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LINTERPRETATION MATRICIELLE DE LA THEORIE
DE MARKOFF CLASSIQUE

SERGE PERRINE

Recu le 22 avril 2001 et dans une forme révisée le 5 octobre 2001

On explicite 'approche de Cohn (1955) de la théorie de Markoff. On montre en particu-
lier comment I'arbre complet des solutions de I’équation diophantienne associée apparait
comme quotient du groupe GL(2,Z) des matrices 2 x 2 a coefficients entiers et de dé-
terminant +1 par un sous-groupe diédral Dg a 12 éléments. Différents développements
intermédiaires sont faits autour du groupe Aut(F>) des automorphismes du groupe libre
engendré par deux éléments F.

Classification 2000 des Sujets Mathématiques: 11H50, 11H55, 20E05, 20F05, 20F12, 20F28.

1. Introduction. La théorie de Markoff concerne la résolution en nombres entiers
de I'équation diophantienne

m?+m?+m3 =3mmim,,  (m,my,my) € (N=1{0})°. (1.1)

Elle a été découverte a partir de calculs faits sur les fractions continues par Markoff
[26]. Elle a ensuite été mise en forme au moyen de formes quadratiques par Cassels [4].
Puis une interprétation géométrique plus profonde en a été donnée par Cohn [7, 8].
Dans la période récente, de nouveaux développements sont apparus. Ils sont liés a
I’étude des groupes libres a deux générateurs [6, 9], a la dynamique symbolique [39],
au théoréme d’Atiyah-Singer [17], a la théorie de Teichmiiller de certaines surfaces
de Riemann [21], a ’étude de leur géodésiques [38], et avec [37] a I'étude de fibrés
exceptionnels d'un espace projectif P».

Des syntheses récentes de la théorie ont été écrites [14, 25]. On trouve aussi dans
[10] un résumé de différents points de vue sur I'interprétation a donner a cette théorie.

Dans le présent article, on présente une approche directe de 'interprétation matri-
cielle donnée par Cohn a la théorie de Markoff. On approfondit le lien avec le groupe
libre a deux éléments et on en tire différentes conséquences.

On laisse de coté tout lien avec la cohomologie des groupes [40]. On évite les déve-
loppements possibles autour des quaternions entrant dans la perspective de certains
travaux sur les groupes fuchsiens [44]. On n’aborde non plus les applications du théo-
réme de Dyer et Formanek [23, page 24].
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FIGURE 2.1

2. Présentation matricielle de la théorie de Markoff

2.1. Le probleme de la présentation matricielle. On ne revient pas sur ’étude de
I’équation de Markoff (1.1). Tous les éléments relatifs a cette question sont disponibles
dans [4] ou [14].

L’arbre deses solutions de privilégié ici est 'arbre des triplets de Cohn [13]. Ses
sommets sont les solutions (m,m;,m») € (N — {0})3, triplets d’entiers positifs qui
vérifient les inégalités

m=my; =>mp=>1. (2.1)

Cet arbre ne contient pas toutes les solutions possibles. Il en élimine beaucoup grace
aux permutations qui transforment toute solution en une autre. Il se construit a partir
du triplet (1,1,1) en engendrant a partir de tout triplet de solutions (m,m;,m>) deux
nouveaux triplets qui en descendent a gauche et a droite,

(mGlmlG!mZG) = (Smml 7m21m!m1)! (2 2)
(mD,m?,mg) = (3mmy —my, m,my). '

En haut de I'arbre, ces deux triplets se confondent. C’est ainsi que les deux formules
donnent a partir de (1,1,1) le triplet (2,1,1), puis (5,2,1). Mais a partir de ce dernier
les triplets a droite et a gauche se distinguent, donnant naissance a un véritable arbre :

Présenter matriciellement la théorie de Markoff signifie ici qu’a chaque triplet (mn,
mi,my), de niveau supérieur a un niveau donné dans I'arbre précédent, on est capable
d’associer un triplet (M, M;,M,) de matrices de SL(2,Z) liées entre elles par le fait que
I'une d’elles est produit des deux autres et vérifiant ces égalités pour les traces

tr(M) = 3m, tr (M) = 3m,, tr (M) = 3m,. (2.3)

La notation SL(2,7Z) désigne le groupe multiplicatif des matrices de déterminant 1
a coefficients dans Z, 'ensemble des nombres entiers positifs ou négatifs.
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L'équation de Markoff apparait alors comme une conséquence de la relation de
Fricke (FR;) suivante, valable pour deux matrices W et V de SL(2,7) :

(W) +tr(V)2+tr(WV)2 =tr(W) tr(V) tr(WV) +tr ( WV W-Lv—1) 42, (2.4)
La condition déterminante est d’avoir
r(WVw-lv-1) = -2, (2.5)

En divisant par 9, on retrouve ’équation (1.1) a partir de la relation de Fricke (FRy).

Le probléme qui se pose est donc d’indiquer comment construire, de niveau en
niveau de notre arbre, des triplets de matrices vérifiant les conditions requises.

Cette facon d’interpréter la théorie de Markoff, en rapprochant I’équation diophan-
tienne correspondante des relations de Fricke, a été découverte par Cohn dans [7],
puis completement explicitée dans [9, théoreme 5.1].

2.2. Une solution partielle du probléme précédent. Une solution du probleme
posé est maintenant donnée. Elle est construite a partir des périodes (2,2) et (2,1,1,2)
des développements en fraction continue des premiers nombres algébriques de degré
2 mis en évidence par la théorie de Markoff. On associe ainsi au triplet (5,2,1) les

matrices
M= 13 5] (2 1)1 1}(1 1}(2 1
5 2| |1 o1 off|1 off1 o)

(2.6)
M1=[5 2]2[2 1} [2 1]_
2 1 1 0|1 O
La troisieme matrice du triplet (M, M;,M;) est calculée avec la condition
M = M,M;. (2.7)
On en déduit une matrice a gauche,
M¢ =MM, = [;; i;] (2.8)
D’ou le triplet correspondant a la solution a gauche (29,5,2)
(MMy,M,M). (2.9)
On a aussi une matrice a droite,
MP = MoM = [i;‘ 153] (2.10)

Le triplet correspondant a la solution a droite (13,5,1) est

(MoM, M, My). (2.11)
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La construction se poursuit pas a pas, pour les triplets issus de (5,2,1), grace a
une autre relation de Fricke (FR;) valable également pour deux matrices W et V de
SL(Z, Z)l

tr (V2W) = (VW) tr(V) —tr(W) = tr (WV?) = r(WV) tr(V) — tr(W). (2.12)

Ces expressions donnent les transformations a gauche et a droite vues avant, grace
a une simple division par un facteur égal a 3.

(i) Pour M = M,M; on utilise a gauche la derniere égalité de (FRy) avec W = M,
et V = M;. A droite, on pose au contraire W = M; et V = M> et on utilise la premiére
égalité de (FRp).

(ii) Dans le cas ou M = M} M>, qui correspond par exemple a la situation obtenue
avant a gauche, on utilise encore 1'une des égalités (FR») avec W = M; et V = M. A
droite, on pose au contraire W = M, et V = M.

Cette construction conduit par récurrence a énoncer le théoréeme suivant.

THEOREME 2.1. Pour tout triplet (m,my,m>) de I'arbre des triplets de Cohn, il existe
un triplet de matrices (M,My,M>) de SL(2,Z) tel que I'on a

(m,my,mz) = ((tr(M)/3), (tr (M1)/3), (tr (M2)/3)),

(2.13)
M:Mle ou M:M2M1.

En remontant dans I'arbre au dessus de (5,2,1), le triplet (2,1,1) correspond au
triplet de matrices suivant :

(B iH—Bl (1)][? —01]). (2.14)

Il donne a droite et a gauche le triplet de matrices déja vu, correspondant a (5,2,1).
Mais la difficulté est que maintenant les deux derniéres matrices de ce triplet ne
donnent pas la premiére par produit. Ceci ne permet pas de remonter au triplet
(1,1,1). Le théoreme précédent est donc établi par le raisonnement par récurrence
fait avant, a ’exception des deux premiers triplets (1,1,1) et (2,1,1).

On va cependant voir dans section 3 comment corriger cette situation.

REMARQUE 2.2. Les deux formules (FR;) et (FR,) découlent de I'application répé-
tée de la formule suivante (FRy), valable pour deux matrices quelconques W et V de
SL(2,7)

tr(WV) +tr (WV™1) = tr(W) tr(V). (2.15)

Cette derniére égalité est spécifique aux matrices 2 x 2.
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REMARQUE 2.3. Le groupe de matrices utilisé avant est SL(2,Z), non GL(2,7), le
groupe multiplicatif des matrices a coefficients entiers et de déterminant +1. Dans
ce dernier groupe, il existe aussi des formules généralisant les formules de Fricke
précédentes, mais elles comprennent des signes. Le groupe SL(2,7Z) est un sous-groupe
normal d’indice 2 de GL(2,Z). Dans la terminologie de [12], GL(2,Z) est le groupe
unimodulaire et SL(2,7Z) le groupe modulaire.

3. D’autres présentations matricielles

3.1. Quelques remarques préalables. On approfondit ici la lecture du plus ancien
article de Cohn [7]. S'inspirant de ses notations, on pose avec les matrices M, M, M>,
que I'on a introduites avant,

2 - 2 -1
B*=M1=[_5 13?} A*=M1=B J, C*:Mgzﬁ 0] (3.1)

Ceci revient a considérer le triplet de matrices
(M,M;,M;) = (B*~}, A* B*"LA*"1), (3.2)

Ces trois matrices de SL(2,7) donnent un peu plus que le seul produit du théoréme
2.1. On trouve en fait les deux relations de Cohn suivantes [7, 9], définissant I'unité 1
de SL(2,7) et la matrice K :

1 0 -1 -6
* Rk * * Pk k —
ABC—[ J—l, CBA—[ J—K. (3.3)

Considérons alors le groupe engendré par les deux matrices A* et B*,
G=gp(A*,B*). (3.4)
Les matrices C et K introduites avant sont dans le groupe G. En effet, on a
C=B*1'A*1,  K=B*'A*1B*A* (3.5)
Ce dernier terme est le commutateur de B* et A*, noté comme dans [2] :
K = [B*,A*]. (3.6)

Le groupe G agit dans le demi-plan de Poincaré H. Pour cela, on consideére ’action
induite par celle de toute matrice V € SL(2,Z) s’écrivant [20, 33, 45] :

V= [““ “12} 3.7)

az  apzp

Une telle matrice agit sur tout z € H par I'opération suivante, qui s’étend d’ailleurs
au bord du demi-plan de Poincaré :

_anztap

Vz=
azi1Z+apyp

(noté aussi z"). (3.8)
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FIGURE 3.1

On dispose alors d’'un domaine fondamental [41, page 128] pour I'action du groupe
image de G dans SL(2,Z)/{+1}. C’est un quadrilatere curviligne dont les sommets
peuvent étre calculés [7] comme suit :

_(%) _ ooB*, 0= (OOA*)B* _ (ooB*)A*’ (%) _ ooA*,OO. (3.9

Ces quatre points, notés simplement ici &« = 08", s = 0, = 04", p = 0, sont situés
au bord de H. IIs vérifient les égalités

A*(e)=s, A*(p)=B, B*(B)=s, B(p)=« (3.10)

Pour les calculer, il suffit donc d’en déterminer un. Et a partir de I’expression des
matrices A* et B* on s’assure par exemple que p = o avec

K(p) =B* 'A*"1B*A*(p) = p. (3.11)

On a ainsi la représentation suivante du domaine fondamental pour I'action du
groupe G dans le demi-plan H :

Le quotient du demi-plan de Poincaré H par le groupe G est, en tant que surface de
Riemann [22, 45], un tore percé d'un trou en un point. Le trou correspond aux quatre
points «, s, 8, p, que I'on vient de déterminer sur le bord de H.

3.2. Nouvelles présentations matricielles de la théorie de Markoff. Comme Cohn
[7, 9], il est maintenant possible de considérer de nouvelles matrices de SL(2,7) :

11 1 -1
AO:[1 2], Boz[_l 2] (3.12)

On complete par

3 -1
Co=By'A;l=C= [ } . (3.13)
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Avec des formules comparables a celles d’avant, on pose maintenant

(M’,M{,Mé)—(BolaAo,Bolel)—([i HE ;Hi _01]) (3.14)

On a encore
M;M; =M'. (3.15)

En utilisant sur ces matrices des formules identiques a celles qui ont conduit a
énoncer le théoreme 2.1, on trouve grace aux traces un nouvel arbre de triplets. Il est
analogue a l'arbre des triplets de Cohn considéré avant, mais contient plus de triplets.

Il contient en particulier le triplet (1,1,1) au sommet dun arbre analogue a celui de
la figure 2.1. Ceci compléte la démonstration du théoréme 2.1 et donne une nouvelle
présentation matricielle.

On fait aussi apparaitre de cette facon des triplets de matrices non déja rencontrés,

tels que le suivant :
3 4 2 1 1 1
(900 )

En d’autres termes, le probléeme de trouver des triplets de matrices correspondant a
un méme triplet de I'arbre de Cohn admet en général plusieurs solutions. On en déduit
qu’a quelques triplets pres situés dans les plus bas niveaux de I'arbre, il y a plusieurs
facons de présenter matriciellement la théorie de Markoff.

En regardant de pres le triplet de matrices que I'on vient de considérer, on trouve
a nouveau les relations de Cohn suivantes :

AoByCp =1, CoBoAp =K. (3.17)

De plus, en comparant aux matrices que 1’on avait antérieurement, on a le lien sui-
vant entre toutes les matrices introduites :

A* =CoBy', B*=By(C,?, C*=Co. (3.18)
Ces relations peuvent étre complétées avec les égalités suivantes :
Ag=C*2A%,  By=A*'C*,  Co=C*. (3.19)

Ceci conduit plus généralement a énoncer la proposition suivante.

PROPOSITION 3.1. Soient V1, V,, V3, trois matrices 2 X 2 vérifiant les deux égalités
suivantes, ou L est une matrice 2 X 2 donnée et 1 désigne la matrice unité :

ViVLVs =1, V3V V) = L. (3.20)
Supposons que l'on pose

Wy =V3%Vy,  Wa=VilVs, W3 =Va. (3.21)
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Domaine fondamental

-1 s=0 1
FIGURE 4.1
Alors on a aussi
WiW,W3 =1, WsW,oW; = L. (3.22)

Une vérification directe de ce résultat est facile. Et une application répétée de cette
derniére proposition permet, avec les mémes formules qu’avant, de donner une infi-
nité d’autres interprétations matricielles de la théorie de Markoff, éventuellement a
un nombre fini de triplets pres.

4. Identification du groupe dans lequel on travaille

4.1. Le groupe et son domaine fondamental. Considérons maintenant le groupe
G = gp(A*,B*) engendré par les deux matrices A* et B* définies avant. Les matrices
C et K que I'on a introduites sont aussi dans le groupe G. En effet, on a

C=B*1A*1  K=[B* A*] =B* 1A* 1B*A*, 4.1)

Il enrésulte que toutes les matrices déduites de I'application répétée de la proposition
3.1 sont aussi des éléments du groupe G. On voit ainsi que le groupe G est un groupe
a deux générateurs, engendré aussi par les deux matrices Ag et By,

G =gp(Ao,Bo). 4.2)

Avec ces deux derniéres matrices, et par la méme méthode qu’avant, on peut cal-
culer un domaine fondamental pour I'action dans le demi-plan H du groupe image
de G dans le groupe modulaire projectif I' = SL(2,7Z)/{+1}. On trouve figure 4.1, qui
apparait aussi dans [7].

Ce nouveau domaine est différent de celui déja donné pour I'action de G dans H. Il
détermine encore au quotient pour surface de Riemann un tore percé d’'un point.
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4.2. Comparaison avec le domaine fondamental modulaire. Le domaine que I'on
vient de mettre en évidence est plus vaste que le domaine fondamental habituellement
donné pour I'action dans H du groupe modulaire projectif [41, page 128],

I' =PSL(2,Z) = SL(2,Z)/{+1}. (4.3)

Ce dernier groupe posséde deux générateurs qui sont les classes S = {+S} et T =
{+T} des éléments suivants de SL(2,7) :

0 -1 1 1
R ] »

Il admet une présentation qui en fait un produit libre d’un groupe cyclique C, d’or-
dre 2 et d’'un groupe cyclique C; d’ordre 3,

r=(STI15°=(3T)’=1)= (SIS =1)«(STI ST)* =1) = C3.  (4.5)

Remarquons que l'action de I' dans H est induite par I'action introduite avant de
SL(2,7Z) dans H. Le passage a I vient de ce que I'on a pour tout z € H

-1 0
(—1)2—[0 _Jz-z(i—z). (4.6)

Pour comparer 'action dans H des deux groupes G et I', une question sur laquelle
on reviendra est de savoir sil'ona —1 € G.

4.3. Détermination du groupe. Le groupe G est contenu dans SL(2,7). Il est normal
dans ce dernier groupe, comme le montrent les relations suivantes, faciles a vérifier
de facon directe :

SASTt=Agt,  SBoST'=Byl, TAT'=Bjl, TByT'=A¢By. (4.7)

Ceci permet de considérer le groupe quotient (SL(2,7)/G).

Sur la figure 4.1, la comparaison des domaines fondamentaux pour G et SL(2,7)
indique que le groupe quotient (SL(2,7Z)/G) est fini a 6 éléments au moins.

