu’avec

tr(A)≡ tr(B)≡ tr(AB)≡ 0(mod3). (5.13)

On peut donc poser pour tout couple (A,B) de générateurs du groupe F2

tr(B)= tr
(
B−1)= 3m, tr(A)= 3m1, tr(AB)= tr

(
B−1A−1)= 3m2. (5.14)

On retrouve ainsi l’équation de Markoff

m2+m2
1+m2

2 = 3mm1m2. (5.15)

Un examen plus précis de la situation montre que l’on a en réalité (m,m1,m2) ∈
(N−{0})3.

En effet, tout élément de F2 s’écrit comme un mot comprenant les lettres A0, B0,

A−1
0 , B−1

0 . Or un raisonnement par récurrence sur la longueur de ces mots est possible.

Il établit que l’on reste pour ces triplets dans (N−{0})3.

Cependant rien n’impose ici la condition de Cohn, (2.1), de sorte que l’on ne se

trouve plus nécessairement dans l’arbre des triplets de Cohn, mais dans un arbre

plus vaste, l’arbre complet de toutes les solutions dans (N−{0})3 de l’équation de

Markoff. Cet arbre, que l’on va considérer désormais, est construit à partir du triplet

(1,1,1) avec les trois transformations,

X̃ :
(
m,m1,m2

)
�→ (

3m1m2−m,m1,m2
)
,

Ỹ :
(
m,m1,m2

)
�→ (

m,3mm2−m1,m2
)
,

Z̃ :
(
m,m1,m2

)
�→ (

m,m1,3mm1−m2
)
.

(5.16)

Sur des triplets de matrices choisis ici de forme (B−1,A,B−1A−1), on peut traduire

ces transformations grâce à la relation de Fricke (FR2) vue avant :

Xφ :
(
B−1,A,B−1A−1) �→ (

(ABA)−1,A−1,(ABA)−1A
)
,

Yφ :
(
B−1,A,B−1A−1) �→ (

B,(BAB),B(BAB)−1),
Zφ :

(
B−1,A,B−1A−1) �→ (

B−1,A−1,B−1A
)
.

(5.17)

Ces conditions s’écrivent de façon équivalente sur les couples de matrices associés :

Xφ : (A,B) �→ (
A−1,ABA

)
,

Yφ : (A,B) �→ (
BAB,B−1),

Zφ : (A,B) �→ (
A−1,B

)
.

(5.18)
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On peut remarquer que ces transformations sont involutives, on dit aussi que ce

sont des réflexions ou des symétries,

X2
φ = Y 2

φ = Z2
φ = id . (5.19)

En les composant de façon habituelle, on peut décrire tout chemin de l’arbre com-

plet par un mot ch(Xφ,Yφ,Zφ) en Xφ, Yφ ou Zφ. Cet arbre s’identifie ainsi à un groupe

qui est produit libre de trois groupes à deux éléments [5, page 24],

T3 = C2∗C2∗C2 =
〈
Xφ,Yφ,Zφ |X2

φ = Y 2
φ = Z2

φ = 1
〉
. (5.20)

Il peut être représenté graphiquement par le topographe de Conway [11]. Il apparaît

dans de nombreux développements mathématiques [18], parfois explicitement sous

forme d’arbre [42, page 28] et [46, page 41].

Le fait que l’on trouve réellement cet arbre grâce aux triplets est démontrable en

considérant la hauteur de tout triplet,

h=max
(
m,m1,m2

)
. (5.21)

Pour un triplet différent de (1,1,1), si cette hauteur est atteinte surm, le triplet est

donné par X et on a

3m1m2−m<max
(
m1,m2

)
<h=m,

h=m=max
(
m,m1

)
< 3mm2−m1,

h=m=max
(
m,m2

)
< 3mm1−m2.

(5.22)

Si la hauteur est atteinte sur m1 le triplet est donné par Y , si elle est atteinte sur

m2 le triplet est donné par Z , et on a dans tous les cas des inégalités équivalentes qui

permettent de conclure à la structure de l’arbre [4, pages 27–28].

5.3. Une conséquence pour le groupe libre. On est maintenant en mesure de ré-

pondre à une question posée avant.

Proposition 5.2. Le groupe F2 = [SL(2,Z),SL(2,Z)] vérifie la condition

−1 ∉ F2 =
[
SL(2,Z),SL(2,Z)

]
. (5.23)

En particulier, le groupe quotient SL(2,Z)/F2 est cyclique à 12 éléments,

SL(2,Z)/F2 � C12. (5.24)

L’application canonique SL(2,Z) → Γ = PSL(2,Z) = SL(2,Z)/{±1} donne un isomor-

phisme de groupes de [SL(2,Z),SL(2,Z)] sur le sous-groupe normal dérivé [Γ ,Γ] du

groupe modulaire projectif Γ , sous-groupe qui est aussi libre à deux générateurs. Ceci

donne une suite exacte,

1 �→ F2 �→ SL(2,Z) �→ C12 �→ 1. (5.25)
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En effet dans le cas contraire, on pourrait écrire avec un mot réduit en A0 et B0

−1=w(A0,B0
)
. (5.26)

Et en multipliant cet élément par lui même, on aurait une expression,

w
(
A0,B0

)
w
(
A0,B0

)= 1. (5.27)

Or le mot du premier membre devrait se réduire au mot vide dans G, avec deux cas

à distinguer, tous deux impossibles :

(i) le mot réduit w(A0,B0) est vide. Dans ce cas w(A0,B0) est de longueur paire et

égal à w(A0,B0)−1. Mais par les simplifications internes à w(A0,B0) on trouve

une contradiction avec le fait que le mot w(A0,B0) lui même est réduit ;

(ii) le mot réduit w(A0,B0) n’est pas vide, mais on obtient alors une relation liant

A0 et B0. Ceci est contradictoire avec le fait que G est un groupe libre.

En particulier, en considérant la projection canonique

V ∈ SL(2,Z) �→ V = {±V} ∈ Γ = PSL(2,Z)= SL(2,Z)/{±1}. (5.28)

On obtient par restriction un isomorphisme de groupes,

F2 =
[
SL(2,Z),SL(2,Z)

]
�→ [Γ ,Γ]. (5.29)

D’autre part, on a vu avant que l’on a −T 6 ∈ F2.

Ce que l’on vient de démontrer impose que T 6 ∉ F2.

Dans le groupe quotient (SL(2,Z)/F2), la classe TF2 de T qui engendre ce groupe

est donc d’ordre 12 et non 6. La suite exacte en résulte facilement (voir [2] pour la

définition d’une suite exacte). Ceci termine la démonstration de première partie de la

dernière proposition. Le reste de ce résultat est évident.

Remarque 5.3. On trouve dans l’ouvrage de Newman [29, chapitre VIII] des résul-

tats complétant ce qui précède. Dans le groupe Γ tout sous-groupe normal est libre, à

l’exception des trois groupes suivants : Γ le groupe entier, ∆(S) sous-groupe normal

d’indice 3 engendré par S, ∆(ST) sous-groupe normal d’indice 2 engendré par ST .

De plus, tout sous-groupe normal libre G′ de Γ d’indice fini µ est libre de rang r
avec

r = 1+ µ
6
. (5.30)

Le niveau du groupe G′ est défini comme étant le plus petit entier n tel que Tn appar-

tienne à G′. Le genre du groupe G′, qui a une signification pour la surface de Riemann

obtenue en quotientant le demi-plan de Poincaré H par le groupe G′, est alors le

nombre

g = 1+ µ(n−6)
12n

, (5.31)
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g = 1 est la seule valeur du genre pour laquelle il existe une infinité de sous groupes

normaux d’indice fini de Γ . Pour les autres valeur de g, il n’y a qu’un nombre fini

de possibilités pour µ, et on trouve dans [28] une classification des sous-groupes

normaux de Γ = SL(2,Z)/{±1} par indice et par genre. Newman définit aussi les sous-

groupes de congruence principaux Γ(n) de niveau n. Il donne l’expression de leur

indice pour n> 2,

µ(n)= 1
2
n3

∏
p|n

(
1− 1
p2

)
. (5.32)

5.4. Interprétation de l’arbre sur les générateurs de F2. En rapprochant le théorème

2.1 et les conséquences tirées ci-dessus de la proposition 5.1, on obtient le théorème

suivant.

Théorème 5.4. Tout couple de générateurs (A,B) du groupe F2 donne un triplet de

solutions de l’équation de Markoff tel que

(
m,m1,m2

)= ((tr
(
B−1)/3),(tr(A)/3

)
,
(
tr
(
B−1A−1)/3))∈ (N−{0})3. (5.33)

Inversement, pour tout triplet (m,m1,m2) ∈ (N−{0})3 de solutions de l’équation de

Markoff il existe un couple de générateurs (A,B) du groupe F2 vérifiant l’égalité précé-

dente.

Remarquons que dans le théorème 2.1, l’écriture des triplets utilise des expressions

de forme ((
tr
(
B−1)/3),(tr(A)/3

)
,
(
tr
(
B−1A−1)/3)). (5.34)

Au contraire, dans la proposition 5.1, on utilise des triplets de forme

((
tr(B)/3

)
,
(
tr(A)/3

)
,
(
tr(AB)/3

))
. (5.35)

Ceci n’a aucune importance, car pour toute matrice V de SL(2,Z) on a

tr(V)= tr
(
V−1). (5.36)

Le théorème 5.4 assure un lien profond entre la théorie de Markoff et l’étude du

groupe libre à deux générateurs. Comme ce groupe est défini indépendamment de sa

présentation matricielle sous la forme de groupe dérivé de SL(2,Z), on doit appro-

fondir ce lien pour comprendre comment faire apparaître un arbre de façon directe à

partir du groupe libre à deux générateurs le plus général.

6. Equivalence des couples de générateurs de F2. Le théorème 5.4 conduit à consi-

dérer l’application surjective de l’ensemble des couples de générateurs de F2 dans

l’ensemble des triplets de solutions de l’équation de Markoff :

Π : (A,B) �→ ((
tr(B−1)/3),(tr(A)/3

)
,
(
tr
(
B−1A−1)/3))∈ (N−{0})3. (6.1)
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Différents couples de générateurs de F2 ont pour image par Π la solution singulière

(1,1,1) par exemple (A0,B0), (B0,A0), (B−1
0 A

−1
0 ,A0), . . . . Ceci montre que l’application

Π n’est pas injective.

La remarque que l’on vient de faire conduit à poser cette définition.

Définition 6.1. Un couple de générateurs (A,B) du groupe F2 est fondamental si

et seulement on a

Π(A,B)= (1,1,1). (6.2)

Il est alors facile de s’assurer qu’il existe une infinité de couples de générateurs

fondamentaux, par exemple ceux qui sont de la forme, avec N ∈ GL(2,Z)

(
NA0N−1,NB0N−1). (6.3)

Cette remarque sur le rôle des automorphismes intérieurs conduit à poser plus

généralement la définition suivante.

Définition 6.2. On dit que deux couples de générateurs (A1,B1) et (A2,B2) du

groupe F2 sont équivalents par un automorphisme intérieur de GL(2,Z) si et seulement

s’il existe une matrice N ∈ GL(2,Z) telle que l’on a

(
A2,B2

)= (NA1N−1,NB1N−1). (6.4)

On vérifie facilement que cette définition donne bien une relation d’équivalence.

Elle peut d’ailleurs être rendue plus fine, en une équivalence par un automorphisme

intérieur de SL(2,Z), en imposant la condition plus forte N ∈ SL(2,Z).
On voit par exemple que les deux couples (A0,B0) et (B0,A0) sont équivalents avec

N =±O =±
[

1 0

0 −1

]
∈ GL(2,Z). (6.5)

Par contre, les deux couples (A0,B0) et (A−1
0 ,B0) ne permettent de trouver aucune

matrice N ∈ GL(2,Z) les rendant équivalents par un automorphisme intérieur.

6.1. Caractérisation des couples fondamentaux. En approfondissant la dernière

remarque faite, on énonce ce théorème.

Théorème 6.3. Pour tout couple de générateurs (A,B) du groupe F2, on a équiva-

lence des propriétés suivantes :

(1) Le couple (A,B) est fondamental.

(2) Le couple (A,B) est équivalent par un automorphisme intérieur de GL(2,Z) au

couple de générateurs (A0,B0).
Dans ce cas, il y a unicité au signe près de la matrice N ∈ GL(2,Z) telle que

(A,B)= (NA0N−1,NB0N−1). (6.6)
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(i) L’implication (2)⇒(1) est évidente.

(ii) L’unicité de la matrice N au signe près s’établit à partir de l’égalité

(
NA0N−1,NB0N−1)= (MA0M−1,MB0M−1). (6.7)

On pose

M−1N =
[
α11 α12

α21 α22

]
. (6.8)

On développe et on identifie, en utilisant les expressions de A0 et B0. Il reste que

α12 =α21 = 0, α11 =α22. (6.9)

Avec la condition α11α22−α12α21 =±1, on trouve la seule possibilité,

M−1N =±
[

1 0

0 1

]
. (6.10)

Et donc nécessairement

M =±N. (6.11)

(iii) L’implication (1)⇒(2) est beaucoup plus délicate à établir. Avec les conditions

sur les traces de A et B qui sont égales à 3, on pose

A=
[
u11 u12

u21 3−u11

]
, B =

[
a11 a12

a21 3−a11

]
. (6.12)

Comme ces deux matrices sont dans SL(2,Z), on a par les déterminants

u2
11−3u11+1=−u12u21, a2

11−3a11+1=−a12a21. (6.13)

L’idée de la démonstration qui suit consiste à interpréter ces deux égalités dans

un anneau d’entiers quadratiques pour en déduire une structure paramétrique des

matrices A et B. On combine ensuite ces structures pour construire l’automorphisme

intérieur recherché, sachant que l’hypothèse essentielle à utiliser à ce stade est que la

trace de la matrice AB est aussi égale à 3.

6.1.1. Interprétation des égalités issues des déterminants. On interprète ici l’éga-

lité qui résulte de la valeur du déterminant de B. On le fait dans l’anneau des entiers

quadratiques Z[ω], où

ω= 1+√5
2

=ω2−1. (6.14)

Cette égalité s’écrit avec la norme de l’anneau Z[ω],

N
(
a11−2+ω)=−a12a21. (6.15)
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L’idéal a12Z[ω] de Z[ω] se décompose d’une et une seule façon en un produit

d’idéaux premiers inertes, décomposés ou ramifiés :

a12Z[ω]=
(
Πi=li=1

(
piZ[ω]

)βi)(Πd=md=1

(
pd,ed+ω

)βd)(Πr=nr=1

(
pr ,er +ω

)βr ). (6.16)

On a, selon la nature des idéaux considérés,

(i) pi ≠ 5 nombre premier égal à 2 ou impair tel que 5 non résidu quadratique,

(ii) pd ≠ 5 nombre premier impair tel que 5 résidu quadratique,

(iii) pr = 5.

En passant aux normes des idéaux

N
(
a12Z[ω]

)= a2
12 =Πi=li=1

(
p2βi
i

)
Πd=md=1

(
pβdd

)
Πr=nr=1

(
pβrr

)
. (6.17)

Ceci impose dans Z que βd et βr soient pairs. D’où une décomposition dans Z,

a12 =Πi=li=1

(
pβii

)
Πd=md=1

(
p(βd/2)d

)
Πr=nr=1

(
p(βr /2)r

)
. (6.18)

Sachant que Z[ω] est un anneau euclidien et donc aussi principal, on peut écrire

(
pd,ed+ω

)=αdZ[ω], (
pr ,er +ω

)=αrZ[ω]. (6.19)

Avec les normes des idéaux, en utilisant éventuellement N(ω)=−1, on a

pd =N
(
αd
)
, 5= pr =N

(
αr
)
. (6.20)

Ceci donne

a12 =Πi=li=1

(
pβii

)
N
(
Πd=md=1

(
αβd/2d

)
Πr=nr=1

(
αβr /2r

))
. (6.21)

Il en résulte la possibilité de décomposer a12 avec

a12 =Πi=li=1

(
pβii

)
N(β)= a′12N(β),

β=Πd=md=1

(
αβd/2d

)
Πr=nr=1

(
αβr /2r

)
= p12+q12ω∈ Z[ω],

a′12 =Πi=li=1

(
pβii

)
∈N−{0}.

(6.22)

En échangeant les rôles de a12 et a21, on a de même

a21 =Πi=l′i=1

(
pγii

)
N(γ)= a′21N(γ),

γ =Πd=md=1

(
αγd/2d

)
Πr=nr=1

(
αγr /2r

)
= p21+q21ω∈ Z[ω],

a′21 =Πi=l
′

i=1

(
pγii

)
∈N−{0}.

(6.23)
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On peut de même décomposer l’idéal (a11−2+ω)Z[ω] d’une et une seule façon

en produit d’idéaux premiers :

(
a11−2+ω)Z[ω]= (Πi=l′′i=1

(
piZ[ω]

)λi)(Πd=m′′
d=1

(
pd,ed+ω

)λd)(Πr=n′′r=1

(
pr ,er +ω

)λr ).
(6.24)

Ceci donne pour les normes des idéaux

N
((
a11−2+ω)Z[ω])= ∣∣a2

11−3a11+1
∣∣

=
(
Πi=l

′′
i=1 p

2λi
i

)(
Πd=m

′′
d=1 pλdd

)(
Πr=n

′′
r=1 p

λr
r

)
= ∣∣a12a21

∣∣
=Πi

(
pβi+γii

)
Πd
(
p((βd+γd)/2)d

)
Πr
(
p((βr+γr )/2)r

)
.

