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We prove that the author’s powersum formula yields a nonzero expression for a partic-
ular linear ordinary differential equation, called a resolvent, associated with a univariate
polynomial whose coefficients lie in a differential field of characteristic zero provided the
distinct roots of the polynomial are differentially independent over constants. By defini-
tion, the terms of a resolvent lie in the differential field generated by the coefficients of the
polynomial, and each of the roots of the polynomial are solutions of the resolvent. One
example shows how the powersum formula works. Another example shows how the proof
that the formula is not zero works.
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1. Introduction. In 1993, the author began the study of polynomials of a single
variable whose coefficients lie in a differential field of characteristic zero and an as-
sociated nonzero linear ordinary differential equation (LODE), with the roots of the
polynomial as the dependent variable and one of the coefficients of the polynomial
as the independent variable. If all the terms of the LODE lie in the differential field
generated by the coefficients of the polynomial and are not all zero, then the LODE is
called a resolvent of the polynomial. The author’s original purpose for this line of re-
search was to discover ways of solving nonlinear ODEs by a sequence of Picard-Vessiot
extensions. The first linear differential resolvent of a polynomial had been discovered
by Cockle in 1860 [4]. Reading the work of Cockle, Harley gave Cockle’s newly discov-
ered LODE a name in 1862: differential resolvent [7]. Cockle [5] and other authors in
the 19th century had attempted to compute all the roots of a polynomial by solving
one of its resolvents. Since various explicit formulae for all the roots of a polynomial
in terms of the coefficients of the polynomial have since been discovered by Birke-
land [2] and Umemura [14], the resolvent is not needed for this purpose. However, the
author has continued to pursue explicit formulae for resolvents of any polynomial
for the original purpose of solving nonlinear ODEs. For example, the author recently
discovered [11] that a simple expression for a first-order inhomogeneous resolvent
of a quadratic polynomial can be used to solve the nonlinear first-order Riccati ODE.
Cormier et al. [6] have used the differential resolvent to compute the Galois group of
a polynomial.

In the 19th century, Cayley [3], Cockle [4], Harley [7], and Lachtin [9] and in the
early 20th century, Belardinelli [1] studied only trinomials (polynomials of the form
t"+A-tP + B = 0) with coefficients A and B in the field Q(x). Trinomials had been
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exclusively studied because polynomials of degree less than or equal to 5 can be
reduced by algebraic manipulations to trinomials z" + z¥ + C = 0 involving just one
root, z, and one other free parameter, C. These authors sought differential resolvents
whose terms are polynomials in x. The author has since generalized the definition of
Cockle’s and Harley’s resolvent to univariate polynomials over any differential field
of characteristic zero.

The powersum formula is a remarkably simple application of linear algebra to the
computation of a homogeneous LODE. It relies on the existence of an «th power resol-
vent for any polynomial with coefficients in a differential field of characteristic zero.
It also relies on our ability to specialize the indeterminate « to an integer q and leave
z1 as a solution of the resolvent. Unfortunately, it has not yet been proven that this
formula does not simply vield zero, rather than a resolvent, which is by definition not
zero, for every possible polynomial. Worse, it is not known for which polynomials, if
any, the powersum formula yields zero. We must first overcome the obstacle of de-
termining the number of derivatives and the number of powers of « in an «th power
resolvent of the polynomial. This is necessary since the formula uses Cramer’s rule by
setting the unknown coefficients of « in the resolvent to the appropriate cofactor of
the matrix consisting of integer multiples of the derivatives of the powersums (hence
the formula’s name) of the roots. A resolvent of lowest possible order and with no
common power of & among its terms is called the Cohnian of the polynomial, after
the author’s dissertation advisor, Richard Cohn. No algorithm has yet been devised
that is guaranteed to determine the number of powers of « in the Cohnian for all
polynomials.