Ce groupe quotient est engendré par les deux éléments S; classe modulo G de S
et T; classe modulo G de T. Or ces deux classes commutent, d’apres les expressions
suivantes, des commutateurs que I’'on peut vérifier de facon directe :

[~ T ] =8STS'T ' =[T',57'] "' = By,

(4.8)
[S,T]1=S7'T7!'ST =[T,S]' = A,.
Le groupe (SL(2,7)/G) est donc commutatif. En particulier, G est un sous-groupe
du groupe dérivé [SL(2,7),SL(2,Z)], le sous-groupe normal engendré par tous les
commutateurs de SL(2,7) [2, chapitre 1, page 67].
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Remarquons que I’'on a aussi

-1

[S, T ']=s"'TST ' =[T"},S] =S"'By'S =By,

(4.9)
[SL,T]=ST 'S 'T=[T,5 '] ' =T 'B;!T = Ay,

avec des expressions valables pour toutes matrices Vi, Vo, V3, dans SL(2,7Z), telles que

ViV, V3] = (Vi ' [V, V3 ]V2) [Va, Vs ],
[V1,VaVs] = [V, V3] (V31 [V, V2] Vs), (4.10)
[Vi,Va] = Vi [Va, Vit Vs = [Vo, V4]

Tout crochet de deux mots écrits avec S et T est donc dans G, ce qui garantit que
I'on a en réalité

G =[SL(2,2),SL(2,2)]. (4.11)

4.4. Image dans le groupe modulaire projectif. On considére la classique présen-
tation [24, page 46] du groupe modulaire SL(2,7),

SL(2,2) =(S,T|1S*=1, §2 = (ST)3) = Cs *¢, Co. (4.12)

Dans le groupe quotient (SL(2,7Z)/G), on a par la commutativité des classes S¢ et
Tc de S et T I'égalité

S =T;% 4.13)

Ceci résulte en effet de la relation amalgamant les groupes cycliques a 4 et 6 élé-
ments notés respectivement C, et Cg,

S2 = (SeTe) . (4.14)
Le groupe quotient est engendré par T, avec de plus la condition
T2 =5:4=1. (4.15)

On a donc affaire a un sous-groupe du groupe cyclique a 12 éléments C;», possédant
par ce qui précede au moins 6 éléments, c’est-a-dire 6 ou 12 éléments.

Lorsque I'on quotiente par {+1}, puisque S? = —1, la classe de T n’est que d’ordre
6 dans I' = SL(2,7)/{+1}. Comme —1 commute avec tous les éléments de SL(2,7),
I'image de G dans T n’est autre que [I',I'], le sous-groupe normal dérivé de I', engendré
par les commutateurs de ce dernier groupe. Au quotient, on obtient avec la comparai-
son des domaines fondamentaux faite avant, un groupe cyclique a 6 éléments Cg.

Ceci permet d’énoncer le théoréme suivant.
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THEOREME 4.1. Le groupe G = gp(Ag,By) engendré par les deux matrices A, et
By est le groupe [SL(2,7),SL(2,7)], sous-groupe normal dérivé de SL(2,7). Son image
dans le groupe modulaire projectif T = SL(2,7)/{+1} est le sous-groupe normal dérivé
[T,T'] deT. Le quotient du groupe modulaire projectif par son sous-groupe dérivé est le
groupe cyclique a 6 éléments Cg,

I'/[T,T]=Cs. (4.16)

4.5. Remarques sur les présentations de groupe utilisées. En pratique, les pré-
sentations de groupe utilisées, d’ou la détermination effective des classes de I'/[T,T'],
peuvent étre calculées. En effet, toute matrice de GL(2,7) peut, grace a I'algorithme
d’Euclide, étre décomposée en un produit des trois matrices suivantes :

1 1 -1 0 0 1
S FO RPN L R S R

Considérons une matrice quelconque du groupe unimodulaire GL(2,7),

o B
ee[s 9] a1

(i) Siéd =0ety=1,ontrouve

T¢I, sif=1,
V= (4.19)
T*OI, sif=-1.

(ii) Si 8 =0 et y = —1, on applique le résultat précédent a VO, puis 02 = 1.
(ili) Siy =0 et d =1, on applique le résultat précédent a VI, puis I? = 1.

(iv) Siy =0 et § = —1, on applique le résultat précédent VIO, puis 02 =% = 1.
(v) Siyd # 0, la condition xd — By = +1 permet I'application de I'algorithme

y=010+7r; avec0=<7 <|d|, x=c18+51,

d=00r +12 avec 0 <1 <|r1|, B= xos1 +52,
(4.20)

Yno1=On1¥n+Tne1 aveCc 0 <ryi1 =1, Sy_1 = Qpr1Sn +Spt1.

D’ou la décomposition suivante, permettant d’appliquer a tous les termes apparai-
ssant le résultat précédent :

Sn+l  Sn—T"nSn+1 rn 1 Kne1 1 o 1
o R S | | S B S
Ceci donné, toutes les vérifications complémentaires étant faciles, on a :

PROPOSITION 4.2. Le groupe GL(2,7Z) admet la présentation

(I,O,T | I? =0% = (0T)?> = (O* = 1; (OI)*> = (OIT)?3). (4.22)
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Les présentations de SL(2,7Z) et PSL(2,Z) rappelées avant s’en déduisent avec la
remarque que 'on a

det(I) = det(0) = -1, det(T) =1, §$=0I, 52 =-1. (4.23)

On peut, avec des transformations de Tietze [19], choisir d’autres générateurs et
donner I'ensemble des relations correspondantes. Par exemple GL(2,7Z) peut étre pré-
senté avec les triplets de générateurs suivants :

(0,8,T) ou (I,S,TS). (4.24)

On peut méme voir que (I, T) engendre GL(2,Z) et en donner la présentation asso-
ciée.
On peut considérer aussi le groupe unimodulaire projectif,

PGL(2,Z) = GL(2,Z)/{=1}. (4.25)

La derniére remarque faite donne pour ce qui le concerne :

PROPOSITION 4.3. Le groupe PGL(2,7) admet la présentation

(1,0,T|T° =0" = (0T)* = (01)* = (OIT)* =1). (4.26)
Le théoréme 4.1 conduit naturellement a la question de savoir si tout élément de
I = PSL(2,7) s’écrit sous forme suffixe W (Aq, Bo) Wi (S,T) ou

W (Ao, Bo) € [I,T],
_ T 4.27)
Wi(S,T) € {1,5,ST,STS,STST,STSTS}, (k=0,1,...,5).

L’existence d'une telle décomposition parait démontrable en utilisant comme trans-
ducteur les expressions suivantes applicables sur les mots en S et T modulo [I,T] qui
apparaissent comme suit :

ST=B,TS, TS=By ST, ST '=A,0S, T 'S=4, 'ST '  (4.28)

Ces expressions permettent de remplacer un mot de deux lettres en S et T par un
mot en les mémes deux lettres, aux termes en Ag et By preés, c¢’est-a-dire modulo [I,T].
Ceci peut conduire a des simplifications. Au pire, donc, lalongueur desmotsenSet T a
considérer se conserve. Au mieux elle se raccourcit. La question posée revient a savoir
si’on peut toujours raccourcir ces mots modulo [T,I'] et pourquoi on n’aboutirait que
sur les seules possibilités données pour Wi (S, T).

Cette question est traitée dans la suite de I'article (voir proposition 8.8).

4.6. Un domaine fondamental hexagonal. Il est possible, a partir de la figure 4.1
et en considérant des transformés des différents triangles curvilignes apparaissant,
de construire un nouveau domaine fondamental hexagonal pour l'action du groupe
G. Sur la figure suivante, on a superposé les deux domaines pour permettre leur com-
paraison :
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Représentation des deux
domaines du groupe

-2 -1 0 1 2 3 4
FIGURE 4.2

Grace a 'expression matricielle de T, on visualise les 6 sommets de cet hexagone et
le groupe cyclique a 6 éléments du théoréme 4.1. En notant en effet de droite a gauche
0,n,¢C, ¢ 0, y, w les pointes du domaine représenté ci-dessus, on a

T'0)=n T'm=¢, T4 =c¢

4.29
T (e) =9, T'(6) =y, T '(y) =w. 4-29)

Le point w est identifié au point 6 grace ala matrice K qui vaut avec les expressions
données avant

K=-T%=5°T6 = [_01 :?] €G. (4.30)

5. Relation avec le groupe libre a deux générateurs. On retrouve de facon directe
I’essentiel des résultats de Cohn [9] liant la théorie de Markoff au groupe libre a deux
générateurs.

5.1. Introduction du groupe libre F>. Soient Ay, By, C1, L des matrices quelconques
de SL(2,7) vérifiant les égalités de Cohn écrites ici sous la forme

ABi=C;', BiA; =CylL. (5.1)
Compte tenu que le déterminant de L est égal a 1, on en déduit que
tr(A1BIATBY) = tr (B A B IATY) = tr(L) = tr (L 7). (5.2)

Dans le cas ou la trace de la matrice L vaut —2, la formule de Fricke (FR;) se simplifie
sous la forme

tr (A1) +tr (By) +1r (A, B1)° = tr (A;) tr (By) tr (A, By). (5.3)

On trouve dans [35] des développements autour de cette égalité. L’essentiel de ces
résultats est établi de facon directe dans ce qui suit.

En fait, la derniere égalité reliant des traces est valable pour tout couple de matrices
engendrant le sous-groupe G = [SL(2,7),SL(2,7)].



206 SERGE PERRINE

PROPOSITION 5.1. Le groupe [SL(2,7),SL(2,Z)] est libre a deux générateurs. Pour
tout couple (A,B) de ses générateurs, on a la relation

tr(A)% +tr(B)? +tr(AB)? = tr(A) tr(B) tr(AB). (5.4)

En effet on a vu avant que (Ag,Bp) est un couple de générateurs du groupe G. On

pose
0 -1 1 -1
x=[1 0}=S, y=[1 O}=TS. (5.5)

Un calcul direct donne

11
Ao=y 'xtyx=[y,x]= [1 2]
(5.6)
-1 214,22 2 2 1
Byl =y xlyix=[yix]= | |

Mais on peut établir de facon directe [24, pages 97-98] que ces deux éléments en-
gendrent aussi un groupe libre a deux éléments que I’on note F»,. Ceci établit une partie
de la proposition précédente,

G =[SL(2,2),SL(2,2)] = F>. (5.7)

Pour tout autre couple (A,B) de générateurs du groupe F», il existe alors un au-
tomorphisme @ de ce groupe transformant Ay en A et By en B. Il en résulte par un
résultat de Nielsen [24, théoreme 3.9, page 165] que I'on a

tr(ABA™1B™!) = tr (AgBoA; B! ) = 2. (5.8)

On retrouve ainsi la possibilité d’appliquer la formule de Fricke (FR;). Et ceci ter-
mine la démonstration de notre proposition.
En particulier [5, page 14], tout élément V de notre groupe s’écrit de facon unique
sous la forme d’un mot réduit en Ag et By :
i
V= Xfi OﬁxiE{Ao,Bo}, & ==*1,
i1 (5.9)

Eiy1 * —& SIXi1 =X,

I
N

On note parfois, grace a cette propriété,
V =V(Ao,By). (5.10)

Si I'on veut que le mot réduit considéré ne contienne que des puissances ¢; égales
a 1, on peut écrire accessoirement

V =V (Ao, A5',Bo, By ). (5.11)
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5.2. Conséquences pour 'arbre complet de I'’équation de Markoff. Par construc-
tion, on a, a priori, dans la proposition 5.1

(tr(A),tr(B),tr(AB)) e 73. (5.12)

1l est facile de s’assurer, avec des congruences modulo 3, que la relation qui lie ces
nombres n’est possible qu’avec

tr(A) = tr(B) = tr(AB) = 0(mod 3). (5.13)
On peut donc poser pour tout couple (A, B) de générateurs du groupe F»
tr(B) = tr (B~!) = 3m, tr(A) =3mq, tr(AB) =tr (B'A™') =3m,.  (5.14)
On retrouve ainsi I’équation de Markoff
m?+m? +m3 =3mmyms. (5.15)

Un examen plus précis de la situation montre que I'on a en réalité (m,mi,m;) €
(N—{0})3.

En effet, tout élément de F, s’écrit comme un mot comprenant les lettres Ag, Bo,
Ay, Byt Or un raisonnement par récurrence sur la longueur de ces mots est possible.
Il établit que 'on reste pour ces triplets dans (N — {0})3.

Cependant rien n'impose ici la condition de Cohn, (2.1), de sorte que 'on ne se
trouve plus nécessairement dans 'arbre des triplets de Cohn, mais dans un arbre
plus vaste, 'arbre complet de toutes les solutions dans (N — {0})3 de I’équation de
Markoff. Cet arbre, que 'on va considérer désormais, est construit a partir du triplet
(1,1,1) avec les trois transformations,

<2

t(m,my,me) — (3mymz —m,my,my),

~R

t(m,my,mp) — (m,3mmz —my,my), (5.16)

N2

t(m,my,mp) — (m,my,3mm; —my).

Sur des triplets de matrices choisis ici de forme (B~1,A,B~1 A1), on peut traduire
ces transformations grace a la relation de Fricke (FR») vue avant :
X¢:(BL,A,B'A™Y) — ((ABA) ',A™1,(ABA) 1 A),
Yo: (B A,B'A™') — (B,(BAB),B(BAB) ™), (5.17)
Zy:(BHLABIATY) — (B, AL B1A).
Ces conditions s’écrivent de facon équivalente sur les couples de matrices associés :
Xg¢: (A,B) — (A™1,ABA),

Yy :(A,B) — (BAB,B ™), (5.18)
Z¢:(A,B) — (A7L,B).
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On peut remarquer que ces transformations sont involutives, on dit aussi que ce
sont des réflexions ou des symétries,

X5 =Y5 =25 =id. (5.19)

En les composant de facon habituelle, on peut décrire tout chemin de I’arbre com-
plet par un mot ch(X¢, Yy, Zy) en X4, Y ou Zg. Cet arbre s’identifie ainsi a un groupe
qui est produit libre de trois groupes a deux éléments [5, page 24],

Ts=Cox Co% Co = (X, Yy, Zgp | X = Y3 = 23 =1). (5.20)

Il peut étre représenté graphiquement par le topographe de Conway [11]. Il apparait
dans de nombreux développements mathématiques [18], parfois explicitement sous
forme d’arbre [42, page 28] et [46, page 41].

Le fait que I'on trouve réellement cet arbre grace aux triplets est démontrable en
considérant la hauteur de tout triplet,

h = max (m,my,my). (5.21)

Pour un triplet différent de (1,1, 1), si cette hauteur est atteinte sur m, le triplet est
donné par X eton a

3mim; —m <max (mp,my) < h=m,
h =m =max (m,m;) < 3mm;, —my, (5.22)

h =m =max (m,mz) < 3mmy —m,.

Si la hauteur est atteinte sur m; le triplet est donné par Y, si elle est atteinte sur
m. le triplet est donné par Z, et on a dans tous les cas des inégalités équivalentes qui
permettent de conclure a la structure de 'arbre [4, pages 27-28].

5.3. Une conséquence pour le groupe libre. On est maintenant en mesure de ré-
pondre a une question posée avant.

PROPOSITION 5.2. Le groupe F> = [SL(2,7Z),SL(2,2)] vérifie la condition
-1¢ F, =[SL(2,2),SL(2,2)]. (5.23)
En particulier, le groupe quotient SL(2,7) | F» est cyclique a 12 éléments,
SL(2,Z)/F, =~ Cy». (5.24)
L’application canonique SL(2,7) — T' = PSL(2,Z) = SL(2,Z)/{+1} donne un isomor-
phisme de groupes de [SL(2,7),SL(2,7Z)] sur le sous-groupe normal dérivé [T,T] du
groupe modulaire projectif T, sous-groupe qui est aussi libre a deux générateurs. Ceci

donne une suite exacte,

1— F, —SL(2,Z) — C12 — 1. (5.25)
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En effet dans le cas contraire, on pourrait écrire avec un mot réduit en Ag et By
—1=w(Ao,Bo). (5.26)
Et en multipliant cet élément par lui méme, on aurait une expression,
w (Ao,Bo)w (Ag,By) = 1. (5.27)

Or le mot du premier membre devrait se réduire au mot vide dans G, avec deux cas
a distinguer, tous deux impossibles :

(i) le mot réduit w(Ap,By) est vide. Dans ce cas w (Ao, Bp) est de longueur paire et
égal a w(Ap,Byg)~!. Mais par les simplifications internes a w(Ag,By) on trouve
une contradiction avec le fait que le mot w (Ag, By) Iui méme est réduit ;

(ii) le mot réduit w (Ao, By) n’est pas vide, mais on obtient alors une relation liant
Ap et By. Ceci est contradictoire avec le fait que G est un groupe libre.

En particulier, en considérant la projection canonique

V eSL(2,Z) — V = {+xV} €T =PSL(2,Z) = SL(2,Z) / {+1}. (5.28)
On obtient par restriction un isomorphisme de groupes,
F, = [SL(2,2),SL(2,Z)] — [T,I1]. (5.29)

D’autre part, on a vu avant que 'on a —T° € F>.

Ce que l'on vient de démontrer impose que T ¢ F».

Dans le groupe quotient (SL(2,Z)/F>), la classe Tr, de T qui engendre ce groupe
est donc d’ordre 12 et non 6. La suite exacte en résulte facilement (voir [2] pour la
définition d'une suite exacte). Ceci termine la démonstration de premiére partie de la
derniére proposition. Le reste de ce résultat est évident.

REMARQUE 5.3. On trouve dans I'ouvrage de Newman [29, chapitre VIII] des résul-
tats complétant ce qui précede. Dans le groupe I tout sous-groupe normal est libre, a
I'exception des trois groupes suivants : I' le groupe entier, A(S) sous-groupe normal
d’indice 3 engendré par S, A(ST) sous-groupe normal d’indice 2 engendré par ST.

De plus, tout sous-groupe normal libre G’ de I d’indice fini u est libre de rang r
avec

r=1+ (5.30)

=

Le niveau du groupe G’ est défini comme étant le plus petit entier n tel que T appar-
tienne a G'. Le genre du groupe G', qui a une signification pour la surface de Riemann
obtenue en quotientant le demi-plan de Poincaré H par le groupe G’, est alors le
nombre

H(n-=6)

on (5.31)

g=1+
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g =1 est la seule valeur du genre pour laquelle il existe une infinité de sous groupes
normaux d’indice fini de I'. Pour les autres valeur de g, il n’y a qu'un nombre fini
de possibilités pour u, et on trouve dans [28] une classification des sous-groupes
normaux de I' = SL(2,Z) /{+1} par indice et par genre. Newman définit aussi les sous-
groupes de congruence principaux I'(n) de niveau n. Il donne I'expression de leur
indice pour n > 2,

1, 1
= - 1-— . 5.32
pn) an( pz) (5.32)

5.4. Interprétation de I’arbre sur les générateurs de F». En rapprochant le théoreme
2.1 et les conséquences tirées ci-dessus de la proposition 5.1, on obtient le théoreme
suivant.