(6.25)

On en déduit, pour tout i= 1, . . . , l′′, que

βi+γi = 2λi. (6.26)

Ceci permet de définir

θ =Πi=l′′i=1 p
λi
i . (6.27)

L’intérèt de ce qui précède est que l’on est parvenu à une décomposition,

a12 = a′12

(
p2

12+p12q12−q2
12

)
= a′12N

(
p12+q12ω

)
,

a21 = a′21

(
p2

21+p21q21−q2
21

)
= a′21N

(
p21+q21ω

)
.

(6.28)

Par ce que l’on vient de voir sur les normes etN(ω)=−1, on a la possibilité d’écrire

(
a11−2+ω)= θω(p12+q12ω

)(
p21+q21ω

)
,

θ2 = a′12a
′
21 =

(
Πi=l

′′
i=1

(
pi
)λi)2

carré dans N−{0}.
(6.29)

En développant la dernière expression et identifiant, on en déduit les conditions

suivantes dans Z :

a11−2= θ(q12p21+p12q21+q12q21
)
,

1= θ(q12p21+p12q21+p12p21+2q12q21
)
.

(6.30)

La dernière égalité impose θ = 1. Par l’expression de θ2 vue avant, on obtient a′12 =
a′21 = 1.

D’où finalement les deux égalités

1= (q12p21+p12q21+p12p21+2q12q21
)
,

a11 =
(
2+q12p21+p12q21+q12q21

)
.

(6.31)
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Ceci donne différentes expressions paramétriques pour la matrice B, avec p12,q12,
p21,q21 ∈ Z, par exemple,

B =
(2+q12p21+p12q21+q12q21

) (
p2

12+p12q12−q2
12

)(
p2

21+p21q21−q2
21

)
−1+2p12p21+q12p21+p12q21+3q12q21

 .
(6.32)

La même conclusion vaut pour la matrice A, avec d’autres paramètres entiers.

6.1.2. Construction d’un automorphisme intérieur associé. On cherche ici à iden-

tifier une matrice N ∈ GL(2,Z) telle que

B =NB0N−1. (6.33)

On la suppose de la forme

N =
[
α11 α12

α21 α22

]
. (6.34)

On remarque d’abord qu’une seule de ces matrices N les détermine toutes. Il suffit

en effet de remplacer N par NV , avec

B0 = VB0V−1. (6.35)

Cette dernière égalité donne toutes les possibilités pour V

V =
[
v1 v2

v2 v1−v2

]
avec v1,v2 ∈ Z. (6.36)

La condition det(V) = ±1 s’obtient par la résolution de l’équation diophantienne

suivante :

v2
1 −v1v2−v2

2 =±1. (6.37)

Elle possède une infinité de solutions données avec les nombres de Fibonacci [3].

En particulier, on peut faire en sorte d’avoir det(V)=−1 si on le veut.

On écrit maintenant la relation définissant N sous la forme

BN =NB0. (6.38)

Ceci est équivalent à la conjonction des quatre conditions suivantes :(
a11−1

)
α11+α12+a12α21 = 0, a21α11+

(
2−a11

)
α21+α22 = 0,

α11+
(
a11−2

)
α12+a12α22 = 0, a21α12+α21+

(
1−a11

)
α22 = 0.

(6.39)

Avec l’expression du déterminant de B, ces relations se réduisent à deux, de sorte

que l’on peut se limiter à rechercher α11 et α21 tels que

N =
[
α11

(
1−a11

)
α11−a12α21

α21
(
a11−2

)
α21−a21α11

]
. (6.40)
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La condition det(N)=±1 s’écrit

a12α2
21+

(
2a11−3

)
α11α21−a21α2

11 =±1. (6.41)

Multipliée par a12, elle permet d’écrire avec les expressions établies précédemment

(
a12α21+

(
a11−2

)
α11

)2+(a12α21+
(
a11−2

)
α11

)
α11−α2

11

=±
(
p2

12+p12q12−q2
12

)
.

(6.42)

Dans l’anneau principal Z[ω], elle est assurée pourvu que l’une ou l’autre des deux

conditions suivantes soit vérifiée, avec n∈ Z :

a12α21+
((
a11−2)+ω)α11 =±ωn

(
p12+q12ω

)
, (6.43)

a12α21+
((
a11−2

)+ω)α11 =±ωn
(
p12+q12ω

)
. (6.44)

Multipliée par a21, on s’assure de même que l’une ou l’autre des deux conditions

suivantes doit être vérifiée, avec m∈ Z :

(
1−(a11−2

)
ω
)
α21+a21ωα11 =±ωm(p21+q21ω), (6.45)(

1−(a11−2
)
ω
)
α21+a21ωα11 =±ωm

(
p21+q21ω

)
. (6.46)

Dans ce qui précède, on a établi que(
a11−2

)+ω=ω(p12+q12ω
)(
p21+q21ω

)
,

a12 =
(
p12+q12ω

)(
p12+q12ω

)=N(p12+q12ω
)
.

(6.47)

La condition (6.43) se simplifie donc dans Z[ω] en la suivante :

(
p12+q12ω

)
α21+ω

(
p21+q21ω

)
α11 =±ωn. (6.48)

De même, on peut utiliser la relation suivante qui découle par conjugaison d’une

précédente écriture :

(
1−(a11−2

)
ω
)= (p12+q12ω

)(
p21+q21ω

)
. (6.49)

On combine avec

a21 =
(
p21+q21ω

)(
p21+q21ω

)=N(p21+q21ω
)
. (6.50)

En simplifiant dans Z[ω] la condition (6.45), on en déduit que

(
p12+q12ω

)
α21+ω

(
p21+q21ω

)
α11 =±ωm. (6.51)

En comparant les deux conditions (6.48) et (6.51), il apparaît que l’on a nécessaire-

ment

m=n. (6.52)
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De sorte que les deux conditions (6.43) et (6.45) constituent la même relation à un

facteur près de Z[ω].
Par le même procédé, on voit que (6.44) et (6.46) sont la même relation à un facteur

près de Z[ω].
Il suffit maintenant d’utiliser les nombres de Fibonacci qui donnent pour tout n∈ Z

ωn =�n−1ω+�n−2. (6.53)

On en déduit, dans le cas où (6.43) ou (6.45) est assurée que

±(�n−1ω+�n−2
)= (q21α11+p21α11−q12α21

)
ω

+(p12α21+q12α21+q21α11
)
.

(6.54)

En identifiant [
q21 p12+q12

p21+q21 −q21

][
α11

α21

]
=±

[
�n−2

�n−1

]
. (6.55)

Le déterminant de ce système en α11 et α21 vaut

−p12p21−p12q21−q12p21−2q12q21 =−1. (6.56)

Il permet la détermination effective de la matrice N avec

[
α11

α21

]
=∓

[
q12 p12+q12

p21+q21 −q21

][
�n−2

�n−1

]
. (6.57)

Dans le cas où c’est au contraire (6.44) ou (6.46) qui est assurée, un calcul analogue

peut être fait. Il permet de même la détermination effective de la matrice N.

Remarquons qu’avec ce qui a été vu avant pour la matrice V , on peut faire en sorte

d’avoir det(N)= 1. On a donc établi dans ce qui précède la proposition suivante.

Proposition 6.4. Pour toute matrice B ∈ SL(2,Z), on a équivalence des trois pro-

priétés suivantes :

(1) tr(B)= 3.

(2) Il existe une matrice N ∈ SL(2,Z) telle que

B =NB0N−1. (6.58)

(3) Il existe une matrice N ∈ GL(2,Z) telle que

B =NB0N−1. (6.59)

Cette proposition est applicable aux deux matrices A et A0. Appliquée à A0, elle

permet d’écrire

A0 =
[

0 1

−1 1

]
B0

[
0 1

−1 1

]−1

. (6.60)
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Avec une expression comparable pour la matriceA, on déduit en éliminant B0 l’exis-

tence d’une matrice M ∈ SL(2,Z) vérifiant

A=MA0M−1. (6.61)

6.1.3. Fin de la démonstration du théorème 6.3. On peut maintenant supposer

que l’on a avec M,N ∈ SL(2,Z) les écritures suivantes :

A=MA0M−1, B =NB0N−1. (6.62)

En combinant ces expressions, on obtient

B−1A−1 =NB−1
0 N

−1MA−1
0 M. (6.63)

Ceci conduit à considérer la matrice

W =N−1M =
[
	1 	4

	3 	2

]
∈ SL(2,Z). (6.64)

On utilise l’hypothèse essentielle que la trace de B−1A−1 est égale à 3, et on l’écrit

sous la forme équivalente,

tr
(
B−1

0 WA
−1
0 W

−1
)
= 3= 3

(
	1	2−	3	4

)
. (6.65)

Ceci donne une équation diophantienne,

	2
1−	2

2+	2
3−	2

4+2	2	1−	1	4−	2	4−	3	4+	2	3+	1	3 = 0. (6.66)

Celle-ci possède par construction deux solutions évidentes :

(
	1,	2,	3,	4

)=±(1,1,0,0). (6.67)

Pour déterminer toutes les autres solutions, on orthogonalise la forme quadratique

avec les quatre vecteurs suivants :

υ0(0,1,0,0), υ1(0,1,2,0), υ2(0,1,−1,3), υ3(2,1,−1,1). (6.68)

On obtient ainsi la forme quadratique plus simple,

γ2
0+3γ2

1−4γ2
2−12γ2

3 . (6.69)

Où
	1 = 2γ2, 	2 = γ2+3γ3,

	3 = 2γ1−γ2−γ3, 	4 = γ0+γ1+γ2+γ3.
(6.70)

Une solution particulière issue de celle identifiée ci-dessus est

(
γ0,γ1,γ2,γ3

)=±(−1,
(

1
3

)
,
(

1
2

)
,
(

1
6

))
. (6.71)
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Le calcul que l’on vient de faire introduit naturellement une algèbre de quaternions

classiquement notée [1, page 18], où Q désigne le corps des nombres rationnels,(−3,4
Q

)
. (6.72)

Dans cette algèbre, la dernière forme quadratique est en réalité la norme du qua-

ternion suivant :

q = γ0e0+γ1e1+γ2e2+γ3e3. (6.73)

En exprimant (γ0,γ1,γ2,γ3) en fonction de (	1,	2,	3,	4), tout revient à recher-

cher un quaternion de norme nulle dans le sous-module engendré par les quatre élé-

ments suivants :

q0 = e0, q1 =−e0−e1

2
, q2 =−3e0−e1−2e3

6
, q3 =−3e0−e1−3e2+e3

6
.

(6.74)

Les règles de calcul de l’algèbre, où e0 est unité, sont les suivantes :

e2
1 =−3e0, e2

2 = 4e0, e1e2 =−e2e1 = e3. (6.75)

Cette algèbre de quaternions n’est pas un corps puisque la forme quadratique asso-

ciée a une solution rationnelle non triviale. C’est donc une algèbre isomorphe àM2(Q),
l’algèbre des matrices 2×2 à coefficients rationnels [1, page 20].

Il est facile d’expliciter l’isomophisme de cette algèbre de quaternions sur M2(Q) à

partir du fait que l’on a une solution évidente (x,y)= (1,1) pour l’équation

−3x2+4y2 = 1. (6.76)

On pose pour cela que

e∗0 = e0, e∗1 = e1+e2, e∗2 = e3, e∗3 =−4e1−3e2. (6.77)

Ceci donne une base de l’algèbre de quaternions notée usuellement(
1,12

Q

)
. (6.78)

Or cette dernière base est facilement explicitable sous la forme matricielle [1, page

20]. On en déduit des expressions pour les éléments e0, e1, e2, e3. Ceci permet d’écrire

sous la forme matricielle,

q = γ0e0+γ1e1+γ2e2+γ3e3 =
[

γ0−3γ1+4γ2 γ1−γ2−γ3

−12γ1+12γ2−12γ3 γ0+3γ1−4γ2

]
. (6.79)

La normeN(q) de ce quaternion n’est autre que le déterminant de la matrice corres-

pondante. Elle vaut

γ2
0+3γ2

1−4γ2
2−12γ2

3 =
(
γ0−3γ1+4γ2

)(
γ0+3γ1−4γ2

)
−(γ1−γ2−γ3

)(−12γ1+12γ2−12γ3
)
.

(6.80)
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Tout revient donc pour le problème qui nous concerne, en remplaçant les termes

γi par leurs expressions en fonction de 	1, 	2, 	3, 	4, à étudier l’égalité dans Z,

(
	1+	4−2	3−	2

)(
	4+	3−2	1

)= (	1−	3−	2
)(

3	3−	2−	1
)
. (6.81)

Une solution simple consiste à poser avec de nouveaux paramètres dans Z

(
	1+	4−2	3−	2

)= λ1µ1,
(
	4+	3−2	1

)= µ2λ2,(
	1−	3−	2

)= λ1µ2,
(
3	3−	2−	1

)= µ1λ2.
(6.82)

En inversant ces relations et en remarquant que les expressions obtenues donnent

une décomposition en produit de matrices pour W ,

W = 1
2

[
2µ1−3µ2 µ1−2µ2

µ1−2µ2 µ1−µ2

][
λ1 2λ1+λ2

λ2 −λ1−λ2

]
. (6.83)

En passant au déterminant, on obtient l’égalité suivante :

(
µ2

2+µ2µ1−µ2
1

)(
λ2

1+3λ1λ2−λ2
2

)
= 4. (6.84)

Cette égalité s’interprète dans l’anneau Z[ω] sous la forme

(2)= (µ2+µ1ω
)
Z[ω]·(λ1+2λ2−λ2ω

)
Z[ω]. (6.85)

Comme l’idéal (2) est premier et inerte dans l’anneau principal Z[ω], il en découle

seulement deux possibilités.

(1) La première possibilité donne

(
λ1+2λ2−λ2ω

)
Z[ω]= (2), (

µ2+µ1ω
)

unité de Z[ω]. (6.86)

Elle impose que (λ1+2λ2−λ2ω) soit multiple de 2 par une unité ε+ζω de Z[ω].
Et ceci se traduit dans GL(2,Z) comme suit :

[
λ1 2λ1+λ2

λ2 −λ1−λ2

]
= 2

[
1 2

0 −1

][
ε ζ
ζ ε+ζ

]
. (6.87)

En remplaçant dans le produit précédent égal à W , on en déduit une autre décom-

position de W en deux nouvelles matrices que l’on note respectivement N−1
0 et M0,

W =N−1M =
[−3µ2+2µ1 −4µ2+3µ1

−2µ2+µ1 −3µ2+µ1

][
ε ζ
ζ ε+ζ

]
=N−1

0 M0. (6.88)

On vérifie alors, avec les expressions de A0 et M0 que l’on a

M0A−1
0 M

−1
0 =A−1

0 . (6.89)
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On s’assure d’autre part, avec l’expression de B0 et N0, que l’on a

N−1
0 A

−1
0 B0A0N0 = B0. (6.90)

On introduit alors la matrice

R =NN−1
0 A

−1
0 =MM−1

0 A
−1
0 . (6.91)

Elle donne par construction

RA0R−1 =MM−1
0 A

−1
0 A0A0M0M−1

=MM−1
0 A0M0M−1 =MA0M−1 =A,

RB0R−1 =NN−1
0 A

−1
0 B0A0N0N−1 =NB0N−1 = B.

(6.92)

(2) La seconde possibilité donne

(
µ2+µ1ω

)
Z[ω]= (2), (

λ1+2λ2−λ2ω
)

unité de Z[ω]. (6.93)

Elle se traite exactement de même et conduit à la même conclusion.

On a donc identifié de façon constructive un automorphisme intérieur. Et ceci ter-

mine la démonstration de notre théorème.

Sur l’exemple particulier du couple (A,B)= (B0,A0), on peut calculer l’unique ma-

trice N ∈ GL(2,Z) telle que

B0 =NA0N−1, A0 =NB0N−1. (6.94)

On trouve l’unique matrice

N =O =
[−1 0

0 1

]
∈ GL(2,Z). (6.95)

Remarquons qu’elle n’est pas dans SL(2,Z). Ceci montre que le théorème 6.3 n’est

pas vrai si l’on remplace dans son second énoncé GL(2,Z) par SL(2,Z).

6.2. Généralisation aux autres couples de générateurs. Le théorème 6.3 débouche

sur un résultat beaucoup plus vaste, ce théorème.

Théorème 6.5. Deux couples de générateurs (A,B) et (A′,B′) du groupe F2 étant

donnés, on a équivalence des propriétés suivantes :

(1) On a

Π(A,B)=Π(A′,B′). (6.96)

(2) Les deux couples (A,B) et (A′,B′) sont équivalents par un automorphisme inté-

rieur de GL(2,Z).
Dans ce cas, il y a unicité au signe près de la matrice N ∈ GL(2,Z) telle que

(
A′,B′

)= (NAN−1,NBN−1). (6.97)
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On procède comme dans la démonstration du théorème 6.3 :

(i) L’implication (2)⇒(1) est évidente.

