

A NOTE ON A CLASS OF BANACH ALGEBRA-VALUED POLYNOMIALS

SIN-EI TAKAHASI, OSAMU HATORI, KEIICHI WATANABE,
and TAKESHI MIURA

Received 10 March 2002

Let F be a Banach algebra. We give a necessary and sufficient condition for F to be finite dimensional, in terms of finite type n -homogeneous F -valued polynomials.

2000 Mathematics Subject Classification: 46H99.

1. Introduction and results. Let E and F be complex Banach spaces. We denote by $L^n(E, F)$ the Banach space of all continuous n -linear mappings A from E^n into F endowed with the norm $\|A\| = \sup\{\|A(x_1, \dots, x_n)\| : \|x_j\| \leq 1, j = 1, \dots, n\}$. A mapping P from E into F is called a continuous n -homogeneous polynomial if $P(x) = A(x, \dots, x)$ (for all $x \in E$) for some $A \in L^n(E, F)$. We denote by $P^n(E, F)$ the Banach space of all continuous n -homogeneous polynomials P from E into F endowed with the norm $\|P\| = \sup\{\|P(x)\| : \|x\| \leq 1\}$. Also a mapping P from E into F is called a finite type n -homogeneous polynomial if $P(x) = f_1(x)^n b_1 + \dots + f_k(x)^n b_k$ (for all $x \in E$), where $f_1, \dots, f_k \in E^*$ and $b_1, \dots, b_k \in F$. We denote by $P_f^n(E, F)$ the space of all finite type n -homogeneous polynomials P from E into F . Then we have $P_f^n(E, F) \subseteq P^n(E, F)$. Indeed, let $P \in P_f^n(E, F)$. Then we write $P(x) = f_1(x)^n b_1 + \dots + f_k(x)^n b_k$ ($x \in E$) for some $f_1, \dots, f_k \in E^*$ and $b_1, \dots, b_k \in F$. Set

$$A(x_1, \dots, x_n) = \sum_{i=1}^k f_i(x_1) \cdots f_i(x_n) b_i, \quad (x_1, \dots, x_n) \in E^n. \quad (1.1)$$

Then A is a continuous n -linear mapping from E^n into F and $P(x) = A(x, \dots, x)$ ($x \in E$). Hence $P \in P^n(E, F)$. We are now interested in the case that F is a Banach algebra. Let

$$P_f(E, F) = \{\varphi_1^n + \dots + \varphi_k^n : \varphi_j \in B(E, F) \ (j = 1, \dots, k), k \in \mathbb{N}\}, \quad (1.2)$$

where $\varphi_j^n(x) = (\varphi_j(x))^n$ ($x \in E$). Then we have $P_f(E, \mathbb{C}) = P_f(E, \mathbb{C})$ and $P_f(\mathbb{C}, F) \subseteq P_f(\mathbb{C}, F)$ (see [1, Section 1]). Also, we have $P_f(E, F) \subseteq P^n(E, F)$. Indeed, let $P \in P_f(E, F)$. Then we can write $P = \varphi_1^n + \dots + \varphi_k^n$ for some $\varphi_1, \dots, \varphi_k \in B(E, F)$. Set $A(x_1, \dots, x_n) = \sum_{i=1}^k \varphi_i(x_1) \cdots \varphi_i(x_n)$, $(x_1, \dots, x_n) \in E^n$. Then A is a continuous n -linear mapping from E^n into F and $P(x) = A(x, \dots, x)$ ($x \in E$). Hence $P \in P^n(E, F)$.

Now, for each $n \in \mathbb{N}$, we say that an algebra F has the r_n -property if, given any $b \in F$, we can find elements $a_1, \dots, a_p \in F$ such that $b = \sum_{i=1}^p a_i^n$. We also say that an algebra F has the r -property if F has the r_n -property for each $n \in \mathbb{N}$.

PROPOSITION 1.1 (see [1]). (1) *Every unital complex algebra has the r -property.*

(2) *Let E be a Banach space and F be a Banach algebra. Then $P_f(^n E, F) \subseteq \mathbf{P}_f(^n E, F)$ if and only if F has the r_n -property.*

In [1], it is remarked that, given an arbitrary Banach space $(F, +, \|\cdot\|)$, we can always define a product \circ and a norm $\|\cdot\|_*$ on F in order that $(F, +, \circ, \|\cdot\|_*)$ is a unital Banach algebra and $\|\cdot\|_*$ is equivalent to $\|\cdot\|$. By [Proposition 1.1](#) and the above remark, Lourenço-Moraes proved the following proposition.

PROPOSITION 1.2 (see [1]). *Let E be a Banach space. The following are equivalent:*

- (a) *E is a finite-dimensional space;*
- (b) *$P_f(^n E, F) = \mathbf{P}_f(^n E, F)$ for every $n \in \mathbb{N}$ and for every Banach algebra F with the r_n -property;*
- (c) *$P_f(^n E, F) = \mathbf{P}_f(^n E, F)$ for every $n \in \mathbb{N}$ and for every unital Banach algebra F .*

REMARK 1.3. By the proof of [Proposition 1.2](#) (see [1]), we see that each of the following two statements are also equivalent to one of, hence all of, (a), (b), and (c) in [Proposition 1.2](#):

- (b') *$P_f(^1 E, F) = \mathbf{P}_f(^1 E, F)$ for every unital Banach algebra F ;*
- (d) *$P_f(^n E, F) = \mathbf{P}_f(^n E, F)$ for every $n \in \mathbb{N}$ and for every Banach space F .*

In this note we show the following result, which is opposite to [Proposition 1.2](#).