THEOREME 5.4. Tout couple de générateurs (A, B) du groupe F, donne un triplet de
solutions de I'équation de Markoff tel que

(m,mi,m,) = ((tr (B)/3), (tr(4)/3), (tr (B"A71)/3)) e (N-{0})°.  (5.33)

Inversement, pour tout triplet (m, m;,m,) € (N—{0})3 de solutions de I'’équation de
Markoff il existe un couple de générateurs (A,B) du groupe F, vérifiant I'égalité préce-
dente.

Remarquons que dans le théoréme 2.1, I’écriture des triplets utilise des expressions
de forme

((tr (B™")/3), (tr(A)/3), (tr (B~ A7")/3)). (5.34)

Au contraire, dans la proposition 5.1, on utilise des triplets de forme
((tr(B)/3),(tr(A)/3),(tr(AB)/3)). (5.35)

Ceci n’a aucune importance, car pour toute matrice V de SL(2,7Z) on a
(V) =t (V1. (5.36)
Le théoreme 5.4 assure un lien profond entre la théorie de Markoff et I'’étude du
groupe libre a deux générateurs. Comme ce groupe est défini indépendamment de sa
présentation matricielle sous la forme de groupe dérivé de SL(2,Z), on doit appro-
fondir ce lien pour comprendre comment faire apparaitre un arbre de facon directe a

partir du groupe libre a deux générateurs le plus général.

6. Equivalence des couples de générateurs de F»>. Le théoréme 5.4 conduit a consi-

dérer 'application surjective de '’ensemble des couples de générateurs de F» dans
I’ensemble des triplets de solutions de I’équation de Markoff :

I: (A,B) — ((tr(B~)/3), (tr(A)/3), (tr (B'A71)/3)) € (N-{0})°.  (6.1)
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Différents couples de générateurs de F> ont pour image par IT la solution singuliére
(1,1,1) par exemple (Ao, Bo), (Bo,Ao), (By'Agt, Ap), .... Ceci montre que I'application
IT n’est pas injective.

La remarque que I'on vient de faire conduit a poser cette définition.

DEFINITION 6.1. Un couple de générateurs (A, B) du groupe F, est fondamental si
et seulement on a

I1(A,B) = (1,1,1). (6.2)

Il est alors facile de s’assurer qu'’il existe une infinité de couples de générateurs
fondamentaux, par exemple ceux qui sont de la forme, avec N € GL(2,7)

(NAGN~',NBoN~1). (6.3)

Cette remarque sur le role des automorphismes intérieurs conduit a poser plus
généralement la définition suivante.

DEFINITION 6.2. On dit que deux couples de générateurs (A;,B;) et (Az,B) du
groupe F> sont équivalents par un automorphisme intérieur de GL(2,7Z) si et seulement
s’il existe une matrice N € GL(2,Z) telle que I'on a

(A2,B2) = (NAIN"L,NBN71). (6.4)

On vérifie facilement que cette définition donne bien une relation d’équivalence.
Elle peut d’ailleurs étre rendue plus fine, en une équivalence par un automorphisme
intérieur de SL(2,Z), en imposant la condition plus forte N € SL(2,7).

On voit par exemple que les deux couples (Ag, By) et (By,Ap) sont équivalents avec

N=i0=i|: O} € GL(2,2). (6.5)

0 -1

Par contre, les deux couples (Ao, Bp) et (Ay 1 By) ne permettent de trouver aucune
matrice N € GL(2,7) les rendant équivalents par un automorphisme intérieur.

6.1. Caractérisation des couples fondamentaux. En approfondissant la derniére
remarque faite, on énonce ce théoréme.

THEOREME 6.3. Pour tout couple de générateurs (A,B) du groupe F», on a équiva-
lence des propriétés suivantes :

(1) Le couple (A,B) est fondamental.

(2) Le couple (A,B) est équivalent par un automorphisme intérieur de GL(2,7Z) au
couple de générateurs (Ao, Bo).

Dans ce cas, il y a unicité au signe preés de la matrice N € GL(2,7) telle que

(A,B) = (NAQN"!,NByN~1). (6.6)
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(i) L'implication (2)=(1) est évidente.
(ii) L'unicité de la matrice N au signe prés s’établit a partir de 1’égalité

(NAGN~',NBoN~') = (MA;M~',MBoM ™). (6.7)
On pose
MIN = [““ “12]. 6.8)
XK1 (X2

On développe et on identifie, en utilisant les expressions de A et By. Il reste que
X2 = 21 =0, o1 = 022, (6.9)

Avec la condition o1 22 — X261 = =1, on trouve la seule possibilité,

1 0
~1 _
M N—i[o J. (6.10)
Et donc nécessairement
M = +N. (6.11)

(iii) L'implication (1)=(2) est beaucoup plus délicate a établir. Avec les conditions
sur les traces de A et B qui sont égales a 3, on pose

A— [Mu U2 } , B— [an a2 } . (6.12)

Uz1  3—U1l a 3-an
Comme ces deux matrices sont dans SL(2,7Z), on a par les déterminants
u§173u11+1 = —Ui2U21, a%173a11+1 = —apay. (613)

L'idée de la démonstration qui suit consiste a interpréter ces deux égalités dans
un anneau d’entiers quadratiques pour en déduire une structure paramétrique des
matrices A et B. On combine ensuite ces structures pour construire I'automorphisme
intérieur recherché, sachant que I'hypothese essentielle a utiliser a ce stade est que la
trace de la matrice AB est aussi égale a 3.

6.1.1. Interprétation des égalités issues des déterminants. On interprete icil’éga-
lité qui résulte de la valeur du déterminant de B. On le fait dans 'anneau des entiers
quadratiques Z[w], ou

w = 1+2\/§:w2—1. (6.14)

Cette égalité s’écrit avec la norme de I'anneau Z[ w],

N(a11—2+w) =—-appay]. (6.15)
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L'idéal a;2Z[w] de Z[w] se décompose d'une et une seule facon en un produit
d’idéaux premiers inertes, décomposés ou ramifiés :

arzZlw] = (2] (pizlw])™ ) (N7 (pa,ea+ @)™ ) (21 (prer + ) ™). (6.16)

On a, selon la nature des idéaux considérés,
(i) pi # 5 nombre premier égal a 2 ou impair tel que 5 non résidu quadratique,
(ii) pa # 5 nombre premier impair tel que 5 résidu quadratique,
(iii) py = 5.
En passant aux normes des idéaux

N(arzZlw]) = at, = 7 (p7 )1 (pg? 121 (pF). (6.17)
Ceci impose dans Z que 4 et B, soient pairs. D’ou une décomposition dans Z,
ar =112 (pP gy (pf 2 Yy zn (p ). (6.18)
Sachant que Z[w] est un anneau euclidien et donc aussi principal, on peut écrire
(pa,eq +w) = xgZ[w], (pr,er +w) =, Z[w]. (6.19)
Avec les normes des idéaux, en utilisant éventuellement N(w) = —1, on a
pa=N(xa), 5=pr=N(a). (6.20)

Ceci donne

axz =112} (P )N (I (o )iy = (o %) ). (6.21)
1l en résulte la possibilité de décomposer a;» avec

ap = H%j (Pfl)N(B) = apN(B),
B (T () = ps g e il 622

aj, =112 (pf) e N— {0}
En échangeant les roles de ai» et a1, on a de méme

an =TI (pl)N(y) = a5 N(y),
y =114- ((xzd/z) (0(?/2) =po+qnw e Z[w], (6.23)
ay =1 (p]") e N={0}.
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On peut de méme décomposer l'idéal (a;; —2 + w)Z[w] d'une et une seule facon
en produit d’idéaux premiers :

(@11 —2+w)Z[w] = (2} (pizlw)™) (M2 (pa,ea+w)™) (21 (pr.er +w)™).

(6.24)
Ceci donne pour les normes des idéaux
N((an -2+w)Z[w]) = |a?, —3a;; +1|
=1 2A; A - Ay
= (HL% pi )(Hg:qn Pdd) (H;:{l > )
(6.25)
= |6l12¢l21|
i+tYi (( )/2) r+yr)/2
— Hl(pf +Y )Hd(pdﬁd+yd )HV <p1(’(B +yr)/ ))
On en déduit, pour tout i =1,...,l", que
Bi+yi=2A;. (6.26)
Ceci permet de définir
0 =11=V"p}. (6.27)
L'intéret de ce qui précede est que I'on est parvenu a une décomposition,
_ 7 2 2 _ 7
apz =aj; (Pu +Pp12q12 —1112) =alpN(prz+4a2w), 6.28)
az = ay (P%l +p21421 _451) = a5 N(pa1+qaw).
Par ce que I'on vient de voir sur les normes et N(w) = —1, on a la possibilité d’écrire
(a11 -2+ w) = 0w (pr2+q12w) (P21 + 421 W),
(6.29)

. 2
0% = aj,ah, = (Hill (pi))") carré dans N — {0}.

En développant la derniére expression et identifiant, on en déduit les conditions
suivantes dans 7 :

a1 —2=0(q12p21 +P12a21 + q12421),

(6.30)
1=0(q12p21 +P12d21 + P12P21 +2q12921) -

La derniére égalité impose 0 = 1. Par 'expression de 02 vue avant, on obtient a}, =
as =1.
D’ou finalement les deux égalités

1= (qi2p21 +P12d21 + P12P21 +2d12921),

(6.31)
ain = (2+qu2p21 +P12a21 + q12d21).-
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Ceci donne différentes expressions paramétriques pour la matrice B, avec p12,4q12,
p21,4q21 € Z, par exemple,

B (2+q12p21 +P12d21 +q12G21) (szerzmz*Q%z)
(P§1+V216121—Q§1> —1+2p12p21 + d12P21 + P12d21 + 312421 |
(6.32)

La méme conclusion vaut pour la matrice A, avec d’autres parametres entiers.

6.1.2. Construction d’'un automorphisme intérieur associé. On cherche ici a iden-
tifier une matrice N € GL(2,7) telle que

B=NBoN. (6.33)
On la suppose de la forme
N= [““ “12]. (6.34)
K21 (X2

On remarque d’abord qu’'une seule de ces matrices N les détermine toutes. Il suffit
en effet de remplacer N par NV, avec

By = VBV L. (6.35)

Cette derniere égalité donne toutes les possibilités pour V

V= [vl v } avec v1,V» € Z. (6.36)
V2 V1—7V2

La condition det(V) = +1 s’obtient par la résolution de I'’équation diophantienne
suivante :

vZ—vvp -5 = =1, (6.37)

Elle posséde une infinité de solutions données avec les nombres de Fibonacci [3].
En particulier, on peut faire en sorte d’avoir det(V) = —1 si on le veut.
On écrit maintenant la relation définissant N sous la forme

BN = NBy. (6.38)
Ceci est équivalent a la conjonction des quatre conditions suivantes :

(a1 —1) a1+ iz + a2 =0, ai o+ (2—an) o + oo =0,
(6.39)
o1+ (A —2) iz +apeee =0, a1 o2+ 021+ (1—an) oo = 0.

Avec I'expression du déterminant de B, ces relations se réduisent a deux, de sorte
que 'on peut se limiter a rechercher o et 2 tels que

e - ae] 640

o1 (A —2) ez —az i
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La condition det(N) = +1 s’écrit
apo3 +(2a —3) o1 oo —az o, = =1. (6.41)
Multipliée par a», elle permet d’écrire avec les expressions établies précédemment

(ar2021 + (an —2)0(11)2 + (ar2001 + (a1 —2) oq1) oy — oy
5 ) (6.42)
= i(Plz +Pi24qi2 —1112)-

Dans 'anneau principal Z[ w], elle est assurée pourvu que I'une ou I'autre des deux
conditions suivantes soit vérifiée, avec n € Z :

apoor + ((an —2)+w)or = 2w (pr2 +qr2w), (6.43)

a12a21+((a11—2)+w)(x11 :iw"(p12+q12w). (644)

Multipliée par a»i, on s’assure de méme que l'une ou 'autre des deux conditions
suivantes doit étre vérifiée, avec m € 7 :

(I1-(an—2)w)ao +axwon = £w™(p21 +g210), (6.45)

(1-(a11 —2)w)oe +ar waog; = =™ (p21 +qo1w). (6.46)
Dans ce qui précede, on a établi que

(a11-2)+w=w(pr2+4q120) (P21 + a1 W),

(6.47)
a2 = (P12 +4q120) (P12 +q120) = N(p12 + q12w).
La condition (6.43) se simplifie donc dans Z[w] en la suivante :
(Pr2+q120) 001 + W (P21 +q210) 11 = ™. (6.48)

De méme, on peut utiliser la relation suivante qui découle par conjugaison d’'une
précédente écriture :

(1—(an -2)w) = (p12 +q12w) (P21 + a2 w). (6.49)
On combine avec
az = (p21+ a2 w) (P21 +d210) = N(pa1 + @1 w). (6.50)
En simplifiant dans Z[w] la condition (6.45), on en déduit que
(P12 +d12w) 021 + 0 (P21 + g1 ) &1 = =™, (6.51)

En comparant les deux conditions (6.48) et (6.51), il apparait que I’on a nécessaire-
ment

m=mn. (6.52)
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De sorte que les deux conditions (6.43) et (6.45) constituent la méme relation a un
facteur prés de Z[w].

Par le méme procédé, on voit que (6.44) et (6.46) sont la méme relation a un facteur
pres de Z[ w].

11 suffit maintenant d’utiliser les nombres de Fibonacci qui donnent pour tout n € Z

w" =% 10+ Fy_o. (6.53)
On en déduit, dans le cas ou (6.43) ou (6.45) est assurée que

(Fno10+Fn_2) = (@111 + P21 611 —F12X21) W

+ (pr2021 + 12001 +g21611).

+ Fon_
a1 Pi2+qi12 | | &11 - OJL 2 _ (6.55)
p21+4d21 —qz1 21 Fn-1

Le déterminant de ce systéeme en «;; et &z vaut

(6.54)

En identifiant

—P12P21 — P12d21 — q12P21 — 2d12q21 = — 1. (6.56)

Il permet la détermination effective de la matrice N avec

[0 + Fn—
1 ai2 P12 +qi12 Tn 2| (6.57)
2] p21+4d21 —q21 Fn-1
Dans le cas ou c’est au contraire (6.44) ou (6.46) qui est assurée, un calcul analogue
peut étre fait. Il permet de méme la détermination effective de la matrice N.

Remarquons qu’avec ce qui a été vu avant pour la matrice V, on peut faire en sorte
d’avoir det(N) = 1. On a donc établi dans ce qui précéde la proposition suivante.

PROPOSITION 6.4. Pour toute matrice B € SL(2,7Z), on a équivalence des trois pro-
priétés suivantes :
(1) tr(B) = 3.
(2) II existe une matrice N € SL(2,7) telle que
B=NByN'. (6.58)
(3) 11 existe une matrice N € GL(2,Z) telle que

B=NByNL (6.59)

Cette proposition est applicable aux deux matrices A et Ag. Appliquée a Ay, elle

permet d’écrire
-1
0 1 0 1
T 500
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Avec une expression comparable pour la matrice A, on déduit en éliminant By I’exis-
tence d'une matrice M € SL(2,7Z) vérifiant

A=MAM . (6.61)

6.1.3. Fin de la démonstration du théoréme 6.3. On peut maintenant supposer
que 'on a avec M,N € SL(2,Z) les écritures suivantes :

A=MAM™', B=NBN' (6.62)
En combinant ces expressions, on obtient
BlA™l = NBjIN"'MAG!M. (6.63)
Ceci conduit a considérer la matrice

w; Wy

W=N4M:[
w3 W2

] € SL(2,2). (6.64)

On utilise 'hypothése essentielle que la trace de B~'A~! est égale a 3, et on I'écrit
sous la forme équivalente,

tr (By'WAGIW ™) =3 = 3(w1 @, —w3wa). (6.65)
Ceci donne une équation diophantienne,
WE — W5 + W3 — W5+ 2WrW] — W Wy — W)Wy — W3Wy4 + W3 +wW w03 =0. (6.66)
Celle-ci posséde par construction deux solutions évidentes :
(w1, @2, @3, @4) = £(1,1,0,0). (6.67)

Pour déterminer toutes les autres solutions, on orthogonalise la forme quadratique
avec les quatre vecteurs suivants :

00(0,1,0,0),  v1(0,1,2,0),  v2(0,1,-1,3),  03(2,1,-1,1). (6.68)

On obtient ainsi la forme quadratique plus simple,

ya+3y?—4y2 —12y3. (6.69)
Oou
w1 =2y, w2 = Y2 +3Y3,
(6.70)
w3 =2Y1— Y2~ Y3, Wy =Yo+y1+y2+Yys.

Une solution particuliere issue de celle identifiée ci-dessus est

e = =(-1 (2. (2).(2), 6
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Le calcul que I'on vient de faire introduit naturellement une algebre de quaternions
classiquement notée [1, page 18], ou Q désigne le corps des nombres rationnels,

-3,4
(249) a2

Dans cette algeébre, la derniére forme quadratique est en réalité la norme du qua-
ternion suivant :

d=Yoeo+yier+y2ez+yses. (6.73)
En exprimant (yo, y1,Y2,y3) en fonction de (w;,w,ws,w™s), tout revient a recher-

cher un quaternion de norme nulle dans le sous-module engendré par les quatre élé-
ments suivants :

ep—ex _
2 ’ qZ - 6 )

o = o, o _3eofe172e3 a __3eofe173e2+e3_

(6.74)
Les regles de calcul de I'algebre, ou e est unité, sont les suivantes :

e? =-3ey, e3=dey, e1er = —ese; = e;. (6.75)

Cette algebre de quaternions n’est pas un corps puisque la forme quadratique asso-
ciée a une solution rationnelle non triviale. C’est donc une algébre isomorphe a M> (Q),
I'algébre des matrices 2 x 2 a coefficients rationnels [1, page 20].