(ii) L’implication (1)⇒(2) se fait en utilisant le fait établi avant que le couple de

générateurs (A,B) du groupe F2 donne un triplet de solutions de l’équation de

Markoff

(
m,m1,m2

)=Π(A,B)
= ((tr

(
B−1)/3),(tr(A)/3

)
,
(
tr(B−1A−1)/3))∈ (N−{0})3.

(6.98)

Dans l’arbre complet de tous les triplets de cette équation, on peut construire avec

les transformations X, Y et Z un chemin ch(X,Y ,Z) conduisant de ce triplet au triplet

(1,1,1).
En combinant, on trouve ainsi deux mots W1 et W2 vérifiant

Π
(
W1(A,B),W2(A,B)

)= (1,1,1). (6.99)

Par le théorème 6.3, on établit que

W1(A,B)= RA0R−1, W2(A,B)= RB0R−1. (6.100)

Par le chemin inverse dans l’arbre complet, on peut alors écrire

A=W∗
1

(
RA0R−1,RB0R−1)= RW∗

1

(
A0,B0

)
R−1,

B =W∗
2

(
RA0R−1,RB0R−1)= RW∗

2

(
A0,B0

)
R−1.

(6.101)

Sachant maintenant que pour (A′,B′) on peut faire le même raisonnement avec les

mêmes chemins dans le même arbre, on peut écrire également

A′ = R′w∗
1

(
A0,B0

)
R′−1, B′ = R′w∗

2

(
A0,B0

)
R′−1. (6.102)

Et en éliminant les mots en A0 et B0, il reste que

A′ = (R′R−1)A(R′R−1)−1, B′ = (R′R−1)B(R′R−1)−1. (6.103)

Toutes les vérifications complémentaires étant faciles, le théorème 6.5 en résulte.

Il interprète l’arbre complet de toutes les solutions de l’équation de Markoff dans

(N−{0})3 comme étant l’arbre des classes des couples de générateurs du groupe F2

pour l’action du groupe des automorphismes intérieurs de GL(2,Z).

7. Conséquences pour le groupe des automorphismes de F2. On a évoqué dans

ce qui précède les automorphismes du groupe libre à deux générateurs F2. Ce qui a

été dit se résume par le résultat suivant.
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Proposition 7.1. Se donner un automorphismeφ∈Aut(F2) du groupe libre F2 est

équivalent à se donner un couple de générateurs de ce même groupe F2.

À partir du couple de générateurs (A0,B0) de F2, choisi comme couple de référence,

il est en effet équivalent de considérer φ ou le couple de générateurs de F2. Par abus

de langage ce dernier est aussi noté φ,

φ= (φ(A0
)
,φ
(
B0
))
. (7.1)

En pratique, ceci se traduit par l’existence de mots Wφ
a et Wφ

b tels que l’on peut

écrire sur le couple de référence (A0,B0), également appelé la base

φ :A0 �→Wφ
a
(
A0,B0

)=φ(A0
)
, φ : B0 �→Wφ

b
(
A0,B0

)=φ(B0
)
. (7.2)

Pour tout mot W(a,b) écrit avec les deux lettres a et b, et tout élément W(A0,B0) du

groupe F2 qui s’en déduit dans la base (A0,B0),

φ :W(a,b)(A0,B0
)
�→Wφ(A0,B0

)=φ(W(a,b)(A0,B0
))
. (7.3)

Sur le mot W(a,b), traduire φ revient à substituer le mot Wφ
a à la première variable

de W(a,b), et Wφ
b à sa seconde variable. Ceci construit le mot Wφ = W(a,b)(Wφ

a ,W
φ
b )

écrit avec les deux lettres a et b. On peut en effet écrire

φ : (a,b) �→
(
Wφ
a ,W

φ
b

)
,

φ :W(a,b) �→Wφ =W(a,b)
(
Wφ
a ,W

φ
b

)
.

(7.4)

Et par construction, on a dans F2

Wφ(A0,B0
)=φ(W(a,b)(A0,B0

))=W(a,b)(φ(A0
)
,φ
(
B0
))
. (7.5)

Ceci revient à noter sous forme exponentielle

φ(a)=Wφ
a , φ(b)=Wφ

b . (7.6)

Avec les notations de [24, page 129] l’automorphisme φ est ainsi défini par la sub-

stitution libre φ agissant sur les mots par

a �→Wφ
a , b �→Wφ

b . (7.7)

L’automorphisme identique s’écrit

idF2 =
(
A0,B0

)
. (7.8)

Il donne sur les mots

W
idF2
a = a, W

idF2
b = b. (7.9)
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Pour la composition des automorphismes, on a avec la notation habituelle pour la

composition

φ1 ◦φ2 =
(
φ1 ◦φ2

(
A0
)
,φ1 ◦φ2

(
B0
))

= (φ1
(
φ2
(
A0
))
,φ1

(
φ2
(
B0
)))

=
(
φ1

(
Wφ2
a
(
A0,B0

))
,φ1

(
Wφ2
b
(
A0,B0

)))
=
(
Wφ2
a
(
φ1
(
A0
)
,φ1

(
B0
))
,Wφ2

b
(
φ1
(
A0
)
,φ2

(
B0
)))

=
(
Wφ2
a

(
Wφ1
a
(
A0,B0

)
,Wφ1

b
(
A0,B0

))
,Wφ2

b

(
Wφ1
a
(
A0,B0

)
,Wφ1

b
(
A0,B0

)))
=
(
Wφ2
a

(
Wφ1
a ,W

φ1
b

)(
A0,B0

)
,Wφ2

b

(
Wφ1
a ,W

φ1
b

)(
A0,B0

))
.

(7.10)

Soit

φ1 ◦φ2
(
A0
)=Wφ1◦φ2

a
(
A0,B0

)=Wφ2
a

(
Wφ1
a ,W

φ1
b

)(
A0,B0

)
,

φ1 ◦φ2
(
B0
)=Wφ1◦φ2

b
(
A0,B0

)=Wφ2
b

(
Wφ1
a ,W

φ1
b

)(
A0,B0

)
.

(7.11)

Ceci donne simplement sur les mots

Wφ1◦φ2
a =Wφ2

a

(
Wφ1
a ,W

φ1
b

)
=φ1

(
Wφ2
a

)
,

Wφ1◦φ2
b =Wφ2

b

(
Wφ1
a ,W

φ1
b

)
=φ1

(
Wφ2
b

)
.

(7.12)

Ces expressions reviennent à remplacer dans les deux expressions définissant φ2

la lettre a par le mot Wφ1
a associé à φ1 (respectivement le terme A0 par Wφ1

a (A0,B0)
dans F2), et la lettre b par le mot Wφ1

b associé à φ1 (respectivement le terme B0 par

Wφ1
a (A0,B0) dans F2).

On remarquera que dans [24], [30, page 130], et d’autres références..., la substitution

libre qui en résulte est notée φ2φ1. Avec nos notations cette substitution libre s’écrit

au contraire φ1 ◦φ2.

Pour éviter toute confusion (voir [23, page 22]), on n’utilisera pas dans la suite la

notation φ2φ1 qui inverse l’ordre des automorphismes par rapport à leur ordre dans

la notation habituelle de la composition φ1 ◦φ2 ici adoptée.

Par abus de language, on peut aussi faire agir ϕ sur Fn2 en notant

φ
(
W1
(
A0,B0

)
, . . . ,Wn

(
A0,B0

))= (φ(W1
(
A0,B0

))
, . . . ,φ

(
Wn

(
A0,B0

)))
. (7.13)

Ceci permet d’écrire de façon bien cohérente

φ1 ◦φ2 =
(
φ1

(
Wφ2
a
(
A0,B0

))
,φ1

(
Wφ2
b
(
A0,B0

)))
=φ1

((
Wφ2
a
(
A0,B0

)
,Wφ2

b
(
A0,B0

)))
=φ1

((
φ2
(
A0
)
,φ2

(
B0
)))

=φ1
(
φ2
(
A0,B0

))
=φ1 ◦φ2

(
A0,B0

)
.

(7.14)
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Le théorème 6.5 peut alors être présenté au moyen de l’action des automorphismes

intérieurs sur le groupe Aut(F2) des automorphismes du groupe libre F2. On se limite

ici à considérer les automorphismes intérieurs sur GL(2,Z).
Remarquons en effet que les notations précédentes permettent de définir

Π(φ)=Π(φ(A0
)
,φ
(
B0
))
. (7.15)

Le théorème 6.5 peut alors être écrit avec un automorphisme intérieur ϕN sous la

forme

Π(φ)=Π(φ′)⇐⇒ϕN ◦φ=φ′. (7.16)

7.1. Précisions sur les automorphismes intérieurs. Les automorphismes que l’on

considère dans ce qui précède sont issus d’une représentation du groupe libre F2 dans

le Z-module Z2,

ρA0B0 : F2 �→ GL(2,Z). (7.17)

Cette représentation transforme les générateurs du groupe libre enA0 et B0. En fait,

ρA0B0 est un isomorphisme de groupes de F2 sur son image que l’on a précédemment

identifiée à F2,

F2 � ρA0B0

(
F2
)= [SL(2,Z),SL(2,Z)

]
sous-groupe normal de GL(2,Z). (7.18)

Également, on a indiqué que F2 est un sous-groupe normal de SL(2,Z), lui même

normal dans GL(2,Z),

7.1.1. Les automorphismes intérieurs de GL(2,Z). On définit d’abord avec N ∈
GL(2,Z) les automorphismes intérieurs que l’on considère ici

ϕN : V ∈ GL(2,Z) �→ϕN(V)=NVN−1 ∈ GL(2,Z). (7.19)

Ces automorphismes constituent pour la composition un groupe noté Int(GL(2,Z)).
Par construction, on dispose d’un homomorphisme surjectif de groupes

ϕ∗ :N ∈ GL(2,Z) �→ϕ∗(N)=ϕN ∈ Int
(
GL(2,Z)

)
. (7.20)

Le noyau de cet homomorphisme, qui est le centre C(GL(2,Z)) de GL(2,Z), peut

être calculé. Si N ∈ Ker(ϕ∗), on a pour tout V ∈ GL(2,Z) l’égalité

NV = VN. (7.21)

Cette égalité peut être considérée pour les matrices V ∈ GL(2,Z) suivantes :

[
1 1

0 1

]
,
[

1 0

1 1

]
. (7.22)
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Ceci donne les seules possibilités N =±1,

C
(
GL(2,Z)

)={±[1 0

0 1

]}
= {±1}. (7.23)

On a donc un isomorphisme de groupes factorisant, ϕ∗,

ϕ∗ : GL(2,Z)/{±1} = PGL(2,Z) �→ Int
(
GL(2,Z)

)
. (7.24)

Pour tout N ∈ GL(2,Z), en notant N = {±N} la classe de N dans PGL(2,Z), ceci

permet d’écrire

ϕN =ϕ∗(N)=ϕ∗
(
N
)=ϕN. (7.25)

Remarquons queϕ∗ peut être restreinte à PSL(2,Z), commeϕ∗ peut l’être à SL(2,Z).
On utilisera dans la suite les mêmes notations pour ces restrictions.

7.1.2. Restriction à F2. Comme F2 est normal dans SL(2,Z), lui même normal dans

GL(2,Z), chaque élément de Int(GL(2,Z)) laisse F2 stable. En remplaçant N par N−1,

on voit que tout élément ϕN ∈ Int(GL(2,Z)) se restreint en un automorphisme de F2,

et s’identifie en réalité à un élément de Aut(F2). Ceci donne un morphisme injectif de

groupes

rest : Int
(
GL(2,Z)

)
�→Aut

(
F2
)
. (7.26)

Par composition omise dans les notations, il apparaît ainsi deux homomorphismes

de groupes dont le second factorise le premier,

restϕ∗ :N ∈ GL(2,Z) �→ restϕ∗(N)= restϕN ∈Aut
(
F2
)
,

restϕ∗ :N ∈ PGL(2,Z) �→ restϕ∗
(
N
)= restϕN ∈Aut

(
F2
)
.

(7.27)

Ils vérifient pour tout V ∈ F2 que

restϕ∗
(
N
)
(V)= restϕ∗(N)(V)= restϕN(V)=ϕN(V)=NVN−1. (7.28)

L’injectivité deϕ∗ impose celle de restϕ∗. Mais ceci peut se vérifier de façon directe

en considérant toutes les équations résultant des deux relations suivantes :

NA0N−1 =A0, NB0N−1 = B0. (7.29)

Elles donnent N = ±1, ce qui permet de conclure. En particulier, il en résulte l’iso-

morphisme de PGL(2,Z) et de son image dans Aut(F2) par l’homomorphisme injectif

restϕ∗.
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Ceci montre, avec les remarques faites autour de la proposition 4.3, que le groupe

restϕ∗(PGL(2,Z))� PGL(2,Z) est engendré par trois automorphismes de F2 que l’on

note d’après la proposition 7.1,

o = restϕ∗
(
O
)= (B0,A0

)
, s = restϕ∗

(
S
)= (A−1

0 ,B
−1
0

)
,

t = restϕ∗
(
T
)= (B−1

0 ,A0B0
)
.

(7.30)

7.1.3. Les automorphismes intérieurs de F2. Il existe un autre groupe que l’on peut

considérer. C’est le sous-groupe normal de Aut(F2) des automorphismes intérieurs du

groupe F2 noté Int(F2).
Tout élément de ce groupe est défini avec N ∈ F2 par

ψN : V ∈ F2 �→ψN(V)=NVN−1 ∈ F2. (7.31)

On peut considérer l’homomorphisme de groupes [2, chapitre 1, page 53], d’ailleurs

surjectif,

ψ∗ :N ∈ F2 �→ψ∗(N)=ψN ∈ Int
(
F2
)
. (7.32)

Son noyau est le centre C(F2) de F2, composé des matrices qui commutent avec A0

et B0. En explicitant les deux conditions correspondantes, on trouve dans ce centre

les seules possibilités

±
[

1 0

0 1

]
. (7.33)

Mais avec la proposition 5.2 qui s’applique à F2 = [SL(2,Z),SL(2,Z)], il reste en

réalité que

C
(
F2
)= {1}. (7.34)

En d’autres termes ψ∗ est un isomorphisme,

ψ∗ : F2 =
[
SL(2,Z),SL(2,Z)

]
�→ Int

(
F2
)
. (7.35)

7.1.4. Relations entre les différents groupes d’automorphismes. Les différents

homorphismes de groupes introduits ci-dessus ne sont pas indépendants les uns des

autres. On peut énoncer cette proposition.

Proposition 7.2. Le groupe des automorphismes intérieurs Int(F2) du groupe libre

à deux générateurs F2 est isomorphe à ce dernier groupe. De plus, si l’on note j l’in-

jection canonique de F2 dans GL(2,Z) et iInt celle de Int(F2) dans Aut(F2), on a la

factorisation suivante identifiant ψ∗ à la restriction à F2 de restϕ∗ :

restϕ∗ ◦j = rest◦ϕ∗ ◦j = iInt ◦ψ∗. (7.36)
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Pour tout N ∈ F2 ⊂ GL(2,Z), on considère ϕN =ϕ∗(N) ∈ Int(GL(2,Z)), et bien sûr

restϕN ∈Aut(F2). Pour tout V ∈ F2, on a alors

restϕ∗(N)(V)= restϕN(V)=ϕN(V)=NVN−1 =ψN(V)=ψ∗(N)(V). (7.37)

Avec j(N) = N, la proposition en résulte. Elle permet de considérer ψ∗ comme la

restriction de restϕ∗ à F2.

En particulier, le groupe Int(F2) possède deux générateurs ψ∗(A0) et ψ∗(B0). Il est

ordinairement identifié à son image dans Aut(F2) grâce à iInt que l’on oublie usuelle-

ment. Le groupe Int(F2) apparaît ainsi comme le sous-groupe de Aut(F2) engendré

par les deux automorphismes suivants :

ψ∗
(
A0
)=ψA0 = restϕ∗

(
A0
)= restϕ∗

(
A0
)= (A0,A0B0A−1

0

)
,

ψ∗
(
B0
)=ψB0 = restϕ∗

(
B0
)= restϕ∗

(
B0
)= (B0A0B−1

0 ,B0

)
.

(7.38)

7.2. Une tour de sous groupes d’automorphismes de F2. Récopitulant, on peut

énoncer, avec ce qui a été vu avant, et notamment la proposition 5.2, cette proposition.

Proposition 7.3. On a

Int
(
F2
)⊂ restϕ∗

(
PSL(2,Z)

)⊂ restϕ∗
(
PGL(2,Z)

)⊂Aut
(
F2
)

(7.39)

où

restϕ∗
(
PSL(2,Z)

)� Γ = PSL(2,Z) normal dans restϕ∗
(
PGL(2,Z)

)
,

Int(F2)= restϕ∗
([

PSL(2,Z),PSL(2,Z)
])� [Γ ,Γ]

� F2, sous-groupe dérivé de Γ .

