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dimensional, in terms of finite type n-homogeneous F -valued polynomials.
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1. Introduction and results. Let E and F be complex Banach spaces. We denote by

L(nE,F) the Banach space of all continuous n-linear mappings A from En into F en-

dowed with the norm ‖A‖ = sup{‖A(x1, . . . ,xn)‖ : ‖xj‖ ≤ 1, j = 1, . . . ,n}. A mapping P
from E into F is called a continuous n-homogeneous polynomial if P(x)=A(x,. . . ,x)
(for all x ∈ E) for some A ∈ L(nE,F). We denote by P(nE,F) the Banach space of all

continuous n-homogeneous polynomials P from E into F endowed with the norm

‖P‖ = sup{‖P(x)‖ : ‖x‖ ≤ 1}. Also a mapping P from E into F is called a finite type

n-homogeneous polynomial if P(x)= f1(x)nb1+···+fk(x)nbk (for all x ∈ E), where

f1, . . . ,fk ∈ E∗ and b1, . . . ,bk ∈ F . We denote by Pf (nE,F) the space of all finite type

n-homogeneous polynomials P from E into F . Then we have Pf (nE,F)⊆ P(nE,F). In-

deed, let P ∈ Pf (nE,F). Then we write P(x) = f1(x)nb1+···+fk(x)nbk (x ∈ E) for

some f1, . . . ,fk ∈ E∗ and b1, . . . ,bk ∈ F . Set

A
(
x1, . . . ,xn

)= k∑
i=1

fi
(
x1
)···fi(xn)bi, (

x1, . . . ,xn
)∈ En. (1.1)

Then A is a continuous n-linear mapping from En into F and P(x) = A(x,. . . ,x)
(x ∈ E). Hence P ∈ P(nE,F). We are now interested in the case that F is a Banach

algebra. Let

Pf
(nE,F)= {ϕn

1 +···+ϕn
k :ϕj ∈ B(E,F) (j = 1, . . . ,k), k∈N}, (1.2)

whereϕn
j (x)= (ϕj(x))n (x ∈ E). Then we have Pf (nE,C)= Pf (nE,C) and Pf (nC,F)⊆

Pf (nC,F) (see [1, Section 1]). Also, we have Pf (nE,F) ⊆ P(nE,F). Indeed, let P ∈
Pf (nE,F). Then we can write P = ϕn

1 + ···+ϕn
k for some ϕ1, . . . ,ϕk ∈ B(E,F). Set

A(x1, . . . ,xn) =
∑k
i=1ϕi(x1)···ϕi(xn), (x1, . . . ,xn) ∈ En. Then A is a continuous n-

linear mapping from En into F and P(x)=A(x,. . . ,x) (x ∈ E). Hence P ∈ P(nE,F).
Now, for each n ∈ N, we say that an algebra F has the rn-property if, given any

b ∈ F , we can find elements a1, . . . ,ap ∈ F such that b =∑p
i=1a

n
i . We also say that an

algebra F has the r -property if F has the rn-property for each n∈N.
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Proposition 1.1 (see [1]). (1) Every unital complex algebra has the r -property.

(2) Let E be a Banach space and F be a Banach algebra. Then Pf (nE,F)⊆ Pf (nE,F)
if and only if F has the rn-property.

In [1], it is remarked that, given an arbitrary Banach space (F,+,‖·‖), we can always

define a product ◦ and a norm ‖·‖∗ on F in order that (F,+,◦,‖·‖∗) is a unital Banach

algebra and ‖ · ‖∗ is equivalent to ‖ · ‖. By Proposition 1.1 and the above remark,

Lourenço-Moraes proved the following proposition.

Proposition 1.2 (see [1]). Let E be a Banach space. The following are equivalent:

(a) E is a finite-dimensional space;

(b) Pf (nE,F) = Pf (nE,F) for every n ∈ N and for every Banach algebra F with the

rn-property;

(c) Pf (nE,F)= Pf (nE,F) for every n∈N and for every unital Banach algebra F .

Remark 1.3. By the proof of Proposition 1.2 (see [1]), we see that each of the fol-

lowing two statements are also equivalent to one of, hence all of, (a), (b), and (c) in

Proposition 1.2:

(b′) Pf (1E,F)= Pf (1E,F) for every unital Banach algebra F ;

(d) Pf (nE,F)= Pf (nE,F) for every n∈N and for every Banach space F .

In this note we show the following result, which is opposite to Proposition 1.2.

Proposition 1.4. Let F be a Banach algebra. Then the following are equivalent:

(a) F is a finite-dimensional space;

(b) Pf (nE,F)⊆ Pf (nE,F) for every n∈N and for every Banach space E;

(c) Pf (1E,F)⊆ Pf (1E,F) for every Banach space E.

In particular, in the unital case, we have the following proposition.

Proposition 1.5. Let F be a unital Banach algebra. Then the following are equiv-

alent:

(a) F is a finite-dimensional space;

(b) Pf (nE,F)= Pf (nE,F) for every n∈N and for every Banach space E;

(c) Pf (1E,F)= Pf (1E,F) for every Banach space E.

2. Proofs

Lemma 2.1. Let n be any positive integer and let x1, . . . ,xn be n-real variables. Then

n∏
i=1

xi = 1
2nn!