1l est facile d’expliciter I'isomophisme de cette algebre de quaternions sur M»(Q) a
partir du fait que I'on a une solution évidente (x,y) = (1,1) pour 'équation

—3x%2+4y°%=1. (6.76)
On pose pour cela que
eg = eo, el =ej;+ey, ey =es, ey = —4e; —3ey. (6.77)

Ceci donne une base de I'algébre de quaternions notée usuellement

1,12
(12, oo

Or cette derniere base est facilement explicitable sous la forme matricielle [1, page
20]. On en déduit des expressions pour les éléments ey, ey, e2, e3. Ceci permet d’écrire
sous la forme matricielle,

Yo—3y1+4y2 Y1—Ye—Y3

. (6.79)
—12y1+12y2—12y3 Y0+3}/1—4Y2}

q=Yoeot+yieit+yz:extyse3= [

Lanorme N(q) de ce quaternion n’est autre que le déterminant de la matrice corres-
pondante. Elle vaut

Yo +3yi—4yi —12y5 = (yo—3y1 +4y2) (Yo +3y1 —4y2)

(6.80)
—(y1=y2—y3) (= 12y1 + 12y, —12y3).



220 SERGE PERRINE

Tout revient donc pour le probléme qui nous concerne, en remplacant les termes
yi par leurs expressions en fonction de w;, @w», @3, W4, a étudier 1’égalité dans Z,

(wl + W4 —2@'3 —wz) (‘LD'4 + W3 —ZZIJ'I) = (w1 — W3 —wg)(Szm — 3?2 —wl). (6.81)
Une solution simple consiste a poser avec de nouveaux parametres dans Z

(w1 + w4 — 23 —w2) = A1y, (4 + w3 —2w1) = L2y,
(6.82)
(w1 —w3—w2) = A1z, 3wz —w2 —w1) = i As.

En inversant ces relations et en remarquant que les expressions obtenues donnent
une décomposition en produit de matrices pour W,

W=2 [iﬁljﬁ Lﬁl__zuﬂ [;; E?‘fl t?\z] . (6.83)
En passant au déterminant, on obtient I’égalité suivante :
(b3 + o — ) (A2 +3M4, -23) =4 (6.84)
Cette égalité s’interprete dans 'anneau Z[w] sous la forme
(2) = (2 +p1w) Z[w] - (AL +2A2 —Arw)Z[w]. (6.85)

Comme I'idéal (2) est premier et inerte dans I'anneau principal Z[w], il en découle
seulement deux possibilités.
(1) La premieére possibilité donne

(AL +2A2 = Aw)Z[w] = (2), (U2 + i) unité de Z[w]. (6.86)

Elle impose que (A +2A2 —Apw) soit multiple de 2 par une unité € + Cw de Z[w].
Et ceci se traduit dans GL(2,7Z) comme suit :

A1 201+ A 1 2 & C
=2 . .87
|:/\2 —Al—Az 0 -1 C E+§ (6.87)
En remplacant dans le produit précédent égal a W, on en déduit une autre décom-
position de W en deux nouvelles matrices que I’on note respectivement Ny ' et My,

W N-M = [—3uz+2u1 —4H2+3H1} [s C

= Ny ' M. 6.88
—2up+py =3+ || C f+§} 00 688

On vérifie alors, avec les expressions de Aj et My que I'on a

MoAy Myt = Apt. (6.89)
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On s’assure d’autre part, avec I'expression de By et Ny, que 'on a
NglAGtByAgNy = Bo. (6.90)
On introduit alors la matrice
R =NNy'AG!t = MMyl AGL. (6.91)
Elle donne par construction
RAoR™ ' = MMy 'AgtAgAgMoM !
=MMytAgMgM ™' = MAM ™! = A, (6.92)
RBoR™ ' = NNj'A;'BoAgNgN~! = NByN~! = B.
(2) La seconde possibilité donne
(2 + i w)Z[w] =(2), (A1+2A2—Aw) unité de Z[w]. (6.93)

Elle se traite exactement de méme et conduit a la méme conclusion.

On a donc identifié de facon constructive un automorphisme intérieur. Et ceci ter-
mine la démonstration de notre théoréme.

Sur I'exemple particulier du couple (A,B) = (By,Ap), on peut calculer I'unique ma-
trice N € GL(2,7) telle que

By =NA)N~!, Ao =NByN~L. (6.94)

On trouve I'unique matrice

-1 0
N=0= [ 0 1] € GL(2,2). (6.95)

Remarquons qu’elle n’est pas dans SL(2,7Z). Ceci montre que le théoreme 6.3 n’est
pas vrai si I'on remplace dans son second énoncé GL(2,Z) par SL(2,7).

6.2. Généralisation aux autres couples de générateurs. Le théoreme 6.3 débouche
sur un résultat beaucoup plus vaste, ce théoréme.

THEOREME 6.5. Deux couples de générateurs (A,B) et (A’,B’) du groupe F, étant
donnés, on a équivalence des propriétés suivantes :
(1) Ona

II(A,B) =TI(A",B). (6.96)

(2) Les deux couples (A,B) et (A’,B’) sont équivalents par un automorphisme inté-
rieur de GL(2,7).
Dans ce cas, il y a unicité au signe pres de la matrice N € GL(2,Z) telle que

(A",B’) = (NAN"',NBN71). (6.97)
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On proceéde comme dans la démonstration du théoréme 6.3 :
(i) L'implication (2)=(1) est évidente.
(ii) L'implication (1)=(2) se fait en utilisant le fait établi avant que le couple de
générateurs (A,B) du groupe F»> donne un triplet de solutions de 1’équation de
Markoff

(m,my,my) =TI(A,B)

= ((tr(B1)/3), (tr(A)/3), (tr(B-1A"1)/3)) € (N {0})°. (6.98)

Dans I'arbre complet de tous les triplets de cette équation, on peut construire avec
les transformations X, Y et Z un chemin ch(X,Y, Z) conduisant de ce triplet au triplet
(1,1,1).

En combinant, on trouve ainsi deux mots W; et W» vérifiant

(W1 (A,B),W2(A,B)) = (1,1,1). (6.99)
Par le théoréme 6.3, on établit que
Wi(A,B) = RAGR™',  W2(A,B) =RBoR . (6.100)
Par le chemin inverse dans I'arbre complet, on peut alors écrire

A=W} (RAoR™',RBoR™1) = RW;*(Ag,By)R 7},
. . 4 (6.101)
B =W, (RA)R™',RByR™") = RW," (A9, Bo)R™".
Sachant maintenant que pour (A’,B’) on peut faire le méme raisonnement avec les
mémes chemins dans le méme arbre, on peut écrire également

A" =R'w{(Ao,Bo)R"™', B =Rwj(A¢,Bo)R L. (6.102)

Et en éliminant les mots en A et By, il reste que

A =RRHARRYH™, B =RRHBRRY . (6.103)

Toutes les vérifications complémentaires étant faciles, le théoréme 6.5 en résulte.
Il interpréte I'arbre complet de toutes les solutions de 1’équation de Markoff dans
(N—-{0})® comme étant I'arbre des classes des couples de générateurs du groupe F»
pour l'action du groupe des automorphismes intérieurs de GL(2,7).

7. Conséquences pour le groupe des automorphismes de F,. On a évoqué dans
ce qui précede les automorphismes du groupe libre a deux générateurs F». Ce qui a
été dit se résume par le résultat suivant.
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PROPOSITION 7.1. Se donner un automorphisme ¢ € Aut(F,) du groupe libre F» est
équivalent a se donner un couple de générateurs de ce méme groupe F.

A partir du couple de générateurs (Ag,By) de F», choisi comme couple de référence,
il est en effet équivalent de considérer ¢ ou le couple de générateurs de F». Par abus
de langage ce dernier est aussi noté ¢,

¢ = (b(A0), P(Bo)). (7.1)

En pratique, ceci se traduit par I'existence de mots Wg) et W;,i’ tels que I'on peut
écrire sur le couple de référence (Ao, By), également appelé la base

$:A)— We(A0,Bo) = p(Ag),  p:By — WS (Ao,Bo) = p(By).  (7.2)

Pour tout mot W (@) écrit avec les deux lettres a et b, et tout élément W (Ao, By) du
groupe F»> qui s’en déduit dans la base (Ag, By),

b : W@ (Ag, By) — W (Ag,Bo) = (WP (Ao, By)). (7.3)

Sur le mot W(@P)| traduire ¢ revient a substituer le mot W, a la premiére variable
de W@b et W, a sa seconde variable. Ceci construit le mot W = W@ (W w)
écrit avec les deux lettres a et b. On peut en effet écrire

b (a,b) — (W w),

p:wab) .y - ylab (Wj’,W[f’). (7:4)
Et par construction, on a dans F»
W (Ao,Bo) = (WP (A0,B0) ) = W (b (Ao), b (Bo)).- (7.5)
Ceci revient a noter sous forme exponentielle
dla)=we, ¢y =wp. (7.6)

Avec les notations de [24, page 129] 'automorphisme ¢ est ainsi défini par la sub-
stitution libre ¢ agissant sur les mots par

a—we  b—wp (7.7)
L’automorphisme identique s’écrit
idr, = (Ao, Bo). (7.8)

1l donne sur les mots
id):2 id]:2

Wa'2=a, W, ?=b. (7.9)
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Pour la composition des automorphismes, on a avec la notation habituelle pour la
composition

Prop2 = (p1oP2(Ao), P10P2(Bo))

= (P1(2(A0)), P1(h2(Bo)))

(1 (w2 (A0,Bo) ), 1 (W (A0,B0) ) )

(W2 (d1(A0), b1(Bo)), Wi (b1 (Ao), 2 (Bo)) )
(

(

(7.10)

$1(
Wz (W (Ao, Bo), Wi (A0, Bo) ), Wi (W' (A0,B0), Wi (Ao, Bo) ) )
W 2(Wfl,wfl)(Ao,Bo),w,j’z(Wfl,wfl)(Ao,Bo)).

Soit

b1 0 b2 (Ag) = W P2 (Ag,By) = W (W‘fl’wfl)(AoyBo),

(7.11)
b1 0¢2(Bo) = W;?I %2 (A¢,Bo) = W;?Z( g)l,Wfl>(Ao,Bo)-

Ceci donne simplement sur les mots

W = wi (Wi wiit) = o (wid?),

Wg>1°<l>2 :W;bz (W‘;PI’W;M) _ d)l(W;,pZ)- (7.12)

Ces expressions reviennent a remplacer dans les deux expressions définissant ¢»
la lettre a par le mot Wf ! associé a ¢ (respectivement le terme Ag par Wg) (Ao, Bo)
dans F»), et la lettre b par le mot W[f ! associé a ¢ (respectivement le terme By par

21 (Ao, By) dans F).

Onremarquera que dans [24], [30, page 130], et d’autres références..., la substitution
libre qui en résulte est notée ¢ ¢p;. Avec nos notations cette substitution libre s’écrit
au contraire ¢ o .

Pour éviter toute confusion (voir [23, page 22]), on n’utilisera pas dans la suite la
notation ¢» ¢, qui inverse I'ordre des automorphismes par rapport a leur ordre dans
la notation habituelle de la composition ¢ o ¢ ici adoptée.

Par abus de language, on peut aussi faire agir ¢ sur F;' en notant

d)(Wl (AO’BO)P'"W"(AO!BO)) = (d)(Wl (A0=BO))="'1¢(WH(AO|BO)))' (7.13)

Ceci permet d’écrire de facon bien cohérente

b1oa = (b1 (W2 (A0, Bo) ), b1 (Wi (A0, Bo) ) )
= 1 (W (A0,B0), W (Ao, By) ))
= ¢1((2(Ao), P2(Bo))) (7.14)
= ¢1(h2(Ao,Bo))
= 10 p2(Ao, Bo).
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Le théoréme 6.5 peut alors étre présenté au moyen de ’action des automorphismes
intérieurs sur le groupe Aut(F») des automorphismes du groupe libre F,. On se limite
ici a considérer les automorphismes intérieurs sur GL(2,7).

Remarquons en effet que les notations précédentes permettent de définir

() =T1($(Ao), P (Bo)). (7.15)

Le théoréme 6.5 peut alors étre écrit avec un automorphisme intérieur @y sous la
forme

I(¢) =11(¢p") = pnop = (7.16)

7.1. Précisions sur les automorphismes intérieurs. Les automorphismes que 'on
considere dans ce qui précede sontissus d'une représentation du groupe libre F» dans
le Z-module 72,

pAOBOZFz —’GL(Z,Z). (7.17)

Cette représentation transforme les générateurs du groupe libre en A et By. En fait,

PAyB, €St un isomorphisme de groupes de F, sur son image que I'on a précédemment
identifiée a F,

F> = payp, (F2) = [SL(2,2),SL(2,Z)] sous-groupe normal de GL(2,2). (7.18)

Egalement, on a indiqué que F» est un sous-groupe normal de SL(2,Z), lui méme
normal dans GL(2,7),

7.1.1. Les automorphismes intérieurs de GL(2,7). On définit d’abord avec N €
GL(2,Z) les automorphismes intérieurs que 1’on consideére ici

@N:V EGL(22,7) — @n(V) =NVN™! € GL(2,7). (7.19)

Ces automorphismes constituent pour la composition un groupe noté Int(GL(2,2)).
Par construction, on dispose d'un homomorphisme surjectif de groupes

@4« :NeGL(2,7Z) — @4« (N) = @y € Int (GL(2,2)). (7.20)

Le noyau de cet homomorphisme, qui est le centre C(GL(2,7)) de GL(2,7Z), peut
étre calculé. Si N € Ker(@4), on a pour tout V € GL(2,7Z) I'égalité

NV =VN. (7.21)

Cette égalité peut étre considérée pour les matrices V € GL(2,Z) suivantes :

1 1 1 0
L) -
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Ceci donne les seules possibilités N = +1,

C(GL(Z,Z))z{i[(l) ﬂ}:{ﬂ}. (7.23)

On a donc un isomorphisme de groupes factorisant, @,
@, :GL(2,2)/{=1} =PGL(2,Z) — Int(GL(2,2)). (7.24)

Pour tout N € GL(2,7), en notant N = {+N} la classe de N dans PGL(2,7), ceci
permet d’écrire

PN =P« (N) =9, (N) = Py. (7.25)

Remarquons que @, peut étre restreinte a PSL(2,7), comme @, peutl’étre a SL(2,7).
On utilisera dans la suite les mémes notations pour ces restrictions.

7.1.2. Restriction a F>. Comme F, est normal dans SL(2,7), lui méme normal dans
GL(2,7), chaque élément de Int(GL(2,Z)) laisse F» stable. En remplacant N par N1,
on voit que tout élément @y € Int(GL(2,Z)) se restreint en un automorphisme de F»,
et s’identifie en réalité a un élément de Aut(F;). Ceci donne un morphisme injectif de
groupes

rest:Int (GL(2,Z)) — Aut(F). (7.26)

Par composition omise dans les notations, il apparait ainsi deux homomorphismes
de groupes dont le second factorise le premier,

rest@, : N € GL(2,Z) — rest @ (N) =restpy € Aut (F>),

— I (7.27)
rest@, : N € PGL(2,7) — rest®, (N) =restpy € Aut (F,).
IIs vérifient pour tout V € F, que
rest@, (N) (V) =rest@y (N)(V) =restpy (V) = y(V) = NVN~L, (7.28)

L’'injectivité de @, impose celle de rest® . Mais ceci peut se vérifier de facon directe
en considérant toutes les équations résultant des deux relations suivantes :

NAoN~! = A, NByN~! = By. (7.29)

Elles donnent N = +1, ce qui permet de conclure. En particulier, il en résulte I'iso-
morphisme de PGL(2,7) et de son image dans Aut(F,) par 'homomorphisme injectif
restQ,,.
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Ceci montre, avec les remarques faites autour de la proposition 4.3, que le groupe
rest@, (PGL(2,7)) =~ PGL(2,Z) est engendré par trois automorphismes de F»> que 'on
note d’apres la proposition 7.1,

0 = 1est, (0) = (Bo,Ao), s =rest, (5) = (451, B5),

_ (7.30)
t =rest®, (T) = (By',AoBo).

7.1.3. Les automorphismes intérieurs de F,. Il existe un autre groupe que I’on peut
considérer. C’est le sous-groupe normal de Aut(F>) des automorphismes intérieurs du
groupe F> noté Int(F,).

Tout élément de ce groupe est défini avec N € F, par

Yn:VEF, — Yn(V)=NVN ! €F,. (7.31)
On peut considérer '’homomorphisme de groupes [2, chapitre 1, page 53], d’ailleurs
surjectif,

Wy :NEF> — Yy (N) = @y €Int(F). (7.32)

Son noyau est le centre C(F»2) de F>, composé des matrices qui commutent avec Ap
et By. En explicitant les deux conditions correspondantes, on trouve dans ce centre

les seules possibilités
1 0
+ [0 J . (7.33)

Mais avec la proposition 5.2 qui s’applique a F» = [SL(2,72),SL(2,7)], il reste en
réalité que

C(F,) = {1}. (7.34)
En d’autres termes ¢/, est un isomorphisme,
W F=[SL(2,7),SL(2,Z)] — Int(F>). (7.35)

7.1.4. Relations entre les différents groupes d’automorphismes. Les différents
homorphismes de groupes introduits ci-dessus ne sont pas indépendants les uns des
autres. On peut énoncer cette proposition.

PROPOSITION 7.2. Le groupe des automorphismes intérieursInt(F») du groupe libre
a deux générateurs F, est isomorphe a ce dernier groupe. De plus, si I'on note j I'in-
Jection canonique de F» dans GL(2,Z) et iy celle de Int(F,;) dans Aut(F»), on a la
factorisation suivante identifiant @ a la restriction a F, de rest . :

rest@yoj=resto@yoj=imnroPs. (7.36)
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Pour tout N € F, € GL(2,Z), on consideére @y = @« (N) € Int(GL(2,Z)), et bien str
resty € Aut(F»). Pour tout V € F», on a alors

rest@ (N) (V) =restpn (V) = n(V) = NVN~' = gy (V) = . (N)(V).  (7.37)

Avec j(N) = N, la proposition en résulte. Elle permet de considérer ¢, comme la
restriction de rest @, a F».

En particulier, le groupe Int(F,) possede deux générateurs /4 (Ag) et Y, (By). Il est
ordinairement identifié a son image dans Aut(F,) grace a i que 'on oublie usuelle-
ment. Le groupe Int(F,) apparait ainsi comme le sous-groupe de Aut(F») engendré
par les deux automorphismes suivants :

Wi (Ao) = Pa, =Test@y(Ag) =restP, (Ag) = (Ao,AoBoA61),

_ (7.38)
W (Bo) = Yp, =rest@s(By) =rest®, (Bo) = (BvoBGI,Bo)-

7.2. Une tour de sous groupes d’automorphismes de F,. Récopitulant, on peut
énoncer, avec ce qui a été vu avant, et notamment la proposition 5.2, cette proposition.