(7.40)

Une question qui se pose de façon naturelle est de savoir si l’on a

Int
(
F2
)

sous-groupe normal dans Aut
(
F2
)
. (7.41)

La réponse est connue et positive [24, page 169], [27]. Elle est due à Nielsen [30]. On

sait de plus que l’on a pour le groupe quotient

Aut
(
F2
)
/ Int

(
F2
)� GL(2,Z). (7.42)

On trouve de plus dans [24, page 168] une présentation de GL(2,Z) qui résulte d’une

présentation de Aut(F2) en ajoutant une relation supplémentaire comme suit.

Proposition 7.4. Le groupe GL(2,Z) a une présentation à trois générateurs P00,

σ00, U00, dont les relations qui le définissent s’écrivent

P2
00 = σ 2

00 =
(
U00 ◦P00 ◦σ00 ◦P00

)2 = 1,
(
σ00 ◦P00 ◦U00

)3 = (P00 ◦σ00
)4 = 1,[

σ00 ◦U00 ◦σ00,U00
]= 1,

(
σ00 ◦U00

)2 = 1.
(7.43)
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En supprimant la dernière relation, on obtient une présentation du groupe Aut(F2),
dont GL(2,Z) est donc un quotient.

Ces résultats conduisent à examiner ce qui est connu quant aux présentations du

groupe Aut(F2). On fait quelques rappels dans ce qui suit.

8. Présentations du groupe des automorphismes de F2. Les résultats les plus an-

ciens sur ce sujet ont été obtenus par Nielsen [30]. On les considère ici en utilisant les

notations mises au point précédemment.

8.1. La présentation classique du groupe Aut(F2). Cette présentation du groupe

Aut(F2), due à Nielsen, est citée dans [24, Corollary N1, p. 164]. Conformément à notre

proposition 7.1, ses trois générateurs sont définis par les expressions

P0 =
(
B0,A0

)
,
(
noté antérieurement o = restϕ∗

(
O
))

U0 =
(
A0B0,B0

)
, σ0 =

(
A−1

0 ,B0
)
.

(8.1)

Cette présentation est mentionnée dans ([12], où σ0 est noté O comme dans [30]),

([15, page 24], avec d’autres notations). On va l’expliciter avec nos notations, compte

tenu que la composition des automorphismes privilégiée ici écrit les produits en sens

inverse du sens d’écriture habituel des travaux sur ce sujet.

Avec les définitions précédentes, P0 et σ0 sont des involutions (des éléments

d’ordre 2),

P2
0 = σ 2

0 = idF2 =
(
A0,B0

)
. (8.2)

Au contraire, U0 n’est pas une involution, mais permet d’en considérer d’autres qui

s’écrivent

P0 ◦σ0 ◦P0 ◦U0 =
(
A0B−1

0 ,B
−1
0

)
, U0 ◦P0 ◦σ0 ◦P0 =

(
A0B0,B−1

0

)
. (8.3)

On trouve dans Aut(F2) des éléments d’ordre 4

P0 ◦σ0 =
(
B−1

0 ,A0

)
, σ0 ◦P0 =

(
B0,A−1

0

)
. (8.4)

Les formules définissant nos automorphismes permettent de calculer

[
U0,σ0 ◦U0 ◦σ0

]=U−1
0 ◦σ0 ◦U−1

0 ◦σ0 ◦U0 ◦σ0 ◦U0 ◦σ0 = idF2 =
(
A0,B0

)
,[

σ0 ◦U0 ◦σ0,U0
]= σ0 ◦U−1

0 ◦σ0 ◦U−1
0 ◦σ0 ◦U0 ◦σ0 ◦U0 = idF2 =

(
A0,B0

)
.

(8.5)

On trouve également un élément d’ordre 3,

σ0 ◦P0 ◦U0 =
(
B0A−1

0 ,A
−1
0

)
. (8.6)

Au contraire de [24, page 169], le terme (U0 ◦P0 ◦σ0) n’est pas d’ordre 3

(
U0 ◦P0 ◦σ0

)3 =
(
B−1

0 A
−1
0 A

−1
0 A0B0,B−1

0 A
−1
0 B

−1
0 A0B0

)
=ψB−1

0 A−1
0

(
A−1

0 ,B
−1
0

)
. (8.7)
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Il faut donc bien faire attention à l’ordre de composition des automorphismes que

l’on utilise ici dans Aut(F2). Avec nos notations, la présentation de Nielsen du groupe

des automorphismes de F2 est donnée comme suit.

Proposition 8.1. Le groupe Aut(F2) a une présentation à trois générateurs P0, σ0,

U0, dont les relations qui le définissent s’écrivent

P2
0 = σ 2

0 =
(
U0 ◦P0 ◦σ0 ◦P0

)2 = 1,(
σ0 ◦P0 ◦U0

)3 = (P0 ◦σ0
)4 = 1,

[
σ0 ◦U0 ◦σ0,U0

]= 1.
(8.8)

Il est possible de vérifier que P0, U0, σ0 sont des automorphismes intérieurs qui

ne sont contenus ni dans le groupe Int(F2) ni dans le groupe restϕ∗(PSL(2,Z)). Si tel

n’était pas le cas, on aurait

P0 =
(
B0,A0

)= (ϕ∗
(
NP
)(
A0
)
,ϕ∗

(
NP
)(
B0
))
,

U0 =
(
A0B0,B0

)= (ϕ∗
(
NU

)(
A0
)
,ϕ∗

(
NU

)(
B0
))
,

σ0 =
(
A−1

0 ,B0
)= (ϕ∗

(
Nσ

)(
A0
)
,ϕ∗

(
Nσ

)(
B0
))
.

(8.9)

Or ces expressions ne permettent de calculer aucune des matrices correspondantes

NP , NU , Nσ dans SL(2,Z). On n’a donc pas affaire à des éléments de Int(F2) qui est

bien strictement plus petit que Aut(F2).
Par contre, on a

P0 = restϕ∗(O)∈ restϕ∗
(
PGL(2,Z)

)
, (8.10)

cependant, une telle appartenance n’est absolument pas assurée pour U0 ni σ0.

Avec ces trois générateurs, on a

ψA0 = P0 ◦σ0 ◦U−1
0 ◦σ0 ◦U−1

0 ◦P0, ψB0 = σ0 ◦U−1
0 ◦σ0 ◦U−1

0 ,

ψ−1
A0
= P0 ◦σ0 ◦U0 ◦σ0 ◦U0 ◦P0, ψ−1

B0
= σ0 ◦U0 ◦σ0 ◦U0,

s = P0 ◦σ0 ◦P0 ◦σ0, t =U0 ◦P0 ◦σ0, o = P0.

(8.11)

8.2. Une autre présentation du groupe Aut(F2). On trouve dans un article de

Meskin [27] une autre présentation du groupe Aut(F2) utilisant cinq générateurs. Pour

la traduire dans nos notations il faut également utiliser la transformation de passage

à l’inverse pour que les produits s’écrivent dans l’ordre imposé par la composition

utilisée ici.

Les cinq générateurs sont les suivants :

ψ−1
A0
=
(
A0,A−1

0 B0A0

)
, ψ−1

B0
=
(
B−1

0 A0B0,B0

)
, P0 =

(
B0,A0

)
,

χ = σ0 ◦P0 =
(
B0,A−1

0

)
, ζ = σ0 ◦t◦σ0 =

(
B0,A−1

0 B0

)
.

(8.12)
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Les relations associées, qui peuvent se vérifier de façon directe sur les couples de

générateurs, sont les suivantes :

χ4 = P2
0 =

(
χ◦P0

)2 = idF2 ,
(
ζ ◦P0

)2 =ψ−1
B0
, χ◦χ =ψ−1

A0
◦ψB0 ◦ζ3,

P0 ◦ψ−1
A0
◦P−1

0 = χ◦ψ−1
A0
◦χ−1 = ζ ◦ψ−1

A0
◦ζ−1 =ψ−1

B0
,

P0 ◦ψ−1
B0
◦P−1

0 =ψ−1
A0
, χ◦ψ−1

B0
◦χ−1 =ψA0 , ζ ◦ψ−1

B0
◦ζ−1 =ψ−1

B0
ψA0 .

(8.13)

Si l’on veut maintenant relier ces générateurs à ceux de Nielsen, on peut utiliser les

valeurs données en (8.11) pour ψ−1
A0

, ψ−1
B0

et t.
En sens inverse, on a

U0 = χ◦P0 ◦ζ ◦χ◦P0 ◦σ0 ◦P0, σ0 = χ◦P0. (8.14)

Ceci montre que P0, χ et σ0 suffisent pour engendrer le groupe Aut(F2). Ceci appa-

raît d’ailleurs simplement à l’observation des relations précédentes qui donnent par

exemple

ψ−1
A0
= (P0 ◦ζ

)2, ψ−1
B0
= (ζ ◦P0

)2. (8.15)

On trouve aussi

o = P0, s = χ2, t = χ◦P0 ◦ζ ◦χ◦P0. (8.16)

Ces égalités peuvent se vérifier directement avec les expressions des automor-

phismes P0, χ, ζ. L’équivalence des présentations précédentes peut se démontrer avec

des transformations de Tietze [19].

8.3. Quelques conséquences. L’article [27] suggère implicitement que l’on a Int(F2)
sous-groupe normal de Aut(F2). Il traite cette question en notant π un morphisme ca-

nonique du groupe Aut(F2) sur GL(2,Z) qui résulte des présentations qu’il donne,

π
(
ψ−1
A0

)
=π

(
ψ−1
B0

)
= 1, π

(
P0
)= p0 =

[
0 1

1 0

]
= I,

π(χ)= x =
[

0 −1

1 0

]
= S, π(ζ)=y =

[
1 −1

1 0

]
= TS.

(8.17)

Il donne pour le noyau de π

Ker(π)= Int
(
F2
)� F2. (8.18)

D’autre part, il fournit pour l’image de π et ce qui en découle cette proposition.

Proposition 8.2. Le groupe GL(2,Z) a la présentation suivante :

GL(2,Z)=
〈
x,y,p0 | p2

0 =
(
p0x

)2 = (p0y
)2 = 1, x2 =y3, x4 = 1

〉
. (8.19)

La comparaison de la présentation donnée ici pour GL(2,Z) avec celle de la

proposition 4.2 est facile avec

I = p0, O = xp0, T =yp0xp0,

p0 = I, x =OI = S, y = TOI = TS. (8.20)
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On peut comparer a ce que l’on trouve dans l’ouvrage de Coxeter et Moser [12, page

85]

R1 = p0 =
[

0 1

1 0

]
, R2 = p0xp0yxp0 =

[−1 0

1 1

]
, R3 = xp0 =

[−1 0

0 1

]
,

p0 = R1, x = R3
(
R1R3

)
R−1

3 , y = R3
(
R1R2

)
R−1

3 .
(8.21)

On peut également comparer avec la présentation que donne de façon naturelle la

classique réduction des formes quadratiques binaires définies entières [32]. Les trois

générateurs privilégiés sont alors[
0 1

1 0

]
= R1,

[−1 0

0 1

]
= R3,

[−1 1

0 1

]
= R3R1R2R3R1. (8.22)

Pour montrer l’équivalence de toutes ces présentations, comme l’équivalence de

celle donnnée par notre proposition 7.4, on peut utiliser des transformations de Tietze

[19], et expliciter tous les passages nécessaires.

On peut également ajouter que l’on a avec les notations de [27]

SL(2,Z)= 〈x,y | x4 = 1, x2 =y3〉. (8.23)

Et au quotient, pour le groupe modulaire projectif,

PSL(2,Z)= 〈x,y | x2 =y3 = 1
〉
. (8.24)

Avec les expressions rappelées avant, dues à [27], on trouve de façon directe que

π
(
ψ−1
A0

)
=π

((
P0 ◦ζ

)2
)
= (p0y

)2 = 1,

π
(
ψ−1
B0

)
=π

((
ζ ◦P0

)2
)
= (yp0

)2 = 1,

π
(
U0
)= [1 −1

0 1

]
, π

(
σ0
)= [−1 0

0 1

]
,

π(t)=π(χ◦P0 ◦ζ ◦χ◦P0
)= xp0yxp0 =

[
1 1

−1 0

]
,

π(s)=π(χ2)= x2 =
[−1 0

0 −1

]
=−1=π(t)3.

(8.25)

On fait ainsi apparaître dans GL(2,Z) un groupe cyclique à 6 éléments dont π(t)
est un générateur. Avec [27], remarquons en passant que dans Aut(F2) il n’y a aucun

élément d’ordre 6.

8.4. Abélianisation et applications. Un lien entre Int(F2) et Aut(F2) est classique-

ment fait [23, 24] par le processus d’abélianisation du groupe F2. Le groupe F2 se trans-

forme par le morphisme correspondant en un groupe commutatif libre, un Z-module

de rang 2 que l’on note additivement, avec a0 projection de A0 et b0 projection de B0,

proj : F2 �→ F2/
[
F2,F2

]� Z2. (8.26)
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Tout automorphisme φ ∈ Aut(F2) se factorise de façon naturelle, grâce à cette

projection de F2 sur Z2, en un automorphisme π ′(φ)∈ GL(2,Z)�Aut(Z2),

π ′(φ)◦proj= proj◦φ. (8.27)

Dans la base (a0,b0), on peut écrire

π ′(φ)
(
a0
)= proj

(
φ
(
A0
))=αaaa0+αbab0,

π ′(φ)
(
b0
)= proj

(
φ
(
B0
))=αaba0+αbbb0.

(8.28)

On n’a aucune peine à vérifier que ceci définit un morphisme de groupes,

φ∈Aut
(
F2
)
�→

[
αaa αab
αba αbb

]
∈ GL(2,Z). (8.29)

Ce morphisme est surjectif [23, page 24]. Ceci se vérifie en utilisant les automor-

phismes particuliers suivants, appelés transformations de Nielsen, qui engendrent

Aut(F2) :

P0 =
(
B0,A0

)
, αA =

(
A−1

0 ,B0

)
= σ0, αB =

(
A0,B−1

0

)
= P0 ◦σ0 ◦P0,

βAB =
(
A0B0,B0

)=U0, βBA =
(
A0,B0A0

)= P0 ◦U0 ◦P0.
(8.30)

On voit sans difficulté que leurs images dans GL(2,Z) par le morphisme d’avant

engendrent ce dernier groupe.

Par ailleurs, il est facile de vérifier, avec la forme particulière des automorphismes

intérieurs, que le noyau Ker de ce morphisme contient le sous-groupe Int(F2). Ceci

donne naissance à un morphisme canonique de groupes

Aut
(
F2
)
/ Int

(
F2
)
�→Aut

(
F2
)
/Ker� GL(2,Z). (8.31)

On peut alors utiliser une présentation de GL(2,Z), des préimages dans Aut(F2) de

ses générateurs, et montrer que les mêmes relations appliquées à ces préimages dans

Aut(F2) donnent des automorphismes intérieurs. C’est faisable comme dans [23, page

25] avec les trois matrices suivantes qui engendrent Aut(F2) :

A= R1R2 =
[

1 1

−1 0

]
, B = R1R3 =

[
0 1

−1 0

]
, C = R1 =

[
0 1

1 0

]
. (8.32)

Ces matrices sont associées à des automorphismes préimages, générateurs de

Aut(F2) :

α=U0 ◦P0 ◦σ0 =
(
B−1

0 ,A0B0

)
, β= P0 ◦σ0 =

(
B−1

0 ,A0

)
, γ = P0 =

(
B0,A0

)
.

(8.33)

Les relations à considérer, qui correspondent à une présentation de GL(2,Z), sont

les suivantes :

A6 = B2A3 = (CA)2 = (CB)2 = C2 = 1. (8.34)
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Les expressions des automorphismes donnent dans Aut(F2), avec les mêmes rela-

tions
α6 =ψ[B0,A0] ∈ Int

(
F2
)
, β2 ◦α3 =ψB0A0 ∈ Int

(
F2
)
,(

γ ◦α)2 = (γ ◦β)2 = γ2 = idF2 ∈ Int
(
F2
)
.

(8.35)

Ceci permet d’établir que tout élément de Ker est un automorphisme intérieur

contenu dans Int(F2). On a donc finalement l’égalité

Ker= Int
(
F2
)
. (8.36)

Elle garantit l’isomorphisme de groupes,

Aut
(
F2
)
/ Int

(
F2
)� GL(2,Z). (8.37)

8.4.1. Traduction dans une base particulière. On traduit les expressions vues

avant, en changeant de base pour commodité, ce qui revient à travailler à un auto-

morphisme intérieur près de GL(2,Z) :

s
(
A0
)= SA0S−1 =A−1

0 , s
(
B0
)= SB0S−1 = B−1

0 . (8.38)

Dans la base (b0,−a0) on trouve la matrice suivante, comparable à celle donnée

avant par π :

π ′(s)
(
b0
)=−b0, π ′(s)

(−a0
)=−(−a0

)
,

π ′(s)=
[−1 0

0 −1

]
=π(s). (8.39)

On a vu aussi que

t
(
A0
)= TA0T−1 = B−1

0 , t
(
B0
)= TB0T−1 =A0B0. (8.40)

Ceci se traduit dans la même base par la même matrice que π ,

π ′(t)
(
b0
)= b0−

(−a0
)
, π ′(t)

(−a0
)= b0,

π ′(t)=
[

1 1

−1 0

]
=π(t). (8.41)

Avec P0, on trouve au contraire que

π ′
(
P0
)(
b0
)=−(−a0

)
, π ′

(
P0
)(−a0

)=−b0,

π ′
(
P0
)= [ 0 −1

−1 0

]
=−π(P0

)=π(sP0
)
.