PROPOSITION 1.4. *Let F be a Banach algebra. Then the following are equivalent:*

- (a) *F is a finite-dimensional space;*
- (b) *$\mathbf{P}_f(^n E, F) \subseteq P_f(^n E, F)$ for every $n \in \mathbb{N}$ and for every Banach space E ;*
- (c) *$\mathbf{P}_f(^1 E, F) \subseteq P_f(^1 E, F)$ for every Banach space E .*

In particular, in the unital case, we have the following proposition.

PROPOSITION 1.5. *Let F be a unital Banach algebra. Then the following are equivalent:*

- (a) *F is a finite-dimensional space;*
- (b) *$\mathbf{P}_f(^n E, F) = P_f(^n E, F)$ for every $n \in \mathbb{N}$ and for every Banach space E ;*
- (c) *$\mathbf{P}_f(^1 E, F) = P_f(^1 E, F)$ for every Banach space E .*

2. Proofs

LEMMA 2.1. *Let n be any positive integer and let x_1, \dots, x_n be n -real variables. Then*

$$\prod_{i=1}^n x_i = \frac{1}{2^n n!} \sum_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n \left(\sum_{k=1}^n \varepsilon_k x_k \right)^n \quad (2.1)$$

holds.

PROOF. For each m with $0 \leq m \leq n$, let

$$P_m(x_1, \dots, x_n) = \sum_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n \left(\sum_{k=1}^n \varepsilon_k x_k \right)^m. \quad (2.2)$$

Then we have $P_m(0, x_2, \dots, x_n) = P_m(x_1, 0, \dots, x_n) = \dots = P_m(x_1, \dots, x_{n-1}, 0) = 0$. Indeed since

$$\begin{aligned} P_m(x_1, \dots, x_n) &= \sum_{\varepsilon_2, \dots, \varepsilon_n = \pm 1} \varepsilon_2 \cdots \varepsilon_n (x_1 + \varepsilon_2 x_2 + \cdots + \varepsilon_n x_n)^m \\ &\quad - \sum_{\varepsilon_2, \dots, \varepsilon_n = \pm 1} \varepsilon_2 \cdots \varepsilon_n (-x_1 + \varepsilon_2 x_2 + \cdots + \varepsilon_n x_n)^m, \end{aligned} \quad (2.3)$$

it follows that $P_m(0, x_2, \dots, x_n) = 0$. Similarly,

$$P_m(x_1, 0, \dots, x_n) = \dots = P_m(x_1, \dots, x_{n-1}, 0) = 0. \quad (2.4)$$

Therefore, we have

$$P_m(x_1, \dots, x_n) = 0, \quad (2.5)$$

for each $m = 0, 1, 2, \dots, n-1$ and

$$P_n(x_1, \dots, x_n) = K_n \prod_{i=1}^n x_i, \quad (2.6)$$

for some constant K_n , because $P_m(x_1, \dots, x_n)$ is m -homogeneous for x_1, \dots, x_n . Hence we only show that $K_n = 2^n n!$. Note that

$$K_n = P_n(1, \dots, 1) = \sum_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n \left(\sum_{k=1}^n \varepsilon_k \right)^n. \quad (2.7)$$

Then $K_1 = 2$. Now, for each m with $0 \leq m \leq n$, let $\alpha_m = \sum_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n (\sum_{k=1}^n \varepsilon_k)^m$. Then by (2.5) and (2.6), we have $\alpha_0 = \alpha_1 = \dots = \alpha_{n-1} = 0$ and $\alpha_n = K_n$. Hence,

$$\begin{aligned} K_{n+1} &= \sum_{\varepsilon_1, \dots, \varepsilon_{n+1} = \pm 1} \varepsilon_1 \cdots \varepsilon_{n+1} \left(\sum_{k=1}^{n+1} \varepsilon_k \right)^{n+1} \\ &= \sum_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n \left(\sum_{k=1}^n \varepsilon_k + 1 \right)^{n+1} - \sum_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n \left(\sum_{k=1}^n \varepsilon_k - 1 \right)^{n+1} \\ &= \sum_{m=0}^{n+1} \binom{n+1}{m} \sum_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n \left(\sum_{k=1}^n \varepsilon_k \right)^m \\ &\quad - \sum_{m=0}^{n+1} \binom{n+1}{m} \sum_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n (-1)^{n+1-m} \left(\sum_{k=1}^n \varepsilon_k \right)^m \\ &= \sum_{m=0}^{n+1} \binom{n+1}{m} (1 - (-1)^{n+1-m}) \sum_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n \left(\sum_{k=1}^n \varepsilon_k \right)^m \\ &= \sum_{m=0}^n \binom{n+1}{m} (1 - (-1)^{n+1-m}) \alpha_m \\ &= \binom{n+1}{n} (1 - (-1)^{n+1-n}) K_n \\ &= 2(n+1)K_n, \end{aligned} \quad (2.8)$$