PROPOSITION 7.3. Ona
Int (F>) C rest®, (PSL(2,Z)) C rest@, (PGL(2,Z)) C Aut (F,) (7.39)

ou

restp, (PSL(2,Z)) ~T = PSL(2,Z) normal dans rest @, (PGL(2,Z)),
Int(F>) = restw*([PSL(Z,Z),PSL(Z,Z)]) ~ [T,I'] (7.40)

~ F,, sous-groupe dérivé deT.
Une question qui se pose de facon naturelle est de savoir sil'on a
Int (F») sous-groupe normal dans Aut (F»). (7.41)

Laréponse est connue et positive [24, page 169], [27]. Elle est due a Nielsen [30]. On
sait de plus que 'on a pour le groupe quotient

Aut (F) /Int(F>) = GL(2,Z). (7.42)

On trouve de plus dans [24, page 168] une présentation de GL(2,7) qui résulte d'une
présentation de Aut(F) en ajoutant une relation supplémentaire comme suit.

PROPOSITION 7.4. Le groupe GL(2,Z) a une présentation a trois générateurs Py,

000, Ugo, dont les relations qui le définissent s’écrivent

Py = 08y = (Uoo © Poo © 000 © Poo)” = 1, (0700 © Poo 0 Ugo)® = (Poo o 000)* = 1, (7.43)
[ 000 0 Uoo © 000, Uno] = 1, (0000 Upo)® = 1.
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En supprimant la derniére relation, on obtient une présentation du groupe Aut(F»),
dont GL(2,Z) est donc un quotient.

Ces résultats conduisent a examiner ce qui est connu quant aux présentations du
groupe Aut(F>). On fait quelques rappels dans ce qui suit.

8. Présentations du groupe des automorphismes de F,. Les résultats les plus an-
ciens sur ce sujet ont été obtenus par Nielsen [30]. On les considére ici en utilisant les
notations mises au point précédemment.

8.1. La présentation classique du groupe Aut(F,). Cette présentation du groupe
Aut(F>), due a Nielsen, est citée dans [24, Corollary N1, p. 164]. Conformément a notre
proposition 7.1, ses trois générateurs sont définis par les expressions

Py = (By,Ap), (noté antérieurement o =rest@, (0))

(8.1)
Uy = (AoBo,Bo), gy = (Aal,Bo).

Cette présentation est mentionnée dans ([12], ou oy est noté O comme dans [30]),
([15, page 24], avec d’autres notations). On va I'expliciter avec nos notations, compte
tenu que la composition des automorphismes privilégiée ici écrit les produits en sens
inverse du sens d’écriture habituel des travaux sur ce sujet.

Avec les définitions précédentes, Py et oy sont des involutions (des éléments
d’ordre 2),

P§ = 0§ =idF, = (Ao, By). (8.2)

Au contraire, Uy n’est pas une involution, mais permet d’en considérer d’autres qui
s’écrivent

PyodooPyoly = (A0B5',B5),  UpoPyoonoPy=(AoBo,Bjt). (8.3)
On trouve dans Aut(F,) des éléments d’ordre 4
Poooo=(By',Ag),  aooPy = (Bo,Apt). (8.4)
Les formules définissant nos automorphismes permettent de calculer

[Ug, 000 Ugo o] =Ual00’()<>U07100’0OU()OO'()OU()OO‘()=idp2 = (Ap,By),

. (8.5)
[O’()OU()OO'(),U()] :O'()OUO_1 OO'()OUO_] oggoUpyoopoUy :lsz = (A(),B()).
On trouve également un élément d’ordre 3,
oo PooUp = (BoAy', Agt). (8.6)

Au contraire de [24, page 169], le terme (Uj o Py o 0¢) n’est pas d’ordre 3

(UooPoo o)’ = (By'Ag' Ay AoBo, By ' Ag ' By ' AoBo) = W1 401 (A5 Bg!).  (8.7)
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Il faut donc bien faire attention a I'ordre de composition des automorphismes que
I’on utilise ici dans Aut(F»). Avec nos notations, la présentation de Nielsen du groupe
des automorphismes de F» est donnée comme suit.

PROPOSITION 8.1. Le groupe Aut(F») a une présentation a trois générateurs Py, 0y,
Uy, dont les relations qui le définissent s’écrivent

P2 =02 = (UpoPyoopoPy)’ =1,
) \ (8.8)
(0090Poolp)” = (Poooy)” =1, [00 0 Uye00,Up] = 1.

Il est possible de vérifier que Py, Uy, 0y sont des automorphismes intérieurs qui
ne sont contenus ni dans le groupe Int(F>) ni dans le groupe rest, (PSL(2,72)). Si tel
n’était pas le cas, on aurait

Py = (By,Ag) = (@« (Np)(Ag), @« (Np)(Bo)),
Uo = (AoBo,Bo) = (@« (Nu) (Ao), @« (Nu) (Bo)), (8.9)
00 = (A", Bo) = (@« (N ) (Ao), @+ (No) (Bo)).

Or ces expressions ne permettent de calculer aucune des matrices correspondantes
Np, Ny, Ny dans SL(2,7). On n’a donc pas affaire a des éléments de Int(F>) qui est
bien strictement plus petit que Aut(F»).

Par contre, on a

Py =rest®, (0) erestp,. (PGL(2,7)), (8.10)

cependant, une telle appartenance n’est absolument pas assurée pour Uy ni oy.
Avec ces trois générateurs, on a

Wa, =PooagoUyteayolUytePy, W, = 0poUytoapoUy?,
WZ(I) =Pyo0goUyo0poUge Py, llliol = 0¢ o Ug o 0o Uy, (8.11)
§ = Py o 0o Pyo 0y, t = UgoPyo 0y, 0=D"P.

8.2. Une autre présentation du groupe Aut(F;). On trouve dans un article de
Meskin [27] une autre présentation du groupe Aut(F») utilisant cinq générateurs. Pour
la traduire dans nos notations il faut également utiliser la transformation de passage
a l'inverse pour que les produits s’écrivent dans I'ordre imposé par la composition
utilisée ici.

Les cing générateurs sont les suivants :

L[lgé = (A(),ASIB()A()), L,UIEO1 = (B(;lA()B(),B()), Py = (B(),A()),

(8.12)
X:O'OOPOZ(BO,A61>, C:Uootoaoz(Bo,AalBo).



L'INTERPRETATION MATRICIELLE DE LA THEORIE DE MARKOFF ... 231

Les relations associées, qui peuvent se vérifier de facon directe sur les couples de
générateurs, sont les suivantes :
2. 2 _ _ ;
x*=P5=(xoP) =idp, (CoPy)” =g, XoX=Wi owsoL>
Poouyy 0Pyt =xowayox ™ =Cowy ol ! = gy, (8.13)
PoowploPyt =i, XowploX'=wa,  Cowpl ol ' =yilwa,.

Si 'on veut maintenant relier ces générateurs a ceux de Nielsen, on peut utiliser les

valeurs données en (8.11) pour @/, @y et t.

En sens inverse, on a
Up=xoPyoCoxoPyoogoPy, 0p=xoP. (8.14)

Ceci montre que Py, x et gy suffisent pour engendrer le groupe Aut(F,). Ceci appa-
rait d’ailleurs simplement a 'observation des relations précédentes qui donnent par
exemple

Wal=(Poo0)®,  wyl=(CoP)’. (8.15)

On trouve aussi
0 =Py, s=x°, t=xoPyoCoxoP. (8.16)

Ces égalités peuvent se vérifier directement avec les expressions des automor-
phismes Py, X, €. L’équivalence des présentations précédentes peut se démontrer avec
des transformations de Tietze [19].

8.3. Quelques conséquences. L’article [27] suggére implicitement que ’on a Int(F»)
sous-groupe normal de Aut(F»). Il traite cette question en notant 7T un morphisme ca-
nonique du groupe Aut(F») sur GL(2,7Z) qui résulte des présentations qu’il donne,

TT(WZ\(I,)=TF<(IJ§01)=1, "(P0)=Po=[(l) (1)} =1,

0 -1 1 -1
7T(X)=X=[1 0}=S, W(C)=y=[l 0}=TS.

Il donne pour le noyau de 1t

(8.17)

Ker(mr) = Int (F;) =~ F». (8.18)
D’autre part, il fournit pour 'image de 17 et ce qui en découle cette proposition.

PROPOSITION 8.2. Le groupe GL(2,7) a la présentation suivante :

GL(2,2) = (x,7,p0 | P = (pox)* = (poy)* =1, x* = %, x* =1). (8.19)

La comparaison de la présentation donnée ici pour GL(2,Z) avec celle de la
proposition 4.2 est facile avec

I = po, O = xpo, T = ypoxpo,

8.20
po=I, x=0I=S, y=TOI=TS. (8.20)
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On peut comparer a ce que I’on trouve dans I'ouvrage de Coxeter et Moser [12, page
85]

Ri=po= [(1) é} Rz = poxpoyxpo = [ 11 (1)] R3 =xpo = [ 01 ﬂ
po=Ri, x=R3(RiR3)R;', ¥ =Rs(RiR2)Rs".
(8.21)
On peut également comparer avec la présentation que donne de facon naturelle la
classique réduction des formes quadratiques binaires définies entiéres [32]. Les trois
générateurs privilégiés sont alors

0 1 -1 0 -1 1
|:1 0:| =R, |: 0 1:| = R3, [ 0 1:| = R3R1R>R3R;. (8.22)

Pour montrer I'équivalence de toutes ces présentations, comme 1’équivalence de
celle donnnée par notre proposition 7.4, on peut utiliser des transformations de Tietze
[19], et expliciter tous les passages nécessaires.

On peut également ajouter que ’on a avec les notations de [27]

SL(2,7) = (x,y | x* =1, x* = y3). (8.23)
Et au quotient, pour le groupe modulaire projectif,
PSL(2,Z) = (x,y | X* =3° =1). (8.24)
Avec les expressions rappelées avant, dues a [27], on trouve de facon directe que

(i) = m((Poo0)*) = (por) =1,
(ws) =m((CoP0)?) = (vpo)* =1,

n(U@:[}) ‘11], 7T(Uo)=[_01 (1’]

1 1
n(t):ﬂ(xoPo°?;°X°P0)=x170yxp0=|:—1 0]

(8.25)

-1 0
mw(s) =m(x%) =x% = =—1=m(t)3.
0o -1
On fait ainsi apparaitre dans GL(2,7) un groupe cyclique a 6 éléments dont 17 (t)
est un générateur. Avec [27], remarquons en passant que dans Aut(F;) il n’'y a aucun
élément d’ordre 6.

8.4. Abélianisation et applications. Un lien entre Int(F») et Aut(F») est classique-
ment fait [23, 24] par le processus d’abélianisation du groupe F». Le groupe F» se trans-
forme par le morphisme correspondant en un groupe commutatif libre, un Z-module
de rang 2 que I'on note additivement, avec a( projection de A et by projection de By,

proj: F» — F»/[Fa,F>] = 7°. (8.26)
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Tout automorphisme ¢ € Aut(F,) se factorise de facon naturelle, grace a cette
projection de F» sur 72, en un automorphisme 1’ (¢) € GL(2,7) ~ Aut(Z?),

7' (¢h) o proj = projodp. (8.27)
Dans la base (ag, by), on peut écrire

' () (ao) = proj (b (Ag)) = Xaado + Xpabo,

, . (8.28)
' () (bo) = proj (¢ (Bo)) = Xapao + Xppbo.
On n’a aucune peine a vérifier que ceci définit un morphisme de groupes,
$ € Aut (F,) — [“‘” ““b] €GL(2,7). (8.29)
Xpa Kpb

Ce morphisme est surjectif [23, page 24]. Ceci se vérifie en utilisant les automor-
phismes particuliers suivants, appelés transformations de Nielsen, qui engendrent
Aut(Fs) :

Py = (Bo,Ao), XA = (ASI,BO) = 0y, op = (AO,B61> = Pyoogo Py,

Bas = (AoBo,Bo) = Up,  Bpa = (Ao,BoAg) = PooUpoPy. (8:30)
On voit sans difficulté que leurs images dans GL(2,7Z) par le morphisme d’avant
engendrent ce dernier groupe.
Par ailleurs, il est facile de vérifier, avec la forme particuliére des automorphismes
intérieurs, que le noyau Ker de ce morphisme contient le sous-groupe Int(F,). Ceci
donne naissance a un morphisme canonique de groupes

Aut (F,)/Int (F») — Aut (F»)/Ker = GL(2,2). (8.31)

On peut alors utiliser une présentation de GL(2,7), des préimages dans Aut(F») de
ses générateurs, et montrer que les mémes relations appliquées a ces préimages dans
Aut(F») donnent des automorphismes intérieurs. C’est faisable comme dans [23, page
25] avec les trois matrices suivantes qui engendrent Aut(F») :

1 1 0 1 0 1
P A R A P (I R

Ces matrices sont associées a des automorphismes préimages, générateurs de
Aut(F,) :

0<=U0°P0°0'0=<B61,A030), 5=Po°0'0=(361,140), Y = Po = (Bo, Ao).
(8.33)
Les relations a considérer, qui correspondent a une présentation de GL(2,Z), sont
les suivantes :

A8 =B2A3 = (CA)?2 =(CB)??=C?%=1. (8.34)
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Les expressions des automorphismes donnent dans Aut(F.), avec les mémes rela-

tions
b = WiBy,A0] € Int (Fg), BZ o = WByAy € Int (Fg),

(8.35)
(yoo)® = (yoPp)? = y2 = idp, € Int (F»).

Ceci permet d’établir que tout élément de Ker est un automorphisme intérieur
contenu dans Int(F»). On a donc finalement I’égalité

Ker = Int (F»). (8.36)
Elle garantit I'isomorphisme de groupes,
Aut (F>)/Int (F>) = GL(2,Z). (8.37)

8.4.1. Traduction dans une base particuliére. On traduit les expressions vues
avant, en changeant de base pour commodité, ce qui revient a travailler a un auto-
morphisme intérieur prés de GL(2,7) :

s(Ag) =SAeS ' =Ayt,  s(By) =SBoS ! =B, (8.38)

Dans la base (bg,—ag) on trouve la matrice suivante, comparable a celle donnée
avant par 1 :

' (s)(bo) = —=bo, T (s)(—ao) = —(—ay),

, -1 0 (8.39)
Tr(s)—[o _1:|—7T(S).
On a vu aussi que
t(Ag) =TAT ' =By',  t(By) = TBoT ! = AgBo. (8.40)

Ceci se traduit dans la méme base par la méme matrice que 7,
' (t)(bo) = by — (—ao), ' (t)(—ao) = bo,

, 1 1 (8.41)
w'(t) = [1 0} =T1r(t).

Avec Py, on trouve au contraire que

' (Py) (bo) = —(—ao), ' (Py) (—ao) = —bo,

' (Py) = [_01 —01} e (Be) = 7 (sPo). (8.42)

Avec Uy, on obtient également la méme matrice que T,

7' (Uo) (bo) = bo, ' (Uo)(—ao) = —bo+(-ao),

1 -1

(8.43)
' (U) = [0 1 ] ~ (V).
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Avec 0y, au contraire,

7' (00) (bo) =bo, T (00) (—ao) = —(-ao),
wio =g 5 |- o = mtsan). o4
Ces relations permettent de constater que 1’'on a en fait :
PROPOSITION 8.3. L’automorphisme s vérifie les égalités
Pyos =50Py, 0poS =So0y. (8.45)

Et ces deux automorphismes forment avec Uy un systéme de générateurs du groupe
Aut(F>).

D’autre part, pour tout ¢ € Aut(F»), on peut introduire sur Aut(F,) un indice défini
par
det(p) = det (17 (). (8.46)

Il est évident par les formules données pour 71" que &ger €st un morphisme de
groupes surjectif a valeurs dans le groupe multiplicatif a deux éléments {+1}, centre
de GL(2,7). Ceci permet de donner la liaison entre 7t et v’ résultant des expressions
précédentes, et donc une interprétation du morphisme utilisé par [27].

PROPOSITION 8.4. Pour tout ¢ € Aut(F,), on a
M (P) = €ger(P) T (P) € GL(2,2). (8.47)

Pour tout automorphisme intérieur ¢ € Int(F,), on a la condition £get(¢p) = 1. Ceci
garantit aussi que
Ker(rr) =Ker (1t") = Int (F). (8.48)

Pour tout ¢ € Int(F>), on a 1w’ (¢) =1, d’oul &get (¢p) = 1. Ceci impose que
Ker (1t") = Int (F») C Ker(T). (8.49)
Inversement, pour ¢ € Ker (), deux cas sont possibles :

' () = gger(Pp) =1 soit ¢ € Ker (1),

p . , (8.50)
' () = €get(p) = —1 =5 soit ¢p € soKer (11').

Mais ce dernier cas est contradictoire, car le symbole de s comme celui de tout
élément de Ker (1) vaut 1. Seul le premier cas est donc vrai, imposant

Ker(rr) c Ker (1t") = Int (F). (8.51)

On en déduit I'égalité des noyaux mentionnée dans la proposition 8.4.
Remarquons que maintenant on comprend pourquoi I'indice &4¢; s'introduit dans la
présentation donnée par [27]. Ceci est lié a la propriété suivante sur les générateurs :

det(po) = -1, det(x) =1, det(y) =1. (8.52)
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Au contraire, dans la présentation de [12] on a
det(R;) = det(Ry) = det (R3) = —1. (8.53)

On peut également dire que les deux représentations 7t et 77" du groupe Aut(F»)
dans le Z-module Z? ne sont pas équivalentes.

8.4.2. Trois applications. On a trois conséquences classiques sur les éléments pri-
mitifs de F», la détermination des IA-automorphismes de F», et le calcul du centre de
Aut(F).

(i) Un élément A de F, est dit primitif si et seulement s’il existe un autre élément
B € F> tel que (A,B) est une systéme de générateurs de F». On dit alors que A et
B sont des éléments primitifs associés. La caractérisation des éléments primitifs est
importante pour différents problemes de topologie [6, 31]. Les travaux de Cohn autour
de I'arbre des solutions de I'équation de Markoff ont permis de faire avancer cette
question initialement résolue par Whitehead [16], [23, page 107], [24, page 166].