(8.42)

Avec U0, on obtient également la même matrice que π ,

π ′
(
U0
)(
b0
)= b0, π ′

(
U0
)(−a0

)=−b0+
(−a0

)
,

π ′
(
U0
)= [1 −1

0 1

]
=π(U0

)
.

(8.43)
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Avec σ0, au contraire,

π ′
(
σ0
)(
b0
)= b0, π ′

(
σ0
)(−a0

)=−(−a0
)
,

π ′
(
σ0
)= [1 0

0 −1

]
=−π(σ0

)=π(sσ0
)
.

(8.44)

Ces relations permettent de constater que l’on a en fait :

Proposition 8.3. L’automorphisme s vérifie les égalités

P0 ◦s = s ◦P0, σ0 ◦s = s ◦σ0. (8.45)

Et ces deux automorphismes forment avec U0 un système de générateurs du groupe

Aut(F2).

D’autre part, pour toutφ∈Aut(F2), on peut introduire sur Aut(F2) un indice défini

par

εdet(φ)= det
(
π ′(φ)

)
. (8.46)

Il est évident par les formules données pour π ′ que εdet est un morphisme de

groupes surjectif à valeurs dans le groupe multiplicatif à deux éléments {±1}, centre

de GL(2,Z). Ceci permet de donner la liaison entre π et π ′ résultant des expressions

précédentes, et donc une interprétation du morphisme utilisé par [27].

Proposition 8.4. Pour tout φ∈Aut(F2), on a

π(φ)= εdet(φ)π ′(φ)∈ GL(2,Z). (8.47)

Pour tout automorphisme intérieur φ ∈ Int(F2), on a la condition εdet(φ) = 1. Ceci

garantit aussi que

Ker(π)= Ker
(
π ′
)= Int

(
F2
)
. (8.48)

Pour tout φ∈ Int(F2), on a π ′(φ)= 1, d’où εdet(φ)= 1. Ceci impose que

Ker
(
π ′
)= Int

(
F2
)⊂ Ker(π). (8.49)

Inversement, pour φ∈ Ker(π), deux cas sont possibles :

π ′(φ)= εdet(φ)= 1 soit φ∈ Ker
(
π ′
)
,

π ′(φ)= εdet(φ)=−1= s soit φ∈ s ◦Ker
(
π ′
)
.

(8.50)

Mais ce dernier cas est contradictoire, car le symbole de s comme celui de tout

élément de Ker(π ′) vaut 1. Seul le premier cas est donc vrai, imposant

Ker(π)⊂ Ker
(
π ′
)= Int

(
F2
)
. (8.51)

On en déduit l’égalité des noyaux mentionnée dans la proposition 8.4.

Remarquons que maintenant on comprend pourquoi l’indice εdet s’introduit dans la

présentation donnée par [27]. Ceci est lié à la propriété suivante sur les générateurs :

det
(
p0
)=−1, det(x)= 1, det(y)= 1. (8.52)



236 SERGE PERRINE

Au contraire, dans la présentation de [12] on a

det
(
R1
)= det

(
R2
)= det

(
R3
)=−1. (8.53)

On peut également dire que les deux représentations π et π ′ du groupe Aut(F2)
dans le Z-module Z2 ne sont pas équivalentes.

8.4.2. Trois applications. On a trois conséquences classiques sur les éléments pri-

mitifs de F2, la détermination des IA-automorphismes de F2, et le calcul du centre de

Aut(F2).
(i) Un élément A de F2 est dit primitif si et seulement s’il existe un autre élément

B ∈ F2 tel que (A,B) est une système de générateurs de F2. On dit alors que A et

B sont des éléments primitifs associés. La caractérisation des éléments primitifs est

importante pour différents problèmes de topologie [6, 31]. Les travaux de Cohn autour

de l’arbre des solutions de l’équation de Markoff ont permis de faire avancer cette

question initialement résolue par Whitehead [16], [23, page 107], [24, page 166].

Il est clair, par ce qui précède, que deux éléments primitifs de F2 sont conjugués

par un automorphisme intérieur si et seulement si leurs images par π ′ sont égales.

Ceci a été établi par Nielsen en 1918.

(ii) Les IA-automorphismes de F2 sont caractérisés par leur équivalence modulo

[F2,F2] à l’identité de F2. Ils constituent d’après [30] ou [23, page 24] un sous-groupe

de Aut(F2) isomorphe à Int(F2). Or ceci est évident, car on a pour un tel IA-auto-

morphisme φ
π ′(φ)= 1. (8.54)

Et on a vu avant que l’on a

Ker
(
π ′
)= Int

(
F2
)� F2. (8.55)

(iii) Considérons φ ∈ C(Aut(F2)) dans le centre du groupe des automorphismes.

On obtient du fait de la surjectivité de π ′ que

π ′(φ)∈ C(GL(2,Z)
)= {±1}. (8.56)

Ceci donne

φ∈ Int
(
F2
)∪(s ◦ Int

(
F2
))
. (8.57)

Avec l’isomorphisme ψ∗ et ce qui a été vu avant sur le centre de Int(F2), le cas

φ∈ Int(F2) se réduit à φ= idF2 .

Le cas φ ∈ s ◦ Int(F2) permet d’écrire φ = s ◦ψ∗(W(A0,B0)) où W est un mot ré-

duit. L’expression de s permet aussi d’écrire φ = ψ∗(W(A−1
0 ,B

−1
0 ))◦ s. Et puisque φ

commute avec s il reste que

ψ∗
(
W
(
A0,B0

))=ψ∗(W(A−1
0 ,B

−1
0

))
. (8.58)

Comme ψ∗ est un isomorphisme, il reste dans F2 que

W
(
A0,B0

)=W(A−1
0 ,B

−1
0

)
. (8.59)
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Or cette égalité n’est possible que si W est le mot vide, donnant W(A0,B0) = 1, et

donc φ= s. Mais comme il est facile de vérifier que s et t ne permutent pas, ce cas est

impossible. On vient donc d’établir (voir [23, page 24]) la proposition 8.5.

Proposition 8.5. Le centre du groupe Aut(F2) est réduit à l’unité

C
(
Aut

(
F2
))= { idF2

}
. (8.60)

Ceci donne un isomorphisme de groupes, associant à tout automorphisme de F2 l’auto-

morphisme intérieur qu’il définit dans le groupe Int(Aut(F2)),

φ∈Aut
(
F2
)
�→φ◦∗◦φ−1 ∈ Int

(
Aut

(
F2
))
. (8.61)

Le théorème de Dyer et Formanek [23, page 24] complète ce résultat en indiquant

que l’image du morphisme construit par cette proposition n’est autre que tout le

groupe Aut(Aut(F2)). La démonstration s’appuie sur un théorème de Burnside carac-

térisant les cas où Aut(Aut(F2))�Aut(F2).

8.5. Questions de normalité. La question que l’on a développée quant au fait que

Int(F2) soit normal dans Aut(F2) est en réalité décomposable en trois questions inter-

médiaires issues de la tour de groupes d’automorphismes donnée par la proposition

7.3. Ces questions consistent à savoir si les inclusions de groupes de cette proposition

correspondent à la relation de sous-groupe normal.

Le groupe Int(F2) est normal dans tous les groupes intermédiaires entre lui et

Aut(F2). On va également tirer quelques conclusions de cette remarque.

8.5.1. Première question. Elle a été résolue de manière directe et donne

Int
(
F2
)

est normal dans restϕ∗
(
PSL(2,Z)

)
. (8.62)

Cette propriété résulte de la proposition 5.2 établissant que F2 = [Γ ,Γ] est un sous-

groupe normal de Γ = PSL(2,Z). Pour tout V ∈ F2 et tout N ∈ PSL(2,Z), on peut en

effet écrire

restϕ∗
(
N
)◦ Int(V)◦(restϕ∗

(
N
))−1 = Int

((
restϕ∗

(
N
))(
V
))∈ Int

(
F2
)
. (8.63)

Le groupe quotient correspondant a été calculé par le théorème 4.1,

restϕ∗
(
PSL(2,Z)

)
/ Int

(
F2
)� Γ/[Γ ,Γ]� C6. (8.64)

On a d’ailleurs trouvé dans ce qui précède des représentants privilégiés dans les

classes d’équivalence correspondantes à ce quotient. Ce sont les termes π(t)k où

k= 0,1, . . . ,5.

Une vérification directe de cette dernière propriété est faisable en observant que

l’on a

t6 =ψB−1
0 A−1

0 B0A0
=ψ[B0,A0] =ψK =ψ−1

B0
◦ψ−1

A0
◦ψB0 ◦ψA0 =

[
ψB0 ,ψA0

]
. (8.65)
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Elle montre que tout élément de restϕ∗(PSL(2,Z)) peut être écrit sous la forme

ψN ◦tk = tk ◦ψN′ avec k= 0,1, . . . ,5, N,N′ ∈ F2. (8.66)

Le lien entre N et N′ est donné par l’égalité facile à vérifier de façon directe pour

tout N ∈ F2

t◦ψN′ ◦t−1 =ψt(N′). (8.67)

Une vérification directe montre en particulier que l’on a

s =ψA0B0 ◦t3. (8.68)

Les propriétés précédentes se résument comme suit [2].

Proposition 8.6. Le groupe restϕ∗(PSL(2,Z)) est une extension de Int(F2) par C6,

mais non un produit semi-direct de Int(F2) par C6. Cette extension est équivalente à la

donnée d’une suite exacte,

1 �→ F2 �→ PSL(2,Z) �→ C6 �→ 1. (8.69)

En effet on n’a pas t6 = idF2 . De sorte que l’on ne peut pas plonger C6 dans le groupe

restϕ∗(PSL(2,Z)).
Supposons, en complément de ce qui précède, que l’on ait une égalité

ψN1 ◦tk1 =ψN2 ◦tk2 . (8.70)

Il en résulte que

tk2−k1 = (ψN1

)−1 ◦(ψN2

)=ψN−1
1 N2

∈ Int
(
F2
)
. (8.71)

Or en appliquant le morphisme π ou π ′, cette condition n’est possible qu’avec

k1 ≡ k2(mod6). (8.72)

Si l’on a supposé comme avant que l’on a k1,k2 ∈ {0,1, . . . ,5}, il en résulte que

k1 = k2. (8.73)

D’où en simplifiant

ψN1 =ψN2 . (8.74)

Et puisque ψ∗ est un isomorphisme,

N1 =N2. (8.75)

Les vérifications complémentaires étant évidentes, on a donc établi ce théorème.

Théorème 8.7. Tout élément de restϕ∗(PSL(2,Z)) peut être écrit de façon unique

sous la forme

ψN ◦tk = tk ◦ψt−k(N) avec k= 0,1, . . . ,5, N ∈ F2. (8.76)
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Ce résultat peut être traduit sur le groupe Γ = PSL(2,Z) et son sous-groupe [Γ ,Γ]�
F2 par un résultat de suffixation qui résoud une question que l’on a posée antérieure-

ment.

Proposition 8.8. Tout élément de Γ = PSL(2,Z) s’écrit sous forme d’un produit de

forme W(A0,B0)Wk(S,T) où

W
(
A0,B0

)∈ [Γ ,Γ],
Wk

(
S,T

)∈ {1,S,ST ,STS,STST ,STSTS} (avec k= 0,1, . . . ,5).
(8.77)

De plus, cette décomposition est unique.

En appliquant en effet restϕ∗, l’image de tout élément noté V ∈ Γ s’écrit, par le

théorème 8.7,

restϕ∗
(
V
)=ψN ◦tk avec k= 0,1, . . . ,5, N ∈ F2. (8.78)

Or on a

1= t0, s =ψA0B0 ◦t3, s ◦t =ψA0B0 ◦t4,
s ◦t◦s =ψA0B0 ◦t4 ◦ψA0B0 ◦t3 =ψA0B0t4(A0B0) ◦t7

=ψA0B0t4(A0B0)B−1
0 A−1

0 B0A0
◦t,

s ◦t◦s ◦t =ψA0B0t4(A0B0)B−1
0 A−1

0 B0A0
◦t2,

s ◦t◦s ◦t◦s =ψA0B0t4(A0B0)B−1
0 A−1

0 B0A0
◦t2 ◦ψA0B0 ◦t3

=ψA0B0t4(A0B0)B−1
0 A−1

0 B0A0t2(A0B0) ◦t5.

(8.79)

Pour chacun des mots Wk proposés, on a donc trouvé un mot Vk(A0,B0) ∈ F2 qui

permet d’écrire, en réindexant correctement les mots Wk,

tk =ψVk(A0,B0)◦Wk(s,t). (8.80)

Ceci donne

restϕ∗
(
V
)=ψN ◦ψVk(A0,B0) ◦Wk(s,t)= restϕ∗

(
NVk

(
A0,B0

)
Wf

(
S,T

))
. (8.81)

Par injectivité de restϕ∗ il reste seulement l’unique décomposition recherchée, où

NVk(A0,B0)∈ [Γ ,Γ]
V =NVk

(
A0,B0

)
Wk

(
S,T

)
. (8.82)

Naturellement dans PSL(2,Z), on a également un résultat de préfixation obtenu par

les mêmes méthodes, écrivant V sous une unique forme,

Wk
(
S,T

)
W ′(A0,B0

)
. (8.83)

D’autre part, en application de la proposition 5.2 on peut remonter à SL(2,Z) ces

résultats de préfixation et de suffixation en introduisant des signes.
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8.5.2. Seconde question. La seconde question a aussi été résolue de manière di-

recte. Elle donne restϕ∗(PSL(2,Z)) est normal dans restϕ∗(PGL(2,Z)).
Cette propriété a pour conséquence que Int(F2) est aussi normal dans le groupe

restϕ∗(PGL(2,Z)). On peut donc reprendre l’approche du paragraphe précédent en

utilisant cette fois comme générateurs du quotient π(t) et π(o)=π(P0)= p0 = I.
Une relation non réductible entre ces éléments se remonterait dans Aut(F2) en une

appartenance d’un élément écrit avec t et o à Int(F2), et remontant par restϕ∗, en l’ap-

partenance d’un élément écrit avec T et O à [SL(2,Z),SL(2,Z)]. Or ce groupe, contenu

dans SL(2,Z), ne contient que des matrices de déterminant 1, alors que O a un dé-

terminant égal à −1. Comme p2
0 = 1, on trouverait une contradiction si le nombre de

termes π(o) n’est pas pair.

Cette remarque conduit à se pencher sur le terme π(t)π(o). Il vérifie par un calcul

direct l’égalité (
π(t)π(o)

)2 = 1. (8.84)

Et plus généralement, en regardant de près le groupe engendré par ces deux élé-

ments, on voit que l’on obtient un groupe diédral D6 à 12 éléments [12, page 6] et [19,

page 36]. On a donc

restϕ∗
(
PGL(2,Z)

)
/ Int

(
F2
)� PGL(2,Z)/

[
PSL(2,Z),PSL(2,Z)

]�D6. (8.85)

Ceci s’énonce aussi sous la forme suivante.

Proposition 8.9. Le groupe restϕ∗(PGL(2,Z)) est une extension de Int(F2) par

D6. Cette extension est équivalente à la donnée d’une suite exacte,

1 �→ F2 �→ PGL(2,Z) �→D6 �→ 1. (8.86)

Quelques nouvelles questions découlent de ce calcul. Par exemple, on a[
PSL(2,Z),PSL(2,Z)

]⊂ [PGL(2,Z),PGL(2,Z)
]
. (8.87)

Les questions sont les suivantes : déterminer [PGL(2,Z),PGL(2,Z)], déterminer [GL

(2,Z),GL(2,Z)] et comparer à [PGL(2,Z),PGL(2,Z)].
On ne détaille pas ici, sauf à dire que [12, page 86] énonce que le commutateur

[GL(2,Z),GL(2,Z)] possède la présentation suivante à trois générateurs :〈
rs,rw,−1 | r 3

s = r 3
w =−1, (−1)2 = 1

〉
. (8.88)

Les générateurs s’écrivent en fonction de matrices déjà rencontrées,

rs = R1R2 = [I,T]=
[

1 1

−1 0

]
, rw = R3R2R1R3 =

[
I,T−1]= [ 0 1

−1 1

]
. (8.89)

Les deux matrices I et T engendrant GL(2,Z), on en déduit que rs et rw engendrent

[GL(2,Z),GL(2,Z)]. La présentation que l’on vient de donner pour ce dernier groupe

peut se déduire de celle de GL(2,Z) en fonction de I et T .