∑
ε1,...,εn=±1

ε1 ···εn

 n∑
k=1

εkxk



n

(2.1)

holds.

Proof. For each m with 0≤m≤n, let

Pm
(
x1, . . . ,xn

)= ∑
ε1,...,εn=±1

ε1 ···εn

 n∑
k=1

εkxk



m

. (2.2)
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Then we have Pm(0,x2, . . . ,xn) = Pm(x1,0, . . . ,xn) = ··· = Pm(x1, . . . ,xn−1,0) = 0. In-

deed since

Pm
(
x1, . . . ,xn

)= ∑
ε2,...,εn=±1

ε2 ···εn
(
x1+ε2x2+···+εnxn

)m

−
∑

ε2,...,εn=±1

ε2 ···εn
(−x1+ε2x2+···+εnxn

)m, (2.3)

it follows that Pm(0,x2, . . . ,xn)= 0. Similarly,

Pm
(
x1,0, . . . ,xn

)= ··· = Pm(x1, . . . ,xn−1,0
)= 0. (2.4)

Therefore, we have

Pm
(
x1, . . . ,xn

)= 0, (2.5)

for each m= 0,1,2, . . . ,n−1 and

Pn
(
x1, . . . ,xn

)=Kn
n∏
i=1

xi, (2.6)

for some constant Kn, because Pm(x1, . . . ,xn) ism-homogeneous for x1, . . . ,xn. Hence

we only show that Kn = 2nn!. Note that

Kn = Pn(1, . . . ,1)=
∑

ε1,...,εn=±1

ε1 ···εn

 n∑
k=1

εk



n

. (2.7)

ThenK1 = 2. Now, for eachmwith 0≤m≤n, letαm =
∑
ε1,...,εn=±1 ε1 ···εn(

∑n
k=1 εk)m.

Then by (2.5) and (2.6), we have α0 =α1 = ··· =αn−1 = 0 and αn =Kn. Hence,

Kn+1 =
∑

ε1,...,εn+1=±1

ε1 ···εn+1


n+1∑
k=1

εk



n+1

=
∑

ε1,...,εn=±1

ε1 ···εn

 n∑
k=1

εk+1



n+1

−
∑

ε1,...,εn=±1

ε1 ···εn

 n∑
k=1

εk−1



n+1

=
n+1∑
m=0

(
n+1
m

) ∑
ε1,...,εn=±1

ε1 ···εn

 n∑
k=1

εk



m

−
n+1∑
m=0

(
n+1
m

) ∑
ε1,...,εn=±1

ε1 ···εn(−1)n+1−m

 n∑
k=1

εk



m

=
n+1∑
m=0

(
n+1
m

)(
1−(−1)n+1−m) ∑

ε1,...,εn=±1

ε1 ···εn

 n∑
k=1

εk



m

=
n∑

m=0

(
n+1
m

)(
1−(−1)n+1−m)αm

=
(
n+1
n

)(
1−(−1)n+1−n)Kn

= 2(n+1)Kn,

(2.8)

so that we have Kn = 2nn! (n= 1,2, . . .) inductively.
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Proof of Proposition 1.4. (a)⇒(b). Let {u1, . . . ,uN} be a basis of F and g1, . . . ,gN
the corresponding coordinate functionals, that is, gi(uj) = δij (i,j = 1, . . . ,N). Let

P ∈ Pf (nE,F). Then we can write P(x) =∑�
i=1(Ti(x))n (x ∈ E) for some T1, . . . ,T� ∈

B(E,F). Let

fij(x)= gj
(
Ti(x)

)
(x ∈ E), (2.9)

for each i = 1, . . . ,�, j = 1, . . . ,N. Then we have Ti(x) =
∑N
j=1fij(x)uj (x ∈ E, i =

1, . . . ,�), and hence by Lemma 2.1,

P(x)=
�∑
i=1


 N∑
j=1

fij(x)uj



n

=
�∑
i=1

N∑
j1=1

···
N∑

jn=1

fij1(x)···fijn(x)uj1 ···ujn

=
�∑
i=1

N∑
j1=1

···
N∑

jn=1

1
Kn

∑
ε1,...,εn=±1

ε1 ···εn

 n∑
k=1

εkfijk(x)



n

uj1 ···ujn

=
�∑
i=1

N∑
j1=1

···
N∑

jn=1

∑
ε1,...,εn=±1

(
fi,j1,...,jn,ε1,...,εn(x)

)nbj1,...,jn,ε1,...,εn ,

(2.10)

for each x ∈ E, where fi,j1,...,jn,ε1,...,εn = ε1fij1 +···+εnfijn ∈ E∗ and bj1,...,jn,ε1,...,εn =
(1/Kn)ε1 ···εnuj1 ···ujn ∈ F . Therefore we have P ∈ Pf (nE,F).

(b)⇒(c). This is trivial.

(c)⇒(a). Suppose that Pf (1E,F) ⊆ Pf (1E,F) for every Banach space E. Note that

Pf (1F,F) = {T ∈ B(F,F) : dimT(F) < ∞} and Pf (1F,F) = B(F,F). Then by hypothe-

sis, the identity map of F onto itself is finite dimensional and so is F .

Proof of Proposition 1.5. This follows immediately from Propositions 1.1 and

1.4.
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