Il est clair, par ce qui précede, que deux éléments primitifs de F» sont conjugués
par un automorphisme intérieur si et seulement si leurs images par 1" sont égales.
Ceci a été établi par Nielsen en 1918.

(ii) Les IA-automorphismes de F» sont caractérisés par leur équivalence modulo
[F>,F>] alidentité de F». Ils constituent d’apres [30] ou [23, page 24] un sous-groupe
de Aut(F,) isomorphe a Int(F,). Or ceci est évident, car on a pour un tel IA-auto-
morphisme ¢

' (p)=1. (8.54)

Et on a vu avant que I'on a
Ker (1t') = Int(F2) = F>. (8.55)

(iii) Considérons ¢ € C(Aut(F,)) dans le centre du groupe des automorphismes.
On obtient du fait de la surjectivité de 11’ que

' (p) € C(GL(2,2)) = {+1}. (8.56)

Ceci donne
¢ eInt(F) U (soInt(F,)). (8.57)

Avec l'isomorphisme (¢, et ce qui a été vu avant sur le centre de Int(F>), le cas
¢ € Int(F>) se réduit a ¢ =idp,.

Le cas ¢ € soInt(F,) permet d’écrire ¢p = so @, (W(Ag,Bp)) ou W est un mot ré-
duit. L'expression de s permet aussi d’écrire ¢ = (/J*(W(Aal,Bgl)) o s. Et puisque ¢
commute avec s il reste que

W (W (A0, Bo)) = ws (W(As",Bo ") )- (8.58)
Comme /4 est un isomorphisme, il reste dans F» que

W (Ao, Bo) = W (A5, BY). (8.59)
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Or cette égalité n’est possible que si W est le mot vide, donnant W (Ay,By) = 1, et
donc ¢ = s. Mais comme il est facile de vérifier que s et t ne permutent pas, ce cas est
impossible. On vient donc d’établir (voir [23, page 24]) la proposition 8.5.

PROPOSITION 8.5. Le centre du groupe Aut(F,) est réduit a l'unité
C(Aut(F,)) = {idp, }. (8.60)

Ceci donne un isomorphisme de groupes, associant a tout automorphisme de F, 'auto-
morphisme intérieur qu’il définit dans le groupe Int(Aut(F,)),

¢ € Aut(F;) — ¢pokogp ! elnt(Aut(F)). (8.61)

Le théoréme de Dyer et Formanek [23, page 24] complete ce résultat en indiquant
que I'image du morphisme construit par cette proposition n’est autre que tout le
groupe Aut(Aut(F»)). La démonstration s’appuie sur un théoreme de Burnside carac-
térisant les cas ou Aut(Aut(F»)) =~ Aut(F»).

8.5. Questions de normalité. La question que I'on a développée quant au fait que
Int(F,) soit normal dans Aut(F;) est en réalité décomposable en trois questions inter-
médiaires issues de la tour de groupes d’automorphismes donnée par la proposition
7.3. Ces questions consistent a savoir si les inclusions de groupes de cette proposition
correspondent a la relation de sous-groupe normal.

Le groupe Int(F,) est normal dans tous les groupes intermédiaires entre lui et
Aut(F>). On va également tirer quelques conclusions de cette remarque.

8.5.1. Premiére question. Elle a été résolue de manieére directe et donne
Int (F;) est normal dans rest®, (PSL(2,7)). (8.62)

Cette propriété résulte de la proposition 5.2 établissant que F» = [T',I'] est un sous-
groupe normal de I' = PSL(2,Z). Pour tout V € F» et tout N € PSL(2,Z), on peut en
effet écrire

rest@, (N) oInt(V) o (rest@, (N)) ' =Int ((rest@, (N))(V)) eInt(F).  (8.63)
Le groupe quotient correspondant a été calculé par le théoréeme 4.1,
rest®, (PSL(2,2))/Int (F,) ~T/[I,T] = C. (8.64)
On a d’ailleurs trouvé dans ce qui préceéde des représentants privilégiés dans les
classes d’équivalence correspondantes a ce quotient. Ce sont les termes 7r(t)* ou
k=0,1,...,5.
Une vérification directe de cette derniére propriété est faisable en observant que

I'on a

to= Wpitagtpgay = WiBoAol = Wk = Wg, © QUZ; oWpyoWay = [Way, Wa,l. (8.65)
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Elle montre que tout élément de rest@, (PSL(2,Z)) peut étre écrit sous la forme
Ynotk =tkoywyn aveck=0,1,...,5 N,N' € F>. (8.66)

Le lien entre N et N’ est donné par I'égalité facile a vérifier de facon directe pour
tout N € F»
town ot™ = Yr). (8.67)

Une vérification directe montre en particulier que I'on a
S = WYauBy ot3, (8.68)

Les propriétés précédentes se résument comme suit [2].

PROPOSITION 8.6. Le grouperest®, (PSL(2,7)) est une extension de Int(F,) par Cg,
mais non un produit semi-direct de Int(F») par Cg. Cette extension est équivalente a la
donnée d’une suite exacte,

1 — F, —PSL(2,Z) — C¢ — 1. (8.69)

En effet on n’a pas t® = idg,. De sorte que I'on ne peut pas plonger Cs dans le groupe
rest@, (PSL(2,2)).
Supposons, en complément de ce qui précede, que I'on ait une égalité

WYn, ot = @, o tk2, (8.70)
1l en résulte que
thkr = () o (W) = W1y, €It (F). 8.71)
Or en appliquant le morphisme 7t ou 7', cette condition n’est possible qu’avec
ki = k2 (mod6). (8.72)
Sil'on a supposé comme avant que 'on a k;,k» € {0,1,...,5}, il en résulte que
ki =k». (8.73)

D’ou en simplifiant
YN, = UN;,- (8.74)

Et puisque 4 est un isomorphisme,
N1 = Ns. (8.75)

Les vérifications complémentaires étant évidentes, on a donc établi ce théoreme.

THEOREME 8.7. Tout élément de rest®,, (PSL(2,7)) peut étre écrit de facon unique
sous la forme
Wnoth =tkoy, k) aveck=0,1,...,5, N€F,. (8.76)
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Ce résultat peut étre traduit sur le groupe I' = PSL(2,Z) et son sous-groupe [I',I'] ~
F, par un résultat de suffixation qui résoud une question que I’on a posée antérieure-
ment.

PROPOSITION 8.8. Tout éléement deT = PSL(2,7Z) s’écrit sous forme d’un produit de
forme W (Ao, Bo)Wi(S,T) ou

W (Ao, Bo) € [T,T],
_ T (8.77)
Wi (S,T) € {1,5,ST,STS,STST,STSTS} (aveck=0,1,...,5).

De plus, cette décomposition est unique.

En appliquant en effet rest@,, I'image de tout élément noté V € I' s’écrit, par le
théoréme 8.7,

rest@, (V) = wyot* aveck=0,1,...,5, N € F,. (8.78)
Or on a
1=toy SZ(I/A()B()OtSa Sot:(IIA()B()OtAl
4 7
SotoS=aup, ot oWy, of3 = W A0Bot4 (AgBo) ot
= W a0Byt4(AgBo)By A7 BoAg © b
, (8.79)
Sotosol =W, g r4(AgBy)B5 Ay  BoAg O LT
_ 2 3
Sotosolos =, p 14(a08)B; A5 Boay ° L WagBy oL
_ 5
= W AoBot4(A0B0) By Ay BoAgt2 (AgBy) ° L

Pour chacun des mots Wy proposés, on a donc trouvé un mot Vi (Ag,By) € F» qui
permet d’écrire, en réindexant correctement les mots Wy,

5 = Wy, a0,80) © Wi (s, 1). (8.80)
Ceci donne
reStw* (V) =ynNo (yUVk(A(),Bo) ° Wk(sl t) = reStw* (va (A_OYFO) Wf (K’T)) (881)

Par injectivité de rest @, il reste seulement 'unique décomposition recherchée, ou
NVi(Ao,By) € [I,T]

V = NVi (Ao, Bo) Wi (S,T). (8.82)

Naturellement dans PSL(2,7Z), on a également un résultat de préfixation obtenu par
les mémes méthodes, écrivant V sous une unique forme,

Wi (S, T)W' (Ao, Bo). (8.83)

D’autre part, en application de la proposition 5.2 on peut remonter a SL(2,Z) ces
résultats de préfixation et de suffixation en introduisant des signes.
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8.5.2. Seconde question. La seconde question a aussi été résolue de maniére di-
recte. Elle donne rest@,, (PSL(2,7)) est normal dans rest@, (PGL(2,7)).

Cette propriété a pour conséquence que Int(F,) est aussi normal dans le groupe
rest@, (PGL(2,7)). On peut donc reprendre I'approche du paragraphe précédent en
utilisant cette fois comme générateurs du quotient 17(t) et (o) = w(Py) = po = I.

Une relation non réductible entre ces éléments se remonterait dans Aut(F,) en une
appartenance d’un élément écrit avec t et 0 a Int(F»), et remontant par rest 4, en I’ap-
partenance d’un élément écrit avec T et O a [SL(2,7),SL(2,Z)]. Or ce groupe, contenu
dans SL(2,Z), ne contient que des matrices de déterminant 1, alors que O a un dé-
terminant égal a —1. Comme pg’; =1, on trouverait une contradiction si le nombre de
termes 77(0) n’est pas pair.

Cette remarque conduit a se pencher sur le terme 7t(t)7r(0). Il vérifie par un calcul
direct I’égalité

()1 (0))* = 1. (8.84)

Et plus généralement, en regardant de pres le groupe engendré par ces deux élé-
ments, on voit que I’on obtient un groupe diédral Dg a 12 éléments [12, page 6] et [19,
page 36]. On a donc

rest@, (PGL(2,2))/Int (F,) =~ PGL(2,7) /[ PSL(2,Z),PSL(2,Z)] = Ds. (8.85)

Ceci s’énonce aussi sous la forme suivante.

PROPOSITION 8.9. Le groupe rest®, (PGL(2,7)) est une extension de Int(F,) par
Dg. Cette extension est équivalente a la donnée d’une suite exacte,

1 — F, —PGL(2,Z) — D¢ — 1. (8.86)
Quelques nouvelles questions découlent de ce calcul. Par exemple, on a
[PSL(2,7),PSL(2,Z)] c [PGL(2,7),PGL(2,7)]. (8.87)

Les questions sont les suivantes : déterminer [PGL(2,7),PGL(2,7Z)], déterminer [GL
(2,7),GL(2,7Z)] et comparer a [PGL(2,2Z),PGL(2,7)].

On ne détaille pas ici, sauf a dire que [12, page 86] énonce que le commutateur
[GL(2,7),GL(2,Z)] possede la présentation suivante a trois générateurs :

(Fs,w,—1 |73 =7 =—-1, (-1)?> =1). (8.88)
Les générateurs s’écrivent en fonction de matrices déja rencontrées,

1 1
-1 0

0 1

7’s=R1R2=[I,T]=[ 11

], Yw=R3RoR1R3 = [[,T'] = [ } (8.89)
Les deux matrices I et T engendrant GL(2,7), on en déduit que 7, et 7, engendrent
[GL(2,7),GL(2,Z)]. La présentation que ’on vient de donner pour ce dernier groupe
peut se déduire de celle de GL(2,7Z) en fonction de I et T.
En procédant par la méme méthode que celle qui a conduit au théoreme 8.7, on

obtient maintenant ce théoréme.
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THEOREME 8.10. Tout élément derest®,, (PGL(2,Z)) peut étre écrit de facon unique
sous la forme

WnoolotX avech=0,1; k=0,1,...,5; N € F,. (8.90)

Un élément quelconque W € PGL(2,7) étant donné, on peut considérer le terme
1 (rest@, (W)) e rest®, (PGL(2,2))/Int (F») = Dg. (8.91)

Par ce qui précede, il est décomposable dans Dg comme un mot en 71(0) et 7r(t).
En remontant au groupe de départ, on trouve pour W une décomposition de la forme

Wn, cw(o,t). (8.92)
Il est maintenant possible d’utiliser une remarque faite, en écrivant
(m(t H)m(0)* =1. (8.93)
Ceci permet d’écrire
tlooot oo =yy, avecN;€F,. (8.94)

En fait, 'expression des automorphismes ¢ et 0 montre que y, = idr,. On obtient
donc simplement que

ootoo=1t""1, (8.95)

Cette expression permet de ramener dans le terme w (o0,t) 'automorphisme o en
téte, avec une puissance égale a 0 ou 1, suivi seulement d'une puissance de t. Pour ce
dernier terme, on peut réduire sa puissance en utilisant la formule déja vue en (8.65).

Il ne reste qu’a montrer que 1’on a, pour tout N3 € F»

OoYnN; =Ys3N00, (8.96)

ou 3N € F, est obtenu a partir de N3 en permutant les deux termes Ag et By. Ceci
donne la décomposition recherchée. Son unicité est évidente en appliquant d’abord
1 et concluant dans Dg a I'unicité de h et k dans les hypotheéses faites. L'unicité de N
en résulte.

On en déduit un nouveau résultat de suffixation, cette fois pour le groupe projectif
unimodulaire.

PROPOSITION 8.11. Tout élément de PGL(2,Z) s’écrit sous forme d’un produit de
forme W(A_O,Fo)ﬁhwk (S, T) ou
h € {0,1}, W (Ao, Bo) € [I,T],

_ o (8.97)
Wi (S,T) € {1,5,ST,STS,STST,STSTS} (aveck=0,1,...,5).

De plus cette décomposition est unique.
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On a d’ailleurs quelques égalités complémentaires qui expliquent pourquoi au quo-
tient par [I,I'] on trouve le groupe Dg,

SO=0S8%  TO=0T'. (8.98)
La proposition 8.11 permet d’énoncer le théoréme suivant :

THEOREME 8.12. Toute matrice de GL(2,7Z) posséde une unique décomposition de
la forme suivante :
+W (Ao, Bo) 0" Wi (S, T). (8.99)

Ou
h € {0,1}, W (Ao, Bo) € [SL(2,2),SL(2,2)],

8.100
Wi (S,T) € {1,S,ST,STS,STST,STSTS} (aveck=0,1,...,5). ( )

De plus, la condition h = 0 caractérise les matrices du sous-groupe SL(2,7).

La démonstration de ce résultat de suffixation est évidente. On a aussi un résultat
de préfixation équivalent.

Ces résultats donnent un éclairage particulier au théoréme 4.1 et a la proposition
5.2 énoncés auparavant. Ils permettent d’envisager avec [12, page 86] le calcul explicite
du groupe des commutateurs de PGL(2,7) :

[GL(2,Z),GL(2,Z)]/{«1} =~ [PGL(2,Z),PGL(2,2)] = (¥5,7 | 7> =7,° = 1). (8.101)

8.5.3. Troisieme question. La troisiéme question est de savoir si le sous-groupe
image rest®, (PGL(2,7)) est normal dans Aut(F). Elle est plus délicate. Pour la ré-
soudre, on peut remarquer que si la réponse était positive, on aurait aussi par ce que
I'on vient de voir rest @, (PSL(2,7Z)) normal dans Aut(F>). Or pour étudier cette der-
niére question, on peut considérer les six automorphismes Py o s o Py L Pyosto Py r
UposolUyt, UpostoUyt, oposooyt, opostoay?t. 1l suffit quils puissent étre dé-
composés comme des mots en s et ¢t pour que I'on soit certain qu'’ils font partie de
rest@, (PSL(2,7)). La conséquence serait alors que ce dernier groupe est normal dans
Aut(F).

On calcule explicitement certains de ces automorphismes grace a l'identification
avec les couples de générateurs donnée par la proposition 7.1. On trouve d’abord
trois automorphismes d’ordre 2 comme s qui se calculent aisément,

PoosoPyt = (Al B;!) =5,
UposoUs" = (By'A;'Bo,Byt) =toesot ™, (8.102)
OposoTy ! = (A51,351> =s.

On a ensuite trois automorphismes d’ordre 3 comme s o t, plus durs a décomposer
sur s et t pour les deux derniers d’entre eux,

PoosotoPyt = (BylAgt,Ag) =sot™!,
UposotoUs' = (B3AoBo, By Ay Byt), (8.103)

gposotoay! = (Bo,BylAGh).
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En réalité, ils ne sont pas décomposables sur s et t. On le montre sur le dernier en
remarquant que I’on devrait avoir avec la proposition 8.11

Opotooy! =C =thoyy. (8.104)
En appliquant 7r, sachant que v’ fournirait un résultat équivalent, ceci donne

k
T =y= E _01] =m(t)k = [_11 (1)} aveck=0,1,...,5. (8.105)

11 suffit d’essayer les diverses possibilités pour k pour voir qu’'une telle relation est
impossible. En particulier, on a

oposotogyl=so(gotoo™t) ¢ reste, (PSL(2,7)). (8.106)

De méme en appliquant 7t, on a
-1 2 3 k
m(UooteUs')=| 5 7)€ {m®* k=015, (8.107)

On en déduit que
UposotoUy! ¢ restp, (PSL(2,2)). (8.108)

Ceci établit que le sous-groupe rest @, (PSL(2,7)) de Aut(F;) n’est pas normal dans
ce groupe. A fortiori, le sous-groupe rest @, (PGL(2,7)) n’est pas normal dans Aut(F,).

Il n’en demeure pas moins que le groupe rest, (PGL(2,Z)) opére dans le groupe
Aut(F>). On va maintenant examiner ce que ’on peut dire sur les orbites correspon-
dantes, et ceci va nous ramener directement a I'arbre de Markoff.

9. L’interprétation algébrique de I'arbre de Markoff. On note ici A le sous-groupe
rest@, (PGL(2,7)). 1l permet d’introduire deux relations d’équivalence entre les élé-
ments ¢, et ¢po de Aut(Fs),

P1Rap2 = Prody' €A = Py € Adpy,

_ _ 9.1)
d)lZ‘RqSZ = (l)fl O(I)z [SHAR=Y (1)2 (S (l)lA.