En procédant par la même méthode que celle qui a conduit au théorème 8.7, on

obtient maintenant ce théorème.
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Théorème 8.10. Tout élément de restϕ∗(PGL(2,Z)) peut être écrit de façon unique

sous la forme

ψN ◦oh ◦tk avec h= 0,1; k= 0,1, . . . ,5; N ∈ F2. (8.90)

Un élément quelconque W ∈ PGL(2,Z) étant donné, on peut considérer le terme

π
(
restϕ∗

(
W
))∈ restϕ∗

(
PGL(2,Z)

)
/ Int

(
F2
)�D6. (8.91)

Par ce qui précède, il est décomposable dans D6 comme un mot en π(o) et π(t).
En remontant au groupe de départ, on trouve pour W une décomposition de la forme

ψN1 ◦w(o,t). (8.92)

Il est maintenant possible d’utiliser une remarque faite, en écrivant

(
π
(
t−1)π(o))2 = 1. (8.93)

Ceci permet d’écrire

t−1◦o◦t−1 ◦o =ψN2 avec N2 ∈ F2. (8.94)

En fait, l’expression des automorphismes t et o montre que ψN2 = idF2 . On obtient

donc simplement que

o◦t◦o = t−1. (8.95)

Cette expression permet de ramener dans le terme w(o,t) l’automorphisme o en

tête, avec une puissance égale à 0 ou 1, suivi seulement d’une puissance de t. Pour ce

dernier terme, on peut réduire sa puissance en utilisant la formule déjà vue en (8.65).

Il ne reste qu’à montrer que l’on a, pour tout N3 ∈ F2

o◦ψN3 =ψ3N ◦o, (8.96)

où 3N ∈ F2 est obtenu à partir de N3 en permutant les deux termes A0 et B0. Ceci

donne la décomposition recherchée. Son unicité est évidente en appliquant d’abord

π et concluant dans D6 à l’unicité de h et k dans les hypothèses faites. L’unicité de N
en résulte.

On en déduit un nouveau résultat de suffixation, cette fois pour le groupe projectif

unimodulaire.

Proposition 8.11. Tout élément de PGL(2,Z) s’écrit sous forme d’un produit de

forme W(A0,B0)O
hWk(S,T) où

h∈ {0,1}, W
(
A0,B0

)∈ [Γ ,Γ],
Wk

(
S,T

)∈ {1,S,ST ,STS,STST ,STSTS} (avec k= 0,1, . . . ,5).
(8.97)

De plus cette décomposition est unique.
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On a d’ailleurs quelques égalités complémentaires qui expliquent pourquoi au quo-

tient par [Γ ,Γ] on trouve le groupe D6,

SO =OS3, TO =OT−1. (8.98)

La proposition 8.11 permet d’énoncer le théorème suivant :

Théorème 8.12. Toute matrice de GL(2,Z) possède une unique décomposition de

la forme suivante :

±W(A0,B0
)
OhWk(S,T). (8.99)

Où

h∈ {0,1}, W
(
A0,B0

)∈ [SL(2,Z),SL(2,Z)
]
,

Wk(S,T)∈ {1,S,ST ,STS,STST ,STSTS} (avec k= 0,1, . . . ,5).
(8.100)

De plus, la condition h= 0 caractérise les matrices du sous-groupe SL(2,Z).

La démonstration de ce résultat de suffixation est évidente. On a aussi un résultat

de préfixation équivalent.

Ces résultats donnent un éclairage particulier au théorème 4.1 et à la proposition

5.2 énoncés auparavant. Ils permettent d’envisager avec [12, page 86] le calcul explicite

du groupe des commutateurs de PGL(2,Z) :[
GL(2,Z),GL(2,Z)

]
/{±1} � [PGL(2,Z),PGL(2,Z)

]= 〈rs,rw | rs3 = rw3 = 1
〉
. (8.101)

8.5.3. Troisième question. La troisième question est de savoir si le sous-groupe

image restϕ∗(PGL(2,Z)) est normal dans Aut(F2). Elle est plus délicate. Pour la ré-

soudre, on peut remarquer que si la réponse était positive, on aurait aussi par ce que

l’on vient de voir restϕ∗(PSL(2,Z)) normal dans Aut(F2). Or pour étudier cette der-

nière question, on peut considérer les six automorphismes P0 ◦ s ◦P−1
0 , P0 ◦ st ◦P−1

0 ,

U0 ◦ s ◦U−1
0 , U0 ◦ st ◦U−1

0 , σ0 ◦ s ◦σ−1
0 , σ0 ◦ st ◦σ−1

0 . Il suffit qu’ils puissent être dé-

composés comme des mots en s et t pour que l’on soit certain qu’ils font partie de

restϕ∗(PSL(2,Z)). La conséquence serait alors que ce dernier groupe est normal dans

Aut(F2).
On calcule explicitement certains de ces automorphismes grâce à l’identification

avec les couples de générateurs donnée par la proposition 7.1. On trouve d’abord

trois automorphismes d’ordre 2 comme s qui se calculent aisément,

P0 ◦s ◦P−1
0 =

(
A−1

0 ,B
−1
0

)
= s,

U0 ◦s ◦U−1
0 =

(
B−1

0 A
−1
0 B0,B−1

0

)
= t◦s ◦t−1,

σ0 ◦s ◦σ−1
0 =

(
A−1

0 ,B
−1
0

)
= s.

(8.102)

On a ensuite trois automorphismes d’ordre 3 comme s◦t, plus durs à décomposer

sur s et t pour les deux derniers d’entre eux,

P0 ◦s ◦t◦P−1
0 =

(
B−1

0 A
−1
0 ,A0

)
= s ◦t−1,

U0 ◦s ◦t◦U−1
0 =

(
B2

0A0B0,B−1
0 A

−1
0 B

−1
0

)
,

σ0 ◦s ◦t◦σ−1
0 =

(
B0,B−1

0 A
−1
0

)
.

(8.103)
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En réalité, ils ne sont pas décomposables sur s et t. On le montre sur le dernier en

remarquant que l’on devrait avoir avec la proposition 8.11

σ0 ◦t◦σ−1
0 = ζ = tk ◦ψN. (8.104)

En appliquant π , sachant que π ′ fournirait un résultat équivalent, ceci donne

π(ζ)=y =
[

1 −1

1 0

]
=π(t)k =

[
1 1

−1 0

]k
avec k= 0,1, . . . ,5. (8.105)

Il suffit d’essayer les diverses possibilités pour k pour voir qu’une telle relation est

impossible. En particulier, on a

σ0 ◦s ◦t◦σ−1
0 = s ◦(σ ◦t◦σ−1) ∉ restϕ∗

(
PSL(2,Z)

)
. (8.106)

De même en appliquant π , on a

π
(
U0 ◦t◦U−1

0

)
=
[

2 3

−1 −1

]
∉
{
π(t)k | k= 0,1, . . . ,5

}
. (8.107)

On en déduit que

U0 ◦s ◦t◦U−1
0 ∉ restϕ∗

(
PSL(2,Z)

)
. (8.108)

Ceci établit que le sous-groupe restϕ∗(PSL(2,Z)) de Aut(F2) n’est pas normal dans

ce groupe. A fortiori, le sous-groupe restϕ∗(PGL(2,Z)) n’est pas normal dans Aut(F2).
Il n’en demeure pas moins que le groupe restϕ∗(PGL(2,Z)) opère dans le groupe

Aut(F2). On va maintenant examiner ce que l’on peut dire sur les orbites correspon-

dantes, et ceci va nous ramener directement à l’arbre de Markoff.

9. L’interprétation algébrique de l’arbre de Markoff. On note ici ∆ le sous-groupe

restϕ∗(PGL(2,Z)). Il permet d’introduire deux relations d’équivalence entre les élé-

ments φ1 et φ2 de Aut(F2),

φ1�∆φ2 ⇐⇒φ1 ◦φ−1
2 ∈∆⇐⇒φ2 ∈∆φ1,

φ1∆�φ2 ⇐⇒φ−1
1 ◦φ2 ∈∆⇐⇒φ2 ∈φ1∆.

(9.1)

On définit ainsi un quotient à droite, composé des classes à droite ∆φ1, où φ1 ∈
Aut(F2),

Aut
(
F2
)
/�∆ =

(
Aut

(
F2
)
/∆
)
d. (9.2)

On a de même un quotient à gauche, composé des classes à gauche φ1∆, où φ1 ∈
Aut(F2),

Aut
(
F2
)
/∆�=

(
Aut

(
F2
)
/∆
)
g. (9.3)

Les deux ensembles que l’on vient de définir sont équipotents par la bijection

∆φ1 ∈
(
Aut

(
F2
)
/∆
)
d �→φ−1

1 ∆∈ (Aut
(
F2
)
/∆
)
g. (9.4)

Néanmoins, ces deux ensembles sont différents car ∆ n’est pas normal dans le

groupe Aut(F2).
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9.1. Construction de l’arbre complet de l’équation de Markoff. Avec ce que l’on a

vu avant, l’arbre complet des solutions de l’équation de Markoff est accessible grâce

à l’application surjective suivante :

Π : (A,B)∈Aut
(
F2
)
�→ ((

tr
(
B−1)/3),(tr(A)/3

)
,
(
tr
(
B−1A−1)/3))∈ (N−{0})3. (9.5)

Le théorème 6.5 que l’on a démontré s’écrit maintenant

Π
(
φ1
)=Π(φ2

)⇐⇒∃N ∈ GL(2,Z) tel que φ1 ◦φ−1
2 = restϕ∗

(
N
)∈∆. (9.6)

Il peut être traduit par le résultat suivant.

Théorème 9.1. Le sous-groupe ∆= restϕ∗(PGL(2,Z)) de Aut(F2) n’est pas normal

dans ce groupe. Le quotient à droite Aut(F2)/�∆ est équipotent par une bijection Π
à l’ensemble des sommets de l’arbre complet des solutions de l’équation de Markoff.

Cette bijection factorise l’application Π du groupe Aut(F2) dans cet arbre grâce à la

projection canonique pc du groupe Aut(F2) sur le quotient Aut(F2)/�∆ :

Π=Π◦pc. (9.7)

La question qui se pose alors est de savoir comment se contruisent les arêtes de

l’arbre complet sur cet ensemble quotient à droite.

9.1.1. De nouveaux automorphismes. Pour construire l’arbre, on a vu que l’on uti-

lise des involutions que l’on a notéesXφ : (A,B)→(A−1,ABA), Yφ : (A,B)→(BAB,B−1),
Zφ : (A,B)→ (A−1,B).

Dans une telle écriture, (A,B) désigne un couple de générateurs du groupe F2. On

peut considérer qu’il s’agit d’un automorphisme écrit dans le système de générateurs

de référence (A0,B0) sous la forme

φ= (A,B)∈Aut
(
F2
)
. (9.8)

Plus précisément, en introduisant les autres transformations involutives,

X0 :
(
A0,B0

)
�→ (

A−1
0 ,A0B0A0

)
,

Y0 :
(
A0,B0

)
�→ (

B0A0B0,B−1
0

)
,

Z0 :
(
A0,B0

)
�→ (

A−1
0 ,B0

)
.

(9.9)

On obtient les expressions

Xφ =φ◦X0 ◦φ−1, Yφ =φ◦Y0 ◦φ−1, Zφ =φ◦Z0 ◦φ−1. (9.10)

Comme ces transformations dépendent de φ, on les note plus précisement ici

Xφ =X(A,B) =φ◦X0 ◦φ−1,

Yφ = Y(A,B) =φ◦Y0 ◦φ−1,

Zφ = Z(A,B) =φ◦Z0 ◦φ−1.

(9.11)
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Ces égalités mettent en avant l’action dans Aut(F2) du groupe des automorphismes

intérieurs Int(Aut(F2)). On a vu avant, avec la proposition 8.5, que ce dernier groupe

est isomorphe à Aut(F2).
Pour mieux décrire Xφ, Yφ et Zφ, on utilise la présentation de Aut(F2) construite

avec les éléments P0, U0, σ0. Pour commodité, on utilise au lieu de U0 l’élément d’ordre

3 suivant :

v0 =U0 ◦σ0 ◦P0 =
(
B0,B−1

0 A
−1
0

)
. (9.12)

Au moyen de transformations de Tietze [19], on pourrait d’ailleurs écrire une pré-

sentation de Aut(F2) utilisant les trois générateurs σ0, P0, v0, mais on n’insiste pas

sur ce point. On note comme ci-dessus

P = Pφ =φ◦P0 ◦φ−1 : (A,B) �→ (B,A),
v = vφ =φ◦v0 ◦φ−1 : (A,B) �→ (

B,B−1A−1),
σ = σφ =φ◦σ0 ◦φ−1 : (A,B) �→ (

A−1,B
)
.

(9.13)

Tout automorphisme Φ : (A,B) → (Φ(A),Φ(B)) permet de définir un chemin sur

l’arbre de Markoff :

Φ̃ :Π(A,B)= (m,m1,m2
)
�→Π(Φ(A),Φ(B))= (mΦ,mΦ

1 ,m
Φ
2

)
. (9.14)

Et les trois automorphismes que l’on vient d’introduire définissent

σ̃ :Π(A,B)= (m,m1,m2
)
�→Π(σ(A),σ(B))= (m,m1,3mm1−m2

)
,

P̃ :Π(A,B)= (m,m1,m2
)
�→Π(P(A),P(B))= (m1,m,m2

)
,

ṽ :Π(A,B)= (m,m1,m2
)
�→Π(v(A),v(B))= (m2,m,m1

)
.

(9.15)

Les deux transformations P̃ et ṽ engendrent un groupe de permutations de trois

éléments, comme le montre le diagramme suivant où l’on voit réapparaître le groupe

cyclique C6 :

(
m,m1,m2

) P̃ (
m1,m,m2

)
ṽ(

m1,m2,m
)ṽ (

m2,m1,m
)

ṽ(
m2,m,m1

)ṽ (
m,m2,m1

)
P̃

(9.16)

Ceci permet de calculer

P̃ ◦ ṽ ◦ ṽ ◦ P̃ ◦ σ̃ ◦ ṽ ◦ ṽ :
(
m,m1,m2

)
�→ (

3m1m2−m,m1,m2
)
,

ṽ ◦ ṽ ◦ P̃ ◦ σ̃ ◦ ṽ ◦ ṽ ◦ P̃ :
(
m,m1,m2

)
�→ (

m,3mm2−m1,m2
)
,

σ̃ :
(
m,m1,m2

)
�→ (

m,m1,3mm1−m2
)
.

(9.17)
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Ces transformations conduisent, par des expressions analogues à celles que l’on

vient de mettre en évidence, à calculer certains des automorphismes que l’on vient de

mentionner. On obtient en effet cette proposition.

Proposition 9.2. On a les égalités suivantes, définissant des automorphismes in-

volutifs

Xφ =X(A,B) = v ◦v ◦P ◦σ ◦v ◦v ◦P : (A,B) �→ (
A−1,ABA

)
,

Yφ = Y(A,B) = P ◦v ◦v ◦P ◦σ ◦v ◦v : (A,B) �→ (
BAB,B−1),

Zφ = Z(A,B) = σ : (A,B) �→ (
A−1,B

)
.

(9.18)

De plus, pour les triplets associés sur l’arbre complet des solutions de l’équation de

Markoff,

X̃φ :
(
m,m1,m2

)
�→ (

3m1m2−m,m1,m2
)
,

Ỹφ :
(
m,m1,m2

)
�→ (

m,3mm2−m1,m2
)
,

Z̃φ :
(
m,m1,m2

)
�→ (

m,m1,3mm1−m2
)
.

(9.19)

9.1.2. Premier processus de construction des couples de générateurs de F2. Par-

tant de la base (A0,B0) de F2, on applique comme précédemment X(A0,B0), Y(A0,B0),

Z(A0,B0). Ceci donne respectivement

X0 =
[ 2 −1

−1 1

]
,
[

1 2

2 5

], Y0 =
[ 1 −2

−2 5

]
,
[

2 1

1 1

],
Z0 =

[ 2 −1

−1 1

]
,
[

1 −1

−1 2

].
(9.20)

À partir de ces couples, on applique les transformations involutives X, Y ou Z qui

correspondent aux couples obtenus. C’est une façon de procéder qui donne six nou-

veaux couples. Par exemple, en notant (A1,B1) le premier des trois derniers couples

cités, on applique les deux transformations suivantes :

Y(A1,B1) :
(
A1,B1

)
�→

(
B1A1B1,B−1

1

)
=
[2 5

5 13

]
,
[

5 −2

−2 1

],
Z(A1,B1) :

(
A1,B1

)
�→

(
A−1

1 ,B1

)
=
[1 1

1 2

]
,
[

1 2

2 5

].
(9.21)

Le fait que X(A1,B1) ne donne pas de nouveau triplet à partir de (A1,B1), et n’est

donc pas appliqué, est général. En effet, il est facile de vérifier le résultat suivant :

Proposition 9.3. Pour tout automorphisme (A,B) de Aut(F2), on a

(A,B)
X(A,B)
������������������������������������������������������������������������������������������������������→ (

A−1,ABA
) X(A−1 ,ABA)
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→ (A,B),

(A,B)
Y(A,B)
��������������������������������������������������������������������������������������������������→ (

BAB,B−1) Y(BAB,B−1)
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→ (A,B),

(A,B)
Z(A,B)
���������������������������������������������������������������������������������������������������→ (

A−1,B
) Z(A−1 ,B)
������������������������������������������������������������������������������������������������������������������������������������������������������→ (A,B).