so that we have $K_n = 2^n n!$ ($n = 1, 2, \dots$) inductively. \square

PROOF OF PROPOSITION 1.4. (a) \Rightarrow (b). Let $\{u_1, \dots, u_N\}$ be a basis of F and g_1, \dots, g_N the corresponding coordinate functionals, that is, $g_i(u_j) = \delta_{ij}$ ($i, j = 1, \dots, N$). Let $P \in \mathbf{P}_f(^n E, F)$. Then we can write $P(x) = \sum_{i=1}^{\ell} (T_i(x))^n$ ($x \in E$) for some $T_1, \dots, T_{\ell} \in B(E, F)$. Let

$$f_{ij}(x) = g_j(T_i(x)) \quad (x \in E), \quad (2.9)$$

for each $i = 1, \dots, \ell$, $j = 1, \dots, N$. Then we have $T_i(x) = \sum_{j=1}^N f_{ij}(x)u_j$ ($x \in E$, $i = 1, \dots, \ell$), and hence by Lemma 2.1,

$$\begin{aligned} P(x) &= \sum_{i=1}^{\ell} \left(\sum_{j=1}^N f_{ij}(x)u_j \right)^n \\ &= \sum_{i=1}^{\ell} \sum_{j_1=1}^N \cdots \sum_{j_n=1}^N f_{ij_1}(x) \cdots f_{ij_n}(x)u_{j_1} \cdots u_{j_n} \\ &= \sum_{i=1}^{\ell} \sum_{j_1=1}^N \cdots \sum_{j_n=1}^N \frac{1}{K_n} \sum_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n \left(\sum_{k=1}^n \varepsilon_k f_{ij_k}(x) \right)^n u_{j_1} \cdots u_{j_n} \\ &= \sum_{i=1}^{\ell} \sum_{j_1=1}^N \cdots \sum_{j_n=1}^N \sum_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} (f_{i,j_1, \dots, j_n, \varepsilon_1, \dots, \varepsilon_n}(x))^n b_{j_1, \dots, j_n, \varepsilon_1, \dots, \varepsilon_n}, \end{aligned} \quad (2.10)$$

for each $x \in E$, where $f_{i,j_1, \dots, j_n, \varepsilon_1, \dots, \varepsilon_n} = \varepsilon_1 f_{ij_1} + \cdots + \varepsilon_n f_{ij_n} \in E^*$ and $b_{j_1, \dots, j_n, \varepsilon_1, \dots, \varepsilon_n} = (1/K_n) \varepsilon_1 \cdots \varepsilon_n u_{j_1} \cdots u_{j_n} \in F$. Therefore we have $P \in \mathbf{P}_f(^n E, F)$.

(b) \Rightarrow (c). This is trivial.

(c) \Rightarrow (a). Suppose that $\mathbf{P}_f(^1 E, F) \subseteq \mathbf{P}_f(^1 E, F)$ for every Banach space E . Note that $\mathbf{P}_f(^1 F, F) = \{T \in B(F, F) : \dim T(F) < \infty\}$ and $\mathbf{P}_f(^1 F, F) = B(F, F)$. Then by hypothesis, the identity map of F onto itself is finite dimensional and so is F . \square

PROOF OF PROPOSITION 1.5. This follows immediately from Propositions 1.1 and 1.4. \square

REFERENCES

[1] M. L. Lourenço and L. A. Moraes, *A class of polynomials from Banach spaces into Banach algebras*, Publ. Res. Inst. Math. Sci. 37 (2001), no. 4, 521–529.

SIN-EI TAKAHASI: DEPARTMENT OF BASIC TECHNOLOGY, APPLIED MATHEMATICS AND PHYSICS, YAMAGATA UNIVERSITY, YONEZAWA 992-8510, JAPAN

E-mail address: sin-ei@emperor.yz.yamagata-u.ac.jp

OSAMU HATORI: DEPARTMENT OF MATHEMATICAL SCIENCES, GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, NIIGATA UNIVERSITY, NIIGATA 950-2181, JAPAN

E-mail address: hatori@m.sc.niigata-u.ac.jp

KEIICHI WATANABE: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, NIIGATA UNIVERSITY, NIIGATA 950-2181, JAPAN

E-mail address: wtnbk@m.sc.niigata-u.ac.jp

TAKESHI MIURA: DEPARTMENT OF BASIC TECHNOLOGY, APPLIED MATHEMATICS AND PHYSICS, YAMAGATA UNIVERSITY, YONEZAWA 992-8510, JAPAN

E-mail address: miura@yz.yamagata-u.ac.jp

Special Issue on Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/ade/guidelines.html>. Authors should follow the Advances in Difference Equations manuscript format described at the journal site <http://www.hindawi.com/journals/ade/>. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	April 1, 2009
First Round of Reviews	July 1, 2009
Publication Date	October 1, 2009

Lead Guest Editor

Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.oter@usc.es