On définit ainsi un quotient a droite, composé des classes a droite A¢1, ou ¢p; €
Aut(F2),
Aut (F2)/R5 = (Aut (F2)/A),. 9.2)

On a de méme un quotient a gauche, composé des classes a gauche ¢ A, ou ¢ €
Aut(F>),
Aut (F2) /3% = (Aut (F2) /A),,. 9.3)

Les deux ensembles que I’on vient de définir sont équipotents par la bijection
A1 € (Aut(Fz)/A); — ¢i'A € (Aut(F2)/A),. (9.4)

Néanmoins, ces deux ensembles sont différents car A n’est pas normal dans le
groupe Aut(F»).
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9.1. Construction de I’arbre complet de I’équation de Markoff. Avec ce que I'on a
vu avant, I'arbre complet des solutions de I'’équation de Markoff est accessible grace
a I'application surjective suivante :

I1: (A,B) € Aut(F>) — ((tr(B™1)/3), (tr(A)/3), (tr (B~ 1A 1)/3)) € (N-{0})>. (9.5)
Le théoreme 6.5 que I'on a démontré s’écrit maintenant
(1) =T(¢2) <= IN € GL(2,2) tel que ;05! =rest@, (N) € A. (9.6)

Il peut étre traduit par le résultat suivant.

THEOREME 9.1. Le sous-groupe A = rest @, (PGL(2,7)) de Aut(F>) n’est pas normal
dans ce groupe. Le quotient a droite Aut(F,)/Rx est équipotent par une bijection T1
a l'ensemble des sommets de I'arbre complet des solutions de ’équation de Markoff.
Cette bijection factorise I'application 1 du groupe Aut(F») dans cet arbre grdce a la
projection canonique p. du groupe Aut(F,) sur le quotient Aut(F,)/Rx :

M=1op.. (9.7)
La question qui se pose alors est de savoir comment se contruisent les arétes de
I’arbre complet sur cet ensemble quotient a droite.

9.1.1. De nouveaux automorphismes. Pour construire I'arbre, on a vu que I’on uti-
lise des involutions que I'on anotées Xy : (A,B) — (A™!,ABA), Y4 : (A,B) — (BAB,B™1),
Zp:(A,B) - (A7L,B).

Dans une telle écriture, (A, B) désigne un couple de générateurs du groupe F». On
peut considérer qu’il s’agit d'un automorphisme écrit dans le systéme de générateurs
de référence (Ag,Bg) sous la forme

¢ = (A,B) € Aut (F»). (9.8)
Plus précisément, en introduisant les autres transformations involutives,

Xo: (Ao, Bo) — (Agt,AoBoAo),
Yo: (Ao, Bo) — (BoAoBo,By'), (9.9)
Zo: (Ao,By) — (Ag',Bo).

On obtient les expressions
Xp=poXoodp™!, Yy=¢doYoop !, Zy=¢doZjodp L. (9.10)
Comme ces transformations dépendent de ¢, on les note plus précisement ici

Xg =Xap =PpoXoop?,
Y =Yg =poYood !, (9.11)
Zg=Zap =PoZoodp .
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Ces égalités mettent en avant 'action dans Aut(F») du groupe des automorphismes
intérieurs Int(Aut(F»)). On a vu avant, avec la proposition 8.5, que ce dernier groupe
est isomorphe a Aut(F»).

Pour mieux décrire Xy, Yy et Zg, on utilise la présentation de Aut(F,) construite
avec les éléments Py, Uy, 0p. Pour commodité, on utilise au lieu de Uy I'élément d’ordre
3 suivant :

vy = UpoogoPo = (Bo, Byl AGY). (9.12)

Au moyen de transformations de Tietze [19], on pourrait d’ailleurs écrire une pré-
sentation de Aut(F,) utilisant les trois générateurs oy, Py, Vo, mais on n’insiste pas
sur ce point. On note comme ci-dessus

P=Py=¢doPyodp ' :(AB) — (B,A),
V=v¢p=covoodpl:(AB) — (BB AL, (9.13)
o=0p=¢oogodp ' :(A,B) — (A',B).

Tout automorphisme & : (A,B) — (®(A),®(B)) permet de définir un chemin sur
I’arbre de Markoff :

& :11(A, B) = (m,m;,mz) — I(®(A),®(B)) = (m®,mP,m3). (9.14)
Et les trois automorphismes que 1’on vient d’introduire définissent

0 :II(A,B) = (m,m;,mp) —II(0(A),0(B)) = (m,my,3mm; —my),

ja~H

:TI(A,B) = (m,m,m») — II(P(A),P(B)) = (m;,m,my), 9.15)
:TI(A,B) = (m,m1,mz) — II(v(A),v(B)) = (m2,m,my).

<R

Les deux transformations P et ¥ engendrent un groupe de permutations de trois
éléments, comme le montre le diagramme suivant ou I’on voit réapparaitre le groupe
cyclique Cg :

P
(m,my,my) —— (m,m,my)

| I

(my,mz,m) (my,my,m) (9.16)

| |

(me,m,m) <—— (m,mz,m1)

Ceci permet de calculer

PotoloPoFolol: (m,m, ms) — (3mims—m,mi, m»),

VooPoGFololoP: (m,m,my) — (m,3mm,—m;,m,), (9.17)

~

q

t(m,my,me) — (m,my,3mm; —my).
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Ces transformations conduisent, par des expressions analogues a celles que 1'on
vient de mettre en évidence, a calculer certains des automorphismes que I’'on vient de
mentionner. On obtient en effet cette proposition.

PROPOSITION 9.2. On a les égalités suivantes, définissant des automorphismes in-
volutifs

X¢ =Xap =VovoPorgovovoP:(AB) — (A',ABA),
Yp =Yg =PovovoPogovoev:(AB) — (BAB,Bﬁl), (9.18)
Zp=Zap =0:(AB) — (A1 B).
De plus, pour les triplets associés sur 'arbre complet des solutions de I'équation de
Markoff,
Xy (mymy,my) — (3mym, —m,my,my),
ﬁ; : (m,my,mp) — (m,3mm, —my,my), (9.19)

~

Zp: (m,my,my) — (m,my,3mm; —my).

9.1.2. Premier processus de construction des couples de générateurs de F,. Par-
tant de la base (Ag,Bg) de F>, on applique comme précédemment X4, 5,), Y(Ag,B0)s
Z(Ay,8)- Ceci donne respectivement

S (S N S (R P i
a-([2 VA 5T)

A partir de ces couples, on applique les transformations involutives X, Y ou Z qui
correspondent aux couples obtenus. C’est une facon de procéder qui donne six nou-
veaux couples. Par exemple, en notant (A1, B;) le premier des trois derniers couples
cités, on applique les deux transformations suivantes :

Yiars ¢ (A1,B1) — (BiAiBy, BiY) = ([i 153} ’ [_52 _IZD
Zay by ¢ (A1, By) — (Afl,Bl) = (B ;] , [; E])

Le fait que X(4,,5,) ne donne pas de nouveau triplet a partir de (A;,B;), et n’est
donc pas appliqué, est général. En effet, il est facile de vérifier le résultat suivant :

(9.20)

(9.21)

PROPOSITION 9.3. Pour tout automorphisme (A,B) de Aut(F»), on a

X, -
(A,B) 248, (A1 ABA) ZALABN (4 By
Y, _
(A,B) 248, (paR,B-1) 21 (4 B), (9.22)
Z, -
(A,B) 248, (41 gy 4B (4 By
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Avec les notations introduites avant, on a sur I'exemple considéré
¢ = Xo = (A1,B1). (9.23)

Ceci donne

Yiap) =PoYoodp ' =XgoYyoX,

1 (9.24)

Z(AI’B]):(]SOZ()O(ﬁ = XpoZyoXp.

Comme on applique ces transformations au terme X, les résultats obtenus sont
respectivement

(BiA1BL,BY) = Xoo Yo, (ATLB1) = Xoo Z. (9.25)

En poursuivant par récurrence, et compte tenu de la proposition 8.2, on fait appa-
raitre ainsi tous les chemins possibles ch(Xj, Yo, Zp). On obtient donc tous les mots ré-
duits [5, page 26] écrits avec ces trois involutions, identifiables a des automorphismes
particuliers de Aut(F»). Ce procédé construit pas a pas une bijection IT de certains
couples de générateurs de F, sur I'arbre de Markoff complet tel qu’il a été Iui méme
construit précédemment avec les transformations X, Y3, and Z, données en (9.19).

Il en résulte en particulier que tous les mots réduits sont différents, de sorte qu’au-
cune relation non triviale n’existe entre ces chemins. Ceci permet d’énoncer ce théo-
reme.

THEOREME 9.4. Dans le groupe Aut(F,), les chemins ch(Xo, Yo, Zy) constituent pour
la composition un sous-groupe propre, le sous-groupe des chemins (ou groupe du tri-
angle), dont une présentation est donnée par

T3 = <X0,Y0,Z() | Xg = Y02 = Zg = idF2> ~ (o % Co % Co. (9.26)

Ce groupe ne donne pas tous les systéemes de générateurs de F», mais seulement ceux
qui se déduisent de la base (Ao, By) par un tel chemin. La restriction de I'application IT
a ce groupe, ou respectivement a l'ensemble des systémes de générateurs associés, est
bijective, a valeurs dans I'arbre de Markoff complet.

Pour vérifier que le groupe T3 est propre dans Aut(F»), considérons en effet que
I'on a avec un chemin réduit

Py =Ch(X0,Y0,Z()) € Aut (Fz) 9.27)

En composant avec la base idr, = (Ao, Bo) et examinant le triplet qui en résulte par
I1, le chemin ne devrait comprendre aucun terme Xy, Yy, Zo. D’ou une contradiction
qui complete la démonstration de la proposition 9.3 en montrant que 1'on a, d’ailleurs
avec une involution,

Py ¢ Ts. (9.28)



248 SERGE PERRINE

9.1.3. Second processus de construction et application. Surlabase (Ag,Bg) de F»,
on applique d’abord X a,,8), Y(40,80)» Z(A0,By)- CeCi donne respectivement

2 1] [1 2

Xo=Xuso =\ |_1 1 |'|2 s|)
1 -2][2 1

YO = Y(A(),B[)) = (|:2 5 5 |:1 1:| )! (929)
2 111 -1

Zo = Z(ay,By) = ([_1 1 ,[_1 2})

A partir de ces couples, on applique a nouveau les mémes transformations involu-
tives. Cette facon de procéder donne encore six nouveaux couples comme les deux
suivants obtenus a partir de Xj :

5 2 2 =5
Yoo Xy = (BalAalBal’BvoBvoBo) = (|:2 1] y |:_5 13]),

1 1 10 -7
Zo°X0—<A0:AolBOA01)_([1 2]’[—7 SD

En poursuivant pas a pas, composant uniquement les involutions Xy, Yy, Zo, on
construit tous les chemins possibles ch(Xy, Yo, Zo). On trouve d’ailleurs les mots mir-
oirs de ceux apparaissant dans le processus de construction précédent en suivant un
méme chemin en X, Y, Z. Ceci se vérifie aisément par récurrence.

Et ce que I'on a décrit n’est encore que 'orbite du couple de générateurs (Ao, By),
base de F, et automorphisme unité de Aut(F.), sous l'action du sous-groupe T3. C’est
le groupe T3 lui méme, parcouru autrement.

Si 'on consideére alors I'ensemble des images par IT des couples générateurs ainsi
construits, on trouve l’arbre complet de toutes les solutions de I’équation de
Markoff. Mais I'application II est plus généralement définie sur Aut(F,), ensemble
sur lequel elle est surjective par le théoreme 5.4. Elle définit une équivalence associée
avec

(9.30)

b1 = P2 = T1(h1) =T(2). (9.31)

Pour tout ¢ € Aut(F»), la bijectivité de IT sur le groupe T3 assure I'existence d’'un
unique chemin ch(Xy, Yy, Zy) tel que

¢ = ch(Xo, Yo, Zo). (9.32)
Par ailleurs, 'application du théoréme 6.5 donne, avec N € PGL(2,7)

¢ =rest@, (N) och (Xo, Yo, Zo). (9.33)
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On en déduit que

¢ och(Xo, Yo, Zo) " =restp, (N) €A. (9.34)

Soit
PRzch (Xo, Yo, Zo). (9.35)

Inversement, avec le théoréme 9.1, une telle condition donne
¢ = ch (Xo, Yo, Zo). (9.36)

Le théoréeme 9.4 énoncé permet alors de conclure le suivant.

THEOREME 9.5. Toute classe d’automorphismes pour la relation Ry, élément du
quotient a droite Aut(F;) / Rz, contient un unique chemin réduit ch(Xy, Yo, Zo). De plus,
tout éléement de cette classe se décompose de facon unique sous la forme suivante, ou
N €PSL(2,2),

¢ =restp, (N) och (X, Yo, Zo). 9.37)

Enfin la relation Ry définie sur le groupe Aut(F) n’est autre que I'équivalence associée
a la fonction I1.

L’existence du chemin ch(Xy, Yy, Zp) dans une classe quelconque pour Ry a été éta-
blie avant. Supposons alors que deux chemins réduits ch; (X, Yo, Zy) et chy (X, Yo, Zo)
soient contenus dans cette méme classe, qui est aussi une classe pour la relation =.
On trouve par le théoréme 6.5 un automorphisme rest@, (Ny) € A vérifiant

chy (Xo, Yo, Zo) o chy (Xo, Y0, Zo) ' = rest@,, (No). (9.38)

En réduisant, on met en évidence un chemin réduit dans la classe pour IT de la base
idr, = (Ao, Bo). Or dans cette classe d’équivalence, la seule possibilité est d’avoir

chy (Xo, Yo, Zo) o chy (Xo, Y0, Zo) "' = idp, . (9.39)

C’est-a-dire
chy (Xo, Yo, Zo) = chz (Xo, Yo, Zo). (9.40)

Ceci établit I'unicité énoncée dans le théoréme 9.5. La bijectivité de IT sur T3 avait
permis de conclure de méme. La décomposition donnée dans ce résultat est une consé-
quence du théoreme 6.5. L'injectivité de rest@, permet alors de conclure a I'unicité
de N.

Une conséquence évidente est que 1'on a, ceci résultant aussi des propriétés clas-
siques des traces,

H(resta* (N) och (Xo, Y(),ZO)) = H(Ch (Xo, Yo, Z())) (9.41)

L’application IT peut donc étre considérée comme un invariant sur chaque classe de
Aut(F,)/Rz, invariant dont les valeurs varient selon I'unique chemin de T3 contenu
dans chaque classe pour I’équivalence Rx.
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9.2. Non normalité du groupe des chemins dans le groupe Aut(F,). Ce qui pré-
cede introduit naturellement une application,

(rest®, (N),ch(Xo,Yo,Z0)) € Ax T3 — rest®, (N) o ch (Xo, Yo, Zo)

42
e Aut (F). ©42)

Par le théoréme 9.5, cette application est bijective. Ceci s’écrit avec les notations
habituelles sur les groupes

Aut (Fz) =A- VE

= {rest®, (N) och(Xo, Yo, Zo) | (rest@, (N),ch (Xo,Yo,Z0)) € AxT3}.
(9.43)

Ce théoréme donne également
AN T3 = {id):z } (9.44)

Avec [2, chapitre 1, page 62], on envisage de construire une extension (Aut(F:),
ix,px) ou l'on définit ix : A — Aut(F»), injection canonique du sous-groupe A dans
Aut(F,), pg:rest@, (N) och(Xo, Yo, Zo) € Aut(F») — ch(Xy, Yo, Zo) € Ts.

1l est possible de s’assurer que px n’est pas un morphisme de groupes. En effet, si
tel était le cas, on pourrait considérer son noyau,

Ker (px) = A =Im (ix). (9.45)

Il devrait étre normal dans le groupe Aut(F»), propriété qu'on a démontré aupara-
vant qu’elle n’est pas vérifiée. On ne peut donc pas considérer sous cette forme une
extension de groupe.

On peut alors inverser les roles et envisager de construire une extension (Aut(F),
ir,pr) oul'on définit iz, : T3 — Aut(F2), injection canonique du sous-groupe T3 dans
Aut(F>), pr, :rest@, (N) o ch(Xo, Yo, Zp) € Aut(F,) — rest@, (N) € A.

Cette fois également, si pr; €tait morphisme de groupes, on aurait

Ker (pr,) = T3 = Im (igy). (9.46)

Mais il faudrait que T3 soit un sous-groupe normal de Aut(F,). Or cette fois aussi,
on ne peut considérer de cette facon une extension de groupe car on a :

PROPOSITION 9.6. Le groupe des chemins T; est un sous-groupe de Aut(F,) qui n’est
pas normal dans ce dernier groupe.

En effet, on peut établir que 'on a par exemple

PyoZoo Pyt =rest®, (N) o Zo = (Ao, By ')

_ (9.47)
-5

0
avec N = [1 0

Compte tenu de ce qui a été dit avant sur les classes de Aut(F;) /%5, ce terme serait
un chemin si et seulement s’il était identique a Zy. Or son expression montre que ce
n’est pas le cas. Ceci établit notre proposition.
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Considérons plus généralement un automorphisme s’écrivant
(rest®, (N1) o chy (Xo, Yo, Zo)) o (rest@,, (N2) o ch (Xo, Yo, Zo)). (9.48)
Par le théoreme 9.5 on peut I’écrire ainsi
rest@, (N) och (Xo, Yo, Zo). (9.49)
Supposons que 'application de IT a ces deux termes donne
I1(chy (Xo, Yo, Zo) o chy (Xo, Yo, Zo)) = I(ch (Xo, Yo, Zo)). (9.50)
Par 'unicité donnée dans le théoréme précédent, on aurait
chy (Xo, Yo, Zo) o chz (Xo, Yo, Zo) = ch (Xo, Yo, Zo). (9.51)

On aurait donc

pr; (rest®, (N1) o chy (Xo, Yo, Zo)) o pr; (rest@, (N2) o chy (Xo, Yo, Zo))

_ . (9.52)
= pr; ((rest@, (N1) o chy (Xo,Yo,Zo)) o (rest®,, (N2) o chy (Xo, Yo, Zo))).

On aurait donc affaire pour pr, a un morphisme de groupes. Comme on vient de
voir que ce n’est pas le cas, le raisonnement que 'on vient de faire ne marche pas.
La raison est le mauvais comportement pour la composition de 'application IT qu’il
convient donc d’utiliser avec précaution. En réalité, on n’a pas en général d’égalité du
genre

(rest®,, (N1) o chy (Xo,Yo,Zo)) o (rest®, (N2) o chz (Xo, Yo, Zo))

o (9.53)
= (rest®, (N) o chy (Xo, Yo, Zo)) o chy (Xo, Yo, Zo).