(9.22)
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Avec les notations introduites avant, on a sur l’exemple considéré

φ=X0 =
(
A1,B1

)
. (9.23)

Ceci donne

Y(A1,B1) =φ◦Y0 ◦φ−1 =X0 ◦Y0 ◦X0,

Z(A1,B1) =φ◦Z0 ◦φ−1 =X0 ◦Z0 ◦X0.
(9.24)

Comme on applique ces transformations au terme X0, les résultats obtenus sont

respectivement

(
B1A1B1,B−1

1

)
=X0 ◦Y0,

(
A−1

1 ,B1

)
=X0 ◦Z0. (9.25)

En poursuivant par récurrence, et compte tenu de la proposition 8.2, on fait appa-

raître ainsi tous les chemins possibles ch(X0,Y0,Z0). On obtient donc tous les mots ré-

duits [5, page 26] écrits avec ces trois involutions, identifiables à des automorphismes

particuliers de Aut(F2). Ce procédé construit pas à pas une bijection Π de certains

couples de générateurs de F2 sur l’arbre de Markoff complet tel qu’il a été lui même

construit précédemment avec les transformations X̃φ, Ỹφ, and Z̃φ données en (9.19).

Il en résulte en particulier que tous les mots réduits sont différents, de sorte qu’au-

cune relation non triviale n’existe entre ces chemins. Ceci permet d’énoncer ce théo-

rème.

Théorème 9.4. Dans le groupe Aut(F2), les chemins ch(X0,Y0,Z0) constituent pour

la composition un sous-groupe propre, le sous-groupe des chemins (ou groupe du tri-

angle), dont une présentation est donnée par

T3 =
〈
X0,Y0,Z0 |X2

0 = Y 2
0 = Z2

0 = idF2

〉� C2∗C2∗C2. (9.26)

Ce groupe ne donne pas tous les systèmes de générateurs de F2, mais seulement ceux

qui se déduisent de la base (A0,B0) par un tel chemin. La restriction de l’application Π
à ce groupe, ou respectivement à l’ensemble des systèmes de générateurs associés, est

bijective, à valeurs dans l’arbre de Markoff complet.

Pour vérifier que le groupe T3 est propre dans Aut(F2), considérons en effet que

l’on a avec un chemin réduit

P0 = ch
(
X0,Y0,Z0

)∈Aut
(
F2
)
. (9.27)

En composant avec la base idF2 = (A0,B0) et examinant le triplet qui en résulte par

Π, le chemin ne devrait comprendre aucun terme X0, Y0, Z0. D’où une contradiction

qui complète la démonstration de la proposition 9.3 en montrant que l’on a, d’ailleurs

avec une involution,

P0 ∉ T3. (9.28)
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9.1.3. Second processus de construction et application. Sur la base (A0,B0) de F2,

on applique d’abord X(A0,B0), Y(A0,B0), Z(A0,B0). Ceci donne respectivement

X0 =X(A0,B0) =
[ 2 −1

−1 1

]
,
[

1 2

2 5

],
Y0 = Y(A0,B0) =

[ 1 −2

−2 5

]
,
[

2 1

1 1

],
Z0 = Z(A0,B0) =

[ 2 −1

−1 1

]
,
[

1 −1

−1 2

].
(9.29)

À partir de ces couples, on applique à nouveau les mêmes transformations involu-

tives. Cette façon de procéder donne encore six nouveaux couples comme les deux

suivants obtenus à partir de X0 :

Y0 ◦X0 =
(
B−1

0 A
−1
0 B

−1
0 ,B0A0B0A0B0

)
=
[5 2

2 1

]
,
[

2 −5

−5 13

],
Z0 ◦X0 =

(
A0,A−1

0 B0A−1
0

)
=
[1 1

1 2

]
,
[

10 −7

−7 5

].
(9.30)

En poursuivant pas à pas, composant uniquement les involutions X0, Y0, Z0, on

construit tous les chemins possibles ch(X0,Y0,Z0). On trouve d’ailleurs les mots mir-

oirs de ceux apparaissant dans le processus de construction précédent en suivant un

même chemin en X, Y , Z . Ceci se vérifie aisément par récurrence.

Et ce que l’on a décrit n’est encore que l’orbite du couple de générateurs (A0,B0),
base de F2 et automorphisme unité de Aut(F2), sous l’action du sous-groupe T3. C’est

le groupe T3 lui même, parcouru autrement.

Si l’on considère alors l’ensemble des images par Π des couples générateurs ainsi

construits, on trouve l’arbre complet de toutes les solutions de l’équation de

Markoff. Mais l’application Π est plus généralement définie sur Aut(F2), ensemble

sur lequel elle est surjective par le théorème 5.4. Elle définit une équivalence associée

avec

φ1 ≡φ2 ⇐⇒Π
(
φ1
)=Π(φ2

)
. (9.31)

Pour tout φ ∈ Aut(F2), la bijectivité de Π sur le groupe T3 assure l’existence d’un

unique chemin ch(X0,Y0,Z0) tel que

φ≡ ch
(
X0,Y0,Z0

)
. (9.32)

Par ailleurs, l’application du théorème 6.5 donne, avec N ∈ PGL(2,Z)

φ= restϕ∗
(
N
)◦ch

(
X0,Y0,Z0

)
. (9.33)
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On en déduit que

φ◦ch
(
X0,Y0,Z0

)−1 = restϕ∗
(
N
)∈∆. (9.34)

Soit

φ�∆ ch
(
X0,Y0,Z0

)
. (9.35)

Inversement, avec le théorème 9.1, une telle condition donne

φ≡ ch
(
X0,Y0,Z0

)
. (9.36)

Le théorème 9.4 énoncé permet alors de conclure le suivant.

Théorème 9.5. Toute classe d’automorphismes pour la relation �∆, élément du

quotient à droite Aut(F2)/�∆, contient un unique chemin réduit ch(X0,Y0,Z0). De plus,

tout élément de cette classe se décompose de façon unique sous la forme suivante, où

N ∈ PSL(2,Z),
φ= restϕ∗

(
N
)◦ch

(
X0,Y0,Z0

)
. (9.37)

Enfin la relation�∆ définie sur le groupe Aut(F2) n’est autre que l’équivalence associée

à la fonction Π.

L’existence du chemin ch(X0,Y0,Z0) dans une classe quelconque pour�∆ a été éta-

blie avant. Supposons alors que deux chemins réduits ch1(X0,Y0,Z0) et ch2(X0,Y0,Z0)
soient contenus dans cette même classe, qui est aussi une classe pour la relation ≡.

On trouve par le théorème 6.5 un automorphisme restϕ∗(N0)∈∆ vérifiant

ch1
(
X0,Y0,Z0

)◦ch2
(
X0,Y0,Z0

)−1 = restϕ∗
(
N0
)
. (9.38)

En réduisant, on met en évidence un chemin réduit dans la classe pour Π de la base

idF2 = (A0,B0). Or dans cette classe d’équivalence, la seule possibilité est d’avoir

ch1
(
X0,Y0,Z0

)◦ch2
(
X0,Y0,Z0

)−1 = idF2 . (9.39)

C’est-à-dire

ch1
(
X0,Y0,Z0

)= ch2
(
X0,Y0,Z0

)
. (9.40)

Ceci établit l’unicité énoncée dans le théorème 9.5. La bijectivité de Π sur T3 avait

permis de conclure de même. La décomposition donnée dans ce résultat est une consé-

quence du théorème 6.5. L’injectivité de restϕ∗ permet alors de conclure à l’unicité

de N.

Une conséquence évidente est que l’on a, ceci résultant aussi des propriétés clas-

siques des traces,

Π
(
restϕ∗

(
N
)◦ch

(
X0,Y0,Z0

))=Π(ch
(
X0,Y0,Z0

))
. (9.41)

L’application Π peut donc être considérée comme un invariant sur chaque classe de

Aut(F2)/�∆, invariant dont les valeurs varient selon l’unique chemin de T3 contenu

dans chaque classe pour l’équivalence �∆.
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9.2. Non normalité du groupe des chemins dans le groupe Aut(F2). Ce qui pré-

cède introduit naturellement une application,(
restϕ∗

(
N
)
,ch

(
X0,Y0,Z0

))∈∆×T3 �→ restϕ∗
(
N
)◦ch

(
X0,Y0,Z0

)
∈Aut

(
F2
)
.

(9.42)

Par le théorème 9.5, cette application est bijective. Ceci s’écrit avec les notations

habituelles sur les groupes

Aut
(
F2
)=∆·T3

= {restϕ∗
(
N
)◦ch

(
X0,Y0,Z0

) | (restϕ∗
(
N
)
,ch

(
X0,Y0,Z0

))∈∆×T3
}
.

(9.43)

Ce théorème donne également

∆∩T3 =
{

idF2

}
. (9.44)

Avec [2, chapitre 1, page 62], on envisage de construire une extension (Aut(F2),
i∆,p∆) où l’on définit i∆ : ∆ → Aut(F2), injection canonique du sous-groupe ∆ dans

Aut(F2), p∆ : restϕ∗(N)◦ch(X0,Y0,Z0)∈Aut(F2)→ ch(X0,Y0,Z0)∈ T3.

Il est possible de s’assurer que p∆ n’est pas un morphisme de groupes. En effet, si

tel était le cas, on pourrait considérer son noyau,

Ker
(
p∆
)=∆= Im

(
i∆
)
. (9.45)

Il devrait être normal dans le groupe Aut(F2), propriété qu’on a démontré aupara-

vant qu’elle n’est pas vérifiée. On ne peut donc pas considérer sous cette forme une

extension de groupe.

On peut alors inverser les rôles et envisager de construire une extension (Aut(F2),
iT ,pT ) où l’on définit iT3 : T3 → Aut(F2), injection canonique du sous-groupe T3 dans

Aut(F2), pT3 : restϕ∗(N)◦ch(X0,Y0,Z0)∈Aut(F2)→ restϕ∗(N)∈∆.

Cette fois également, si pT3 était morphisme de groupes, on aurait

Ker
(
pT3

)= T3 = Im
(
iT3

)
. (9.46)

Mais il faudrait que T3 soit un sous-groupe normal de Aut(F2). Or cette fois aussi,

on ne peut considérer de cette façon une extension de groupe car on a :

Proposition 9.6. Le groupe des chemins T3 est un sous-groupe de Aut(F2) qui n’est

pas normal dans ce dernier groupe.

En effet, on peut établir que l’on a par exemple

P0 ◦Z0 ◦P−1
0 = restϕ∗

(
N
)◦Z0 =

(
A0,B−1

0

)
avec N =

[
0 −1

1 0

]
= S.

(9.47)

Compte tenu de ce qui a été dit avant sur les classes de Aut(F2)/�∆, ce terme serait

un chemin si et seulement s’il était identique à Z0. Or son expression montre que ce

n’est pas le cas. Ceci établit notre proposition.
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Considérons plus généralement un automorphisme s’écrivant

(
restϕ∗

(
N1
)◦ch1

(
X0,Y0,Z0

))◦(restϕ∗
(
N2
)◦ch2

(
X0,Y0,Z0

))
. (9.48)

Par le théorème 9.5 on peut l’écrire ainsi

restϕ∗
(
N
)◦ch

(
X0,Y0,Z0

)
. (9.49)

Supposons que l’application de Π à ces deux termes donne

Π
(
ch1

(
X0,Y0,Z0

)◦ch2
(
X0,Y0,Z0

))=Π(ch
(
X0,Y0,Z0

))
. (9.50)

Par l’unicité donnée dans le théorème précédent, on aurait

ch1
(
X0,Y0,Z0

)◦ch2
(
X0,Y0,Z0

)= ch
(
X0,Y0,Z0

)
. (9.51)

On aurait donc

pT3

(
restϕ∗

(
N1
)◦ch1

(
X0,Y0,Z0

))◦pT3

(
restϕ∗

(
N2
)◦ch2

(
X0,Y0,Z0

))
= pT3

((
restϕ∗

(
N1
)◦ch1

(
X0,Y0,Z0

))◦(restϕ∗
(
N2
)◦ch2

(
X0,Y0,Z0

)))
.

(9.52)

On aurait donc affaire pour pT3 à un morphisme de groupes. Comme on vient de

voir que ce n’est pas le cas, le raisonnement que l’on vient de faire ne marche pas.

La raison est le mauvais comportement pour la composition de l’application Π qu’il

convient donc d’utiliser avec précaution. En réalité, on n’a pas en général d’égalité du

genre

(
restϕ∗

(
N1
)◦ch1

(
X0,Y0,Z0

))◦(restϕ∗
(
N2
)◦ch2

(
X0,Y0,Z0

))
= (restϕ∗

(
N
)◦ch1

(
X0,Y0,Z0

))◦ch2
(
X0,Y0,Z0

)
.

(9.53)

9.3. Décomposition ternaire dans Aut(F2) et applications. L’idée exploitée main-

tenant consiste à combiner le théorème 9.5 avec le théorème 8.10, et à en tirer tout

un ensemble de résultats.

9.3.1. Le théorème de décomposition ternaire dans Aut(F2). On obtient par la

combinaison précédente le résultat suivant.

Théorème 9.7. Tout automorphisme φ ∈ Aut(F2) se décompose d’une et d’une

seule façon sous la forme suivante :

ψN ◦oh ◦tk ◦ch
(
X0,Y0,Z0

)
(9.54)

où h= 0,1 ; k= 0,1, . . . ,5 ; N ∈ F2 ; ch(X0,Y0,Z0)∈ T3.

Avec pour la détermination pratique du chemin ch(X0,Y0,Z0)

Π
(
ψN ◦oh ◦tk ◦ch

(
X0,Y0,Z0

))=Π(ch
(
X0,Y0,Z0

))
. (9.55)
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En particulier, les éléments de ∆= restϕ∗(PGL(2,Z)) sont caractérisés par la condition

ch
(
X0,Y0,Z0

)= idF2 . (9.56)

Ceux de restϕ∗(PSL(2,Z)) sont caractérisés par la condition supplémentaire,

h= 0. (9.57)

Les éléments de Int(F2) sont caractérisés par les trois conditions

h= 0; k= 0; ch
(
X0,Y0,Z0

)= idF2 . (9.58)

Enfin les éléments de T3 sont caractérisés par les conditions

ψN = idF2 ; h= 0 et k= 0. (9.59)

Il en découle la possiblité de présenter Aut(F2) avec les sept générateurs particuliers

que sont ψA0 , ψB0 , o, t, X0, Y0, Z0.

Comme tout composé de deux automorphismes est également décomposable avec

notre théorème 9.5, on obtient tout un ensemble de relations permettant de commuter

les générateurs entre eux et de simplifier les expressions obtenues

Z0 ◦ψA0 =ψ−1
A0
◦Z0, Z0 ◦ψB0 =ψB0 ◦Z0,

Y0 ◦ψA0 =ψB0 ◦ψA0 ◦ψB0 ◦Y0, Y0 ◦ψB0 =ψ−1
B0
◦Y0,

X0 ◦ψA0 =ψ−1
A0
◦X0, X0 ◦ψB0 =ψA0 ◦ψB0 ◦ψA0 ◦X0,

t◦ψA0 =ψ−1
B0
◦t, t◦ψB0 =ψA0 ◦ψB0 ◦t,

t6 =ψ−1
B0
◦ψ−1

A0
◦ψB0 ◦ψA0 =

[
ψB0 ,ψA0

]
,

o◦ψA0 =ψB0 ◦o, o◦ψB0 =ψA0 ◦o,
o2 = idF2 ,

Z0 ◦o =ψB0 ◦ψA0 ◦o◦t3, Y0 ◦o = o◦X0, X0 ◦o = o◦Y0,

t◦o = o◦t−1,

Z0 ◦t =ψ−1
B0
◦ψA0 ◦ψB0 ◦t4 ◦X0,

Y0 ◦t =ψB0 ◦t2 ◦Z0,

X0 ◦t =ψ−1
A0
◦ψ−1

B0
◦ψA0 ◦ψB0 ◦t4◦Y0,

o◦t = t−1 ◦o,
Z2

0 = Y 2
0 =X2

0 = idF2 .

(9.60)

Les calculs sont assez délicats à mener pour obtenir certaines formules, mais sans

grande difficulté. Ainsi, par simple composition, on obtient

Z0 ◦t =
(
B−1

0 ,A
−1
0 B0

)
. (9.61)

Ceci donne, avec la transformation Π essentielle ici,

Π
(
Z0 ◦t

)= (2,1,1)=Π(X0
)=Π(A−1

0 ,A0B0A0

)
. (9.62)
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D’où l’existence d’une matrice N ∈ GL(2,Z) vérifiant

Z0 ◦t = restϕ∗
(
N
)◦X0. (9.63)

On la calcule en ayant recours aux expressions de A0 et B0

N = TS−1. (9.64)

On doit donc maintenant considérer

restϕ∗
(
TS−1

)
= t◦s = t◦ψA0B0 ◦t3 =ψt(A0B0) ◦t4. (9.65)

Il ne reste qu’à calculer

t
(
A0B0

)= B−1
0 A0B0. (9.66)

Ceci donne

Z0 ◦t =ψ−1
B0
◦ψ−1

A0
◦ψB0 . (9.67)

Avec Y0 ◦ t on trouve de même N = T−1S3, avec X0 ◦ t on a N = T−2, avec Z0 ◦ t on

obtient N = I =OS.