9.3. Décomposition ternaire dans Aut(F,) et applications. L’idée exploitée main-
tenant consiste a combiner le théoréme 9.5 avec le théoréme 8.10, et a en tirer tout
un ensemble de résultats.

9.3.1. Le théoréme de décomposition ternaire dans Aut(F,). On obtient par la
combinaison précédente le résultat suivant.

THEOREME 9.7. Tout automorphisme ¢ € Aut(F,) se décompose d'une et d’une
seule facon sous la forme suivante :

L//NOOhOtkOCh(X(),Y(),Zo) (9.54)

ouh= 0,1 ,'k =0,1,....,5,NeF, ,'Ch(Xo,Yo,Zo) e T;3.
Avec pour la détermination pratique du chemin ch(Xy, Yo, Zo)

(yn 00" otk och (Xo, Yo, Zo)) = IT(ch (X0, Yo, Zo))- (9.55)
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En particulier, les éléments de A = rest @, (PGL(2,Z)) sont caractérisés par la condition
ch (Xo, Yo, Zo) =1idp, . (9.56)
Ceux de rest @, (PSL(2,Z)) sont caractérisés par la condition supplémentaire,
h=0. (9.57)
Les éléments de Int(F>) sont caractérisés par les trois conditions
h=0; k=0; ch (Xo, Yo,Zo) = idp, . (9.58)
Enfin les élements de T3 sont caractérisés par les conditions
YN =idp, ; h=0 et k=0. (9.59)

Il en découle la possiblité de présenter Aut(F,) avec les sept générateurs particuliers
que sont Y4, Y, 0, t, Xo, Yo, Zo.

Comme tout composé de deux automorphismes est également décomposable avec
notre théoreme 9.5, on obtient tout un ensemble de relations permettant de commuter
les générateurs entre eux et de simplifier les expressions obtenues

ZooWa, = lIIEéOZo, ZooWpy =Yg, o Zo,
YooWa, = WeyoWageWnyoYo,  YooWs, =Wy o Yo,
XooWa, = (I/Z\éOXO, XooWpy = WayoWgyoWa,°Xo,
tOWAOZ(Vl;OlOt: tOLIJBQ=WA0°(IJBQOt1
19 = Wt o Wil owny o Way = [WhyWayl,

OOLIJA():'JJBOO()y OOWBOZWAOO(L
02 =idF2,
; 9.60)
Zpo0 =pyoWa 000t Yoo0 = 00Xy, Xoo0=00Y),

t00:oot71,

Zoot =Ygy oWa,oWg,ot*o Xy,
Yoot = g, ot?o Z,
X0°t:WZ\éOWEJOWAOOWBOOt%YO,
Oot:t’loo,

72 =Y¢ = X3 =idp,.

Les calculs sont assez délicats a mener pour obtenir certaines formules, mais sans
grande difficulté. Ainsi, par simple composition, on obtient

Zyot = (By',A'Bo). (9.61)
Ceci donne, avec la transformation IT essentielle ici,

(Zoot) = (2,1,1) = T1(Xo) = 1(Aj?, AgByAo). (9.62)
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D’ou I'existence d'une matrice N € GL(2,7Z) vérifiant
Zoot =rest@, (N) o Xp. (9.63)
On la calcule en ayant recours aux expressions de Ay et By
N=TS ' (9.64)
On doit donc maintenant considérer
reste, (ﬁfl) =tos=toWayp, °t> = Wr(agny ©L*. (9.65)

Il ne reste qu’a calculer

t(AgBo) = Byt AgBo. (9.66)

Ceci donne

Zool =Ygy oWy o Wn. (9.67)

Avec Ypot on trouve de méme N = T-153 avec Xpot ona N = T2, avec Zyot on
obtient N =1=0S.

Pour s’assurer que ce qui précede donne bien une présentation de Aut(F»), on peut
encore utiliser des transformations de Tietze [19]. On se contente de donner ici les
formules de passage entre les ensembles de générateurs des deux principales présen-
tations de ce groupe.

PROPOSITION 9.8. Les formules de passage sont dans un sens,

(IJA():POOO'OOU()_IOO'OOU()_loPO,

LIJBOZO-OOUO_IOO-OOUO_I! t:UOOPOOO-Ov 0=P0' (968)
Xo=UpoopoPyoUyoUyoopoPyoUyo 0y, -
Yo:POOUQOO'OOPOOUOOUQOO'QOPOOUOOO'()OP(), ZQ:O'().
Et dans I'autre sens,
Py =o0, Up=toZpoo, 0o = Zp. (9.69)

La premiere série de formules a déja été donnée, une partie résultant des définitions
de Xy, Yo, Zy, ou I'on a seulement remplacé vy par Uy o 0 o Py. Pour la seconde série
de formules, elles sont évidentes avec celles qui précedent.

En particulier, il en résulte un nouveau systéme de générateurs de Aut(F,), plus
simple que celui de la présentation classique de Nielsen,

o, t, Z. (9.70)
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9.3.2. Décomposition ternaire dans le groupe GL(2,7Z). On peut décrire I'action
du morphisme d’abélianisation 7" sur la présentation a sept générateurs du groupe
Aut(F»). On a d’abord, en appliquant ce morphisme a la proposition 7.3 une tour de
sous groupes,

{idf, } c " (rest@, (PSL(2,2))) c 7' (rest®, (PGL(2,2))) c GL(2,2). 9.71)

Par construction, 1’ transforme les deux automorphismes 4, et @5, en la matrice
unité. L'image de Int(F>) par 1t’ correspond au premier groupe {idr, } de cette derniere
suite d’inclusions.

Le second groupe 11’ (rest@, (PSL(2,7))) est engendré par les éléments 7t'(t) et
' (s) = ' (t)3. 1l posséde donc en réalité un unique générateur,

, 1 1
w'(t) = [_1 O]' (9.72)
Par les relations vues avant, on a aussi
' (t)% =1. 9.73)

On a donc affaire au groupe cyclique a six éléments Cs comprenant les six matrices
suivantes :

o=l ol AR A GRS e

Le troisieme groupe 11’ (rest@, (PGL(2,7))) est engendré par 7’ (t) et 1w’ (0). On
sait qu’il s’agit maintenant du groupe diédral Dg a 12 éléments. On note dans la suite
D¢ = 1’ (restp, (PGL(2,7))). On a

-1
' (0) = [_01 0 } 9.75)

Et par les relations vues avant,
™ (0)% = 1. (9.76)

D’autre part,

' (o)’ ()1 (0) = v’ (t) L. 9.77)

Ceci se traduit par le fait que le groupe Cg est normal dans Dg. Ce dernier groupe
comprend les six matrices supplémentaires suivantes :

B A R A A O A
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Par ailleurs, le groupe GL(2,Z) est engendré par les deux matrices v’ (t) et 1’ (0),
ainsi que celles des involutions Xy, Yy, Zp. Leurs expressions sur la base (Ag,By) de
F> donnent dans la base (bg, —ay) du Z-module 72,

' (Xo) (bo) =bo-2(-ao), 1 (Xo)(—ao)=—(-ao),

' (Xo) = [12 01]
' (Yo)(bo) = =bo, 1 (Yo)(—ao) = —2bo+ (- ao),

, -1 =2 (9.79)
' (Yo) = o 11

' (Zo) (bo) = bo,  T'(Zo)(—ao) = —(-ao),
' (Zo) = [(1) _01]

On en déduit par exemple que

2 1
' (Xo) 10’ (0) 11" (X)) = [_3 _2]. (9.80)

Ceci garantit que le groupe 71’ (rest@, (PGL(2,7))) n’est pas normal dans le groupe
GL(2,72).

On peut d’ailleurs aller plus loin en renouvelant les observations faites avant. Ainsi,
on peut considérer le groupe 1’ (T3) et se demander quelle est sa structure. Claire-
ment, on peut écrire tout élément de ce groupe sous la forme

1’ (ch (Xo, Yo, Zo)) = ch (' (Xo), ' (Yo), 10" (Z0)). (9.81)

Siun tel élément vaut la matrice unité, on aurait en revenant a Aut(F» ) un expression

ch (Xo, Yo, Zo) = wn € Int (F2). (9.82)
C’est-a-dire avec ce que I'on a vu avant,
ch (Xo, Yo,Zo) =1idp, . (9.83)
1l est donc impossible d’avoir, hors le cas du chemin vide,
ch (" (Xo), 7 (Yo), 7' (Z0)) = 1. (9.84)

Ceci signifie que la restriction de 1v" a T3 est un isomorphisme de ce groupe sur son
image, d’ailleurs engendrée par les trois matrices 1w’ (Xp), ' (Yy), 7' (Zy). Autrement
dit, on a fabriqué une image du groupe T; dans le groupe GL(2,7). On peut d’ailleurs,
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comme avant, se demander si ce groupe 71’ (T3) est normal dans le groupe GL(2,7).
Et il est clair qu’il n’en est rien en remontant, dans Aut(F,) par ', la relation

-1 0

' (o)1t (Zo) 1T (0) = [ 0 1

} -~ (Z). (9.85)

D’autre part, on peut traduire le théoreme 9.7 dans GL(2,7Z). Tout ceci permet
d’énoncer le théoréeme suivant.

THEOREME 9.9. Tout élémentV € GL(2,7) se décompose d’'une et d’'une seule facon
sous la forme suivante :

(o)’ (H)kch (' (Xo), v (Yo), ' (Zo)), (9.86)

ouh=0,1;k=0,1,...,5;ch(t’(Xy), ' (Yy), 1w (Zy)) € ' (T3).
Les éléments de 1’ (A) = ' (rest@, (PGL(2,Z))) = Dg, non normal dans GL(2,7),
sont caractérisés par la condition

ch (1t (Xo), 10 (Yo), 10 (Z0)) = 1. 9.87)

Ceux de rest®, (PSL(2,7)) = Cs, normal dans Ds mais non dans GL(2,7Z), sont carac-
térisés par la condition supplémentaire h = 0.

Enfin les éléments de 1t (T3), sont caractérisés par les conditions h =0 et k = 0.

Le groupe 7' (T3) n’est pas normal dans le groupe GL(2,7). Il est isomorphe au
groupe des chemins Ts.

La comparaison des théoremes 9.7 et 9.9 montre a posteriori que 17’ est surjectif,
et que son noyau est composé des automorphismes qui s’écrivent ¢y avec N € F».
On peut déduire de cette remarque une démonstration de la proposition 7.4. En effet,
on peut décomposer 1’ (Py), ' (Up), ' (0p), en fonction des trois transformations
1’ (0), TT'(t), ' (Zp), qui engendrent 1’ (Aut(F>)) = GL(2,Z). Ceci conduit a poser

0 -1
Poo =" (Py) =" (0) = [_1 0 ]

1 -1
UOQ = 7T,(U0) = 7T,(t)7T,(Zo)7T,(0) = |:0 1 :|, (988)

000 = 1" (00) = ' (Z)) = [(1) _01]

On trouve entre ces expressions les mémes relations que dans la proposition 8.1
du fait que " est un morphisme de groupes. La relation complémentaire qui conduit
alors a la proposition 7.4 n’est autre qu'une condition qui garantit que 'on a

' (wal) = (wyl) = 1. (9.89)

Cette condition est issue des expressions données a I'issue de la propriété 8.1.
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9.3.3. L’arbre de Markoff construit a partir de GL(2,Z). 1l est alors possible de
transposer avec le groupe 1’ (A) = Dg les relations d’équivalence présentées avant.
Elles donnent entre les éléments V; et Vo de GL(2,7)

VI‘RDGVZ = Vlvgl € Dg = V» € DgV1,

1 (9.90)
Vi DG%VZ = V| 'Vo € Dg <= V> € V1 Dg.

On définit ainsi un quotient a droite, composé des classes a droite DV, ou V; €
GL(2,2),
GL(2,2)/®p, = (GL(2,Z) /D). (9.91)

On a de méme un quotient a gauche, composé des classes a gauche ¢1A, ou ¢p; €
Aut(F),
GL(2,2)/ps® = (GL(2,2) /D) ,. (9.92)

Les deux ensembles que I'on vient de définir sont équipotents par la bijection
DV1 € (GL(2,2)/Dg) ; — Vi'Dg € (GL(2,7) /Ds),. (9.93)

Néanmoins, ces deux ensembles sont différents car Dg n’est pas normal dans le
groupe GL(2,Z). De plus, le théoreme 9.9 permet d’écrire pour tout élément V &
GL(2,72)

V =1 (o)t (t)*ch (1t (Xo), 7 (Yo), 70 (Zo)). (9.94)

Ceci donne
Veh (' (Xo), 7 (Yo), 10 (Z0)) ™" = 10" (o)1’ (t)¥ € Dg. (9.95)

On a donc déterminé un unique élément ch(mt’ (Xy), 7 (Yy), 77 (Zy)) € 7' (T3) tel
que
VSRDG Ch(Tr’ (XO)I-’T’(YO)lTT, (ZO)) (996)

En d’autres termes, on obtient une nouvelle interprétation de ’arbre complet qui
explique a elle seule I'ubiquité de la théorie de Markoff mentionnée dans I'introduction
du présent article.

THEOREME 9.10. L’arbre de Markoff complet est équipotent au quotient (a droite
ou a gauche) du groupe GL(2,7Z) par son sous-groupe non normal Dg engendré par les
deux matrices,

' (0)=0"110 = [ 0 _1] w'(t) =T 10 = [ ! 1}. (9.97)

-1 0 -1 0

Les décompositions données pour 1’ (0) et 1’ (t) se vérifient de facon directe. Elles
ont été calculées avec la méthode qui a conduit a la propriété 4.2. On vérifie d’ailleurs
que I'on a aussi

-1 0

’ _ c-1 —
'(s) = S0 [0 o

} =1 (t)3. (9.98)
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9.3.4. Application au groupe dérivé de GL(2,7Z). Les expressions que 'on vient de
donner peuvent étre comparées a celles ayant servi, dans ce qui précede, a définir les
éléments o, t, s générateurs de Aut(F,) a partir de trois générateurs de GL(2,7)

0 =rest®, (0) =rest@.(0) = (Bo,Ao),
t =rest®, (T) = rest @, (T) = (B;',A¢Bo), (9.99)
s=rest@, (S) =rest@(S) = (Aal,Bgl).

Ceci permet de considérer le morphisme de groupes utilisé implicitement auparavant

T orest@y : GL(2,7) — Ds. (9.100)

1l est facile d’expliciter les termes suivants grace aux méthodes présentées avant :

[0 1
™ orest@y (117 (0)) = 1 0] = (' (t)%1'(0)),
’ ’ [ 0 7 2
' orest @, (1 (t)) = 1 4| (t)=, (9.101)

-1
' orest @y (11" (Zp)) = 1 O]—Tr’(o).

On a aussi

' orest @, (11'(Yy)) = [(1) _11} =1 (t)*1 (0),

(9.102)

1 orest @y (11 (Xo)) = [_11 (1)] =10’ (t)%1' (0).

I en résulte de facon évidente que 71" orest @, est surjectif a valeurs dans le groupe
diédral

D = (1'(t),7(0) | ' (1)® = 11 (0)% = (7' (1)1’ (0))* = 1). (9.103)

On trouve également, et ceci montre que la restriction de 17’ orest @4 a Dg n’est pas
injective

1T orest @y (11 (1)3) = 11/ orest 4 (1) = 1/ (£)% = 1. (9.104)

Par les mémes méthodes, on obtient avec les matrices 7, et ¥, de [12, page 86]
évoquées avant

rsAorst = AglByt, rsBory ! = Ao,
Lo ) (9.105)
TwAory, =By A, YwBor,, = Ao.
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Ceci donne
’ ’ O 1 ’ 2
T orest @y (¥s) = 0 orest @y (1) = I (t)°. (9.106)

I en résulte que
(Fs,7w,—1 |73 =7} = -1, (-1)> = 1) c Ker (11 orest@y). (9.107)

Le premier groupe de cette inclusion est le groupe [GL(2,7),GL(2,Z)], comme l'in-
dique [12]. 1 contient —1. On a aussi au quotient un morphisme de groupes

GL(2,2)/[GL(2,2),GL(2,2)] — Ds. (9.108)

Par la non commutativité du groupe Dg, ce dernier morphisme n’est pas surjectif.
Mais il permet de construire

GL(2,2)/[GL(2,2),GL(2,2)] — Dg/[Ds,Ds]. (9.109)
D’autre part, avec le théoréme 9.10, on trouve un autre morphisme de groupes,
D¢/[Dg,Dg] — GL(2,2)/[GL(2,7),GL(2,2)]. (9.110)
En explicitant et comparant ces morphismes, on obtient un isomorphisme,
D¢/[D¢,Ds] ~ GL(2,Z) /[ GL(2,2),GL(2,Z)]. (9.111)
Le groupe dérivé [Dg,Dg] de Dg est cyclique d’ordre 3, car il comprend le terme
[ ()37 (0)) 7, (' (27 (0)) ' | = ' (1)2. (9.112)

Et comme le groupe Dg possede 12 éléments [12, page 6], ceci donne au quotient la
proposition suivante :

PROPOSITION 9.11. Le groupe dérivé de GL(2,7) est un produit de groupes cycliques
a deux éléments :

GL(2,7)/[GL(2,7),GL(2,Z)] ~ Ds/[ D¢, D] =~ C2 X C>. (9.113)

On vient donc d’expliciter pour GL(2,7Z) I’équivalent de la proposition 5.2 pour
SL(2,7Z). La derniere proposition s’écrit aussi avec un groupe d’homologie

H,(GL(2,2),Z) =~ GL(2,Z) /[ GL(2,7),GL(2,Z) ] =~ C2 X C>. (9.114)
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Elle constitue un résultat préalable au résultat connu [34, pages 75 et 218], [36, page
193], [43, page 261], de la K-théorie indiquant que 1’on a, avec GL(Z) limite inductive
des groupes GL(n,Z),

K\ (Z) =~ H,(GL(Z),Z) ~ GL(Z) /[ GL(Z),GL(Z)] = C>. (9.115)
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