Pour s’assurer que ce qui précède donne bien une présentation de Aut(F2), on peut

encore utiliser des transformations de Tietze [19]. On se contente de donner ici les

formules de passage entre les ensembles de générateurs des deux principales présen-

tations de ce groupe.

Proposition 9.8. Les formules de passage sont dans un sens,

ψA0 = P0 ◦σ0 ◦U−1
0 ◦σ0 ◦U−1

0 ◦P0,

ψB0 = σ0 ◦U−1
0 ◦σ0 ◦U−1

0 , t =U0 ◦P0 ◦σ0, o = P0,

X0 =U0 ◦σ0 ◦P0 ◦U0 ◦U0 ◦σ0 ◦P0 ◦U0 ◦σ0,

Y0 = P0 ◦U0 ◦σ0 ◦P0 ◦U0 ◦U0 ◦σ0 ◦P0 ◦U0 ◦σ0 ◦P0, Z0 = σ0.

(9.68)

Et dans l’autre sens,

P0 = o, U0 = t◦Z0 ◦o, σ0 = Z0. (9.69)

La première série de formules a déjà été donnée, une partie résultant des définitions

de X0, Y0, Z0, où l’on a seulement remplacé v0 par U0 ◦σ0 ◦P0. Pour la seconde série

de formules, elles sont évidentes avec celles qui précèdent.

En particulier, il en résulte un nouveau système de générateurs de Aut(F2), plus

simple que celui de la présentation classique de Nielsen,

o, t, Z0. (9.70)
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9.3.2. Décomposition ternaire dans le groupe GL(2,Z). On peut décrire l’action

du morphisme d’abélianisation π ′ sur la présentation à sept générateurs du groupe

Aut(F2). On a d’abord, en appliquant ce morphisme à la proposition 7.3 une tour de

sous groupes,

{
idF2

}⊂π ′(restϕ∗
(
PSL(2,Z)

))⊂π ′(restϕ∗
(
PGL(2,Z)

))⊂ GL(2,Z). (9.71)

Par construction, π ′ transforme les deux automorphismesψA0 etψB0 en la matrice

unité. L’image de Int(F2) parπ ′ correspond au premier groupe {idF2} de cette dernière

suite d’inclusions.

Le second groupe π ′(restϕ∗(PSL(2,Z))) est engendré par les éléments π ′(t) et

π ′(s)=π ′(t)3. Il possède donc en réalité un unique générateur,

π ′(t)=
[

1 1

−1 0

]
. (9.72)

Par les relations vues avant, on a aussi

π ′(t)6 = 1. (9.73)

On a donc affaire au groupe cyclique à six éléments C6 comprenant les six matrices

suivantes :

π ′(t)=
[

1 1

−1 0

]
,
[

0 1

−1 −1

]
,
[−1 0

0 −1

]
,
[−1 −1

1 0

]
,
[

0 −1

1 1

]
,
[

1 0

0 1

]
. (9.74)

Le troisième groupe π ′(restϕ∗(PGL(2,Z))) est engendré par π ′(t) et π ′(o). On

sait qu’il s’agit maintenant du groupe diédral D6 à 12 éléments. On note dans la suite

D6 =π ′(restϕ∗(PGL(2,Z))). On a

π ′(o)=
[

0 −1

−1 0

]
. (9.75)

Et par les relations vues avant,

π ′(o)2 = 1. (9.76)

D’autre part,

π ′(o)π ′(t)π ′(o)=π ′(t)−1. (9.77)

Ceci se traduit par le fait que le groupe C6 est normal dans D6. Ce dernier groupe

comprend les six matrices supplémentaires suivantes :

π ′(o)=
[

0 −1

−1 0

]
,
[−1 −1

0 1

]
,
[−1 0

1 1

]
,
[

0 1

1 0

]
,
[

1 1

0 −1

]
,
[

1 0

−1 −1

]
. (9.78)
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Par ailleurs, le groupe GL(2,Z) est engendré par les deux matrices π ′(t) et π ′(o),
ainsi que celles des involutions X0, Y0, Z0. Leurs expressions sur la base (A0,B0) de

F2 donnent dans la base (b0,−a0) du Z-module Z2,

π ′
(
X0
)(
b0
)= b0−2

(−a0
)
, π ′

(
X0
)(−a0

)=−(−a0
)
,

π ′
(
X0
)= [ 1 0

−2 −1

]
,

π ′
(
Y0
)(
b0
)=−b0, π ′

(
Y0
)(−a0

)=−2b0+
(−a0

)
,

π ′
(
Y0
)= [−1 −2

0 1

]
,

π ′
(
Z0
)(
b0
)= b0, π ′

(
Z0
)(−a0

)=−(−a0
)
,

π ′
(
Z0
)= [1 0

0 −1

]
.

(9.79)

On en déduit par exemple que

π ′
(
X0
)
π ′(o)π ′

(
X0
)= [ 2 1

−3 −2

]
. (9.80)

Ceci garantit que le groupe π ′(restϕ∗(PGL(2,Z))) n’est pas normal dans le groupe

GL(2,Z).
On peut d’ailleurs aller plus loin en renouvelant les observations faites avant. Ainsi,

on peut considérer le groupe π ′(T3) et se demander quelle est sa structure. Claire-

ment, on peut écrire tout élément de ce groupe sous la forme

π ′
(
ch
(
X0,Y0,Z0

))= ch
(
π ′
(
X0
)
,π ′

(
Y0
)
,π ′

(
Z0
))
. (9.81)

Si un tel élément vaut la matrice unité, on aurait en revenant à Aut(F2) un expression

ch
(
X0,Y0,Z0

)=ψN ∈ Int
(
F2
)
. (9.82)

C’est-à-dire avec ce que l’on a vu avant,

ch
(
X0,Y0,Z0

)= idF2 . (9.83)

Il est donc impossible d’avoir, hors le cas du chemin vide,

ch
(
π ′
(
X0
)
,π ′

(
Y0
)
,π ′

(
Z0
))= 1. (9.84)

Ceci signifie que la restriction de π ′ à T3 est un isomorphisme de ce groupe sur son

image, d’ailleurs engendrée par les trois matrices π ′(X0), π ′(Y0), π ′(Z0). Autrement

dit, on a fabriqué une image du groupe T3 dans le groupe GL(2,Z). On peut d’ailleurs,
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comme avant, se demander si ce groupe π ′(T3) est normal dans le groupe GL(2,Z).
Et il est clair qu’il n’en est rien en remontant, dans Aut(F2) par π ′, la relation

π ′(o)π ′
(
Z0
)
π ′(o)=

[−1 0

0 1

]
=−π ′(Z0

)
. (9.85)

D’autre part, on peut traduire le théorème 9.7 dans GL(2,Z). Tout ceci permet

d’énoncer le théorème suivant.

Théorème 9.9. Tout élément V ∈ GL(2,Z) se décompose d’une et d’une seule façon

sous la forme suivante :

π ′(o)hπ ′(t)k ch
(
π ′
(
X0
)
,π ′

(
Y0
)
,π ′

(
Z0
))
, (9.86)

où h= 0,1 ; k= 0,1, . . . ,5 ; ch(π ′(X0),π ′(Y0),π ′(Z0))∈π ′(T3).
Les éléments de π ′(∆) = π ′(restϕ∗(PGL(2,Z))) = D6, non normal dans GL(2,Z),

sont caractérisés par la condition

ch
(
π ′
(
X0
)
,π ′

(
Y0
)
,π ′

(
Z0
))= 1. (9.87)

Ceux de restϕ∗(PSL(2,Z)) � C6, normal dans D6 mais non dans GL(2,Z), sont carac-

térisés par la condition supplémentaire h= 0.

Enfin les éléments de π ′(T3), sont caractérisés par les conditions h= 0 et k= 0.

Le groupe π ′(T3) n’est pas normal dans le groupe GL(2,Z). Il est isomorphe au

groupe des chemins T3.

La comparaison des théorèmes 9.7 et 9.9 montre a posteriori que π ′ est surjectif,

et que son noyau est composé des automorphismes qui s’écrivent ψN avec N ∈ F2.

On peut déduire de cette remarque une démonstration de la proposition 7.4. En effet,

on peut décomposer π ′(P0), π ′(U0), π ′(σ0), en fonction des trois transformations

π ′(o), π ′(t), π ′(Z0), qui engendrent π ′(Aut(F2))= GL(2,Z). Ceci conduit à poser

P00 =π ′
(
P0
)=π ′(o)= [ 0 −1

−1 0

]
,

U00 =π ′
(
U0
)=π ′(t)π ′(Z0

)
π ′(o)=

[
1 −1

0 1

]
,

σ00 =π ′
(
σ0
)=π ′(Z0

)= [1 0

0 −1

]
.

(9.88)

On trouve entre ces expressions les mêmes relations que dans la proposition 8.1

du fait que π ′ est un morphisme de groupes. La relation complémentaire qui conduit

alors à la proposition 7.4 n’est autre qu’une condition qui garantit que l’on a

π ′
(
ψ−1
A0

)
=π ′

(
ψ−1
B0

)
= 1. (9.89)

Cette condition est issue des expressions données à l’issue de la propriété 8.1.
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9.3.3. L’arbre de Markoff construit à partir de GL(2,Z). Il est alors possible de

transposer avec le groupe π ′(∆) � D6 les relations d’équivalence présentées avant.

Elles donnent entre les éléments V1 et V2 de GL(2,Z)

V1�D6V2 ⇐⇒ V1V−1
2 ∈D6 ⇐⇒ V2 ∈D6V1,

V1D6�V2 ⇐⇒ V−1
1 V2 ∈D6 ⇐⇒ V2 ∈ V1D6.

(9.90)

On définit ainsi un quotient à droite, composé des classes à droite D6V1, où V1 ∈
GL(2,Z),

GL
(
2,Z

)
/�D6 =

(
GL(2,Z)/D6

)
d. (9.91)

On a de même un quotient à gauche, composé des classes à gauche φ1∆, où φ1 ∈
Aut(F2),

GL
(
2,Z

)
/D6�=

(
GL(2,Z)/D6

)
g. (9.92)

Les deux ensembles que l’on vient de définir sont équipotents par la bijection

D6V1 ∈
(
GL(2,Z)/D6

)
d �→ V−1

1 D6 ∈
(
GL(2,Z)/D6

)
g. (9.93)

Néanmoins, ces deux ensembles sont différents car D6 n’est pas normal dans le

groupe GL(2,Z). De plus, le théorème 9.9 permet d’écrire pour tout élément V ∈
GL(2,Z)

V =π ′(o)hπ ′(t)k ch
(
π ′
(
X0
)
,π ′

(
Y0
)
,π ′

(
Z0
))
. (9.94)

Ceci donne

V ch
(
π ′
(
X0
)
,π ′

(
Y0
)
,π ′

(
Z0
))−1 =π ′(o)hπ ′(t)k ∈D6. (9.95)

On a donc déterminé un unique élément ch(π ′(X0),π ′(Y0),π ′(Z0)) ∈ π ′(T3) tel

que

V�D6 ch
(
π ′
(
X0
)
,π ′

(
Y0
)
,π ′

(
Z0
))
. (9.96)

En d’autres termes, on obtient une nouvelle interprétation de l’arbre complet qui

explique à elle seule l’ubiquité de la théorie de Markoff mentionnée dans l’introduction

du présent article.

Théorème 9.10. L’arbre de Markoff complet est équipotent au quotient (à droite

ou à gauche) du groupe GL(2,Z) par son sous-groupe non normal D6 engendré par les

deux matrices,

π ′(o)=O−1IO =
[

0 −1

−1 0

]
, π ′(t)= T−1IO =

[
1 1

−1 0

]
. (9.97)

Les décompositions données pour π ′(o) et π ′(t) se vérifient de façon directe. Elles

ont été calculées avec la méthode qui a conduit à la propriété 4.2. On vérifie d’ailleurs

que l’on a aussi

π ′(s)= S−1IO =
[−1 0

0 −1

]
=π ′(t)3. (9.98)
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9.3.4. Application au groupe dérivé de GL(2,Z). Les expressions que l’on vient de

donner peuvent être comparées à celles ayant servi, dans ce qui précède, à définir les

éléments o, t, s générateurs de Aut(F2) à partir de trois générateurs de GL(2,Z)

o = restϕ∗
(
O
)= restϕ∗(O)=

(
B0,A0

)
,

t = restϕ∗
(
T
)= restϕ∗(T)=

(
B−1

0 ,A0B0

)
,

s = restϕ∗
(
S
)= restϕ∗(S)=

(
A−1

0 ,B
−1
0

)
.

(9.99)

Ceci permet de considérer le morphisme de groupes utilisé implicitement auparavant

π ′ ◦restϕ∗ : GL(2,Z) �→D6. (9.100)

Il est facile d’expliciter les termes suivants grâce aux méthodes présentées avant :

π ′ ◦restϕ∗
(
π ′(o)

)= [0 1

1 0

]
= (π ′(t)3π ′(o)),

π ′ ◦restϕ∗
(
π ′(t)

)= [ 0 1

−1 −1

]
=π ′(t)2,

π ′ ◦restϕ∗
(
π ′
(
Z0
))= [ 0 −1

−1 0

]
=π ′(o).

(9.101)

On a aussi

π ′ ◦restϕ∗
(
π ′
(
Y0
))= [1 1

0 −1

]
=π ′(t)4π ′(o),

π ′ ◦restϕ∗
(
π ′
(
X0
))= [−1 0

1 1

]
=π ′(t)2π ′(o).

(9.102)

Il en résulte de façon évidente que π ′ ◦restϕ∗ est surjectif à valeurs dans le groupe

diédral

D6 =
〈
π ′(t),π ′(o) |π ′(t)6 =π ′(o)2 = (π ′(t)π ′(o))2 = 1

〉
. (9.103)

On trouve également, et ceci montre que la restriction de π ′ ◦restϕ∗ à D6 n’est pas

injective

π ′ ◦restϕ∗
(
π ′(t)3

)=π ′ ◦restϕ∗(−1)=π ′(t)6 = 1. (9.104)

Par les mêmes méthodes, on obtient avec les matrices rs et rw de [12, page 86]

évoquées avant

rsA0r−1
s =A−1

0 B
−1
0 , rsB0r−1

s =A0,

rwA0r−1
w = B−1

0 A
−1
0 , rwB0r−1

w =A0.
(9.105)
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Ceci donne

π ′ ◦restϕ∗
(
rs
)=π ′ ◦restϕ∗

(
rw
)= [ 0 1

−1 −1

]
=π ′(t)2. (9.106)

Il en résulte que

〈
rs,rw,−1 | r 3

s = r 3
w =−1, (−1)2 = 1

〉⊂ Ker
(
π ′ ◦restϕ∗

)
. (9.107)

Le premier groupe de cette inclusion est le groupe [GL(2,Z),GL(2,Z)], comme l’in-

dique [12]. Il contient −1. On a aussi au quotient un morphisme de groupes

GL(2,Z)/
[
GL(2,Z),GL(2,Z)

]
�→D6. (9.108)

Par la non commutativité du groupe D6, ce dernier morphisme n’est pas surjectif.

Mais il permet de construire

GL(2,Z)/
[
GL(2,Z),GL(2,Z)

]
�→D6/

[
D6,D6

]
. (9.109)

D’autre part, avec le théorème 9.10, on trouve un autre morphisme de groupes,

D6/
[
D6,D6

]
�→ GL(2,Z)/

[
GL(2,Z),GL(2,Z)

]
. (9.110)

En explicitant et comparant ces morphismes, on obtient un isomorphisme,

D6/
[
D6,D6

]� GL(2,Z)/
[
GL(2,Z),GL(2,Z)

]
. (9.111)

Le groupe dérivé [D6,D6] de D6 est cyclique d’ordre 3, car il comprend le terme

[(
π ′(t)3π ′(o)

)−1,
(
π ′(t)2π ′(o)

)−1
]
=π ′(t)2. (9.112)

Et comme le groupe D6 possède 12 éléments [12, page 6], ceci donne au quotient la

proposition suivante :

Proposition 9.11. Le groupe dérivé de GL(2,Z) est un produit de groupes cycliques

à deux éléments :

GL(2,Z)/
[
GL(2,Z),GL(2,Z)

]�D6/
[
D6,D6

]� C2×C2. (9.113)

On vient donc d’expliciter pour GL(2,Z) l’équivalent de la proposition 5.2 pour

SL(2,Z). La dernière proposition s’écrit aussi avec un groupe d’homologie

H1
(
GL(2,Z),Z

)� GL(2,Z)/
[
GL(2,Z),GL(2,Z)

]� C2×C2. (9.114)
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Elle constitue un résultat préalable au résultat connu [34, pages 75 et 218], [36, page

193], [43, page 261], de la K-théorie indiquant que l’on a, avec GL(Z) limite inductive

des groupes GL(n,Z),

K1(Z)�H1
(
GL(Z),Z

)� GL(Z)/
[
GL(Z),GL(Z)

]� C2. (9.115)
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