In some sense, all polynomials with coefficients in a differential field are differential
specializations of polynomials whose coefficients are differentially independent over
the integers, that is, there exist no algebraic relations over the integers of the coef-
ficients of the polynomial or of any of their derivatives. It was therefore considered
necessary first to prove that the powersum formula yields a nonzero resolvent for a
polynomial whose coefficients are differentially independent over integers. For such
polynomials, it is known [12, Theorem 40, page 71] that there exists an «th power
resolvent of order n. Furthermore, the exact powers of « appearing in the resolvent,
with no nontrivial factors, are known. Finally, it is known [12, Theorem 40, page 71]
that there exist no «th power resolvents of lower order or with fewer powers of «.
Therefore, it is possible to prove that the powersum formula yields a nonzero answer
if we can prove that it yields a nonzero answer for, at least, one coefficient of « in,
at least, one term of the resolvent. This paper will prove that the powersum formula
yields a nonzero value for the coefficient F; o of the first power of « in the zeroth
derivative term of the resolvent.

The author would like to make one point about terminology. It feels more natu-
ral to say a single object, like a root of a polynomial, is differentially transcendental
over some field rather than differentially independent. Indeed, without the preceding
adverb differentially, it makes no sense to refer to a single object being independent
over anything. However, it does make sense to say that a single object and all of its
derivatives are algebraically independent over a field, which is the definition of the
object being differentially transcendental over the field. Therefore, since the case of
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several objects being differentially independent covers the case of any one of them
being differentially transcendental, the author has adopted the terminology differen-
tially independent throughout this paper. However, in future papers, the author will
refer to a polynomial, considered to be a single object, as being differentially tran-
scendental (dt polynomial) if all its distinct roots are differentially independent over
constants.

2. Example: polynomial with relations on the roots. It is worth mentioning that
there exist polynomials whose coefficients are essentially the opposite of being differ-
entially independent over constants for which the powersum formula yields a nonzero
answer. The readers may be interested in verifying, for themselves, that the power-
sum formula works on the following polynomial which has many algebraic relations
among its coefficients and roots. This is [12, Example 99, page 166]. The cubic polyno-
mial P(t) =3 —x- (1+x+x2)-t2+x2- (1+x+x2)-t—x%hasroots z = {x,x2,x3} and
coefficients e; = x - (1 +x+x2), e, = x3 - (1+x+x2), and e3 = x%. We can verify that
x=e1/ex-(ex+e3)/(1+eq).So, x lies in the coefficient field Q(eq,ep,e3) of P. Thisis a
particular case of [12, Lemma 100, page 167]. It has an «th power resolvent of the form
Co,3 - x3 'D3y+ (C()’z +C1,2 ) - x? 'D2y+ (CO,I +C11-X+Co1 " (XZ) 'Dy+C3,0 -3 Y = 0,
where Dx =1, y = z%, and all seven ¢;» # 0 and ¢, € Z[x]. There clearly exists no
oth power resolvent of lower order with fewer powers of «. This is a particular case
of [12, Lemma 98, page 163] for which an «th power resolvent was computed for all
polynomials of the form P(t) = [T}, (t — x!) without using the powersum formula.

Although we could specialize « to any set of integers we like, it is natural to spe-
cialize « to the set of integers from one to one less than the number of nonzero
coefficients, ¢; . It is this choice of integers that defines the powersum formula. So,
in the example above, if we specialize « to each of the integers g € {1,2,3,4,5,6}, then
v is specialized to z%. If we sum the resulting equation over each of the three roots
z € {x,x?,x3}, we obtain the following homogeneous linear system of six equations
in seven unknowns:

_ 7C0,3* o

[x3D3p, x2D%p, x2-1-D%p, x-Dp; x-1-Dp; x-12-Dp; 13-p; . 0
x3D3p, x°D?%p, x%-2-D%py x-Dp> x-2-Dp> x-2%2-Dp> 23-p» CO‘Z 0
x3D3p3 x°D%p3 x%-3-D%p3 x-Dp3 x-3-Dp3 x-3%2-Dp3 33-p3 Cl’z |0
X3D3p4 X2D2P4 x2-4-D2p4 x-Dpy x-4-Dpy X'42-Dp4 43'194 CO,l =lo
x3D3ps x2D?%ps x2-5-D%ps x-Dps x-5-Dps x-52-Dps 5°-p; cl’l 0
| x3D3ps x°D?ps x2:6-D?ps x-Dpsg x-6-Dps x-62-Dps 63-pg | C?(l) I
BECR))
Here,
P1=xX+x°+x3, pr =x%+x*+x86, p3=x3+x%+x9,
B (2.2)
pa=x*+x8+x12,  ps=x+x04xP, ps=xC+x+x18

are the first six powersums of the roots of P. We now set each c;, equal to its cor-
responding 6 X 6 cofactor and divide these seven cofactors by their common factor
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9 =34560-(x—1)7-x8.(x+1)-p(x), where

P(x) = =146x+5x2 —40x3 —21x* +158x° +242x°% - 282x7 —1192x8
—1710x° —=870x'0 +1698x ! +2316x'2 + 846x '3 + 246x ' (2.3)

—594x 1 —375x16 4 324x 17 + 9x 18 — 5419 + 9x 20,

The final resultis [¢o3,¢0,2,¢1,2,C0,1,€1,1,€2,1,¢301=11,3,-6,1,—-6,11,—6], which yields
the correct minimal resolvent x3 -y + (3-6-&) -x%-y" +(1-6-a+11-&?) -x -
Yy —6-03-y=0.

3. Notation. We will use the symbols 3 for there exists, > for such that, V for for
all, and = for is defined as. Let Z denote the ring of integers. Let N denote the set of
positive integers. Let Ny denote the set of nonnegative integers. Let Q denote the field
of rational numbers. Let S stand for either Z or Q. Let S* denote S with zero removed.
For any m € Ny, define [m]={keN>1<k<m}and [m]lo={keNy>0=<k<m}.
For any m € N and any variable or number v, define (v),, = [[i"; (v —i+1). Define
(v)o=1.

Let R be a differential domain of characteristic 0 with derivation D. Let k be the sub-
field of constants of R with respect to the derivation D. It will cause almost no greater
difficulty to consider a polynomial with multiple roots than one with simple roots, pro-
vided the distinct roots themselves are differentially independent over constants. Let
P be a monic polynomial of a single variable t over R, P € R[t], of degree N with »n dis-
tinct roots z = {z; 31:1 with multiplicities {17, ;‘:1, respectively. So, P = 1_[;[:1 (t—z;)™,
where N = Z?:l ;. We will write P in the form P(t) = SN o (=1)N=ley_; - ti with co-
efficients ey_; € R. The notation e; is used to denote the jth elementary symmetric
function of the z. Let e = {ej}g‘:l denote the set of coefficients of P. For any q € Z,
we denote and define the gth powersum of the roots of P by p, = >, 7 - 2. We call
q the weight of the powersum p,. By a very minor generalization of [12, Theorem 1,
page 23] to account for their multiplicities, the n distinct roots z are differentially
independent over Z if and only if the first n powersums {p,};_, are differentially in-
dependent over Z. Hence, we may refer to either of these conditions interchangeably.
So, from now on, we will assume that the roots of P are differentially independent
over k. By some minor deductions made from the remarks of Kolchin immediately
following [8, Corollary 1, page 87] differential independence over some field of con-
stants k is the same as differential independence over any field of constants, such as
Q. So, from this point on, it is sufficient to assume that the roots of P are differentially
independent over Q.

It is important to keep in mind that only the n elementary symmetric functions
{e; }}1:1 of the n distinctroots z, not the N elementary symmetric functions e = {e; }?]:1
of the N roots z including their multiplicities, are differentially independent over
constants if and only if the n distinct roots z are differentially independent over
constants. Independent of this fact, the powersum formula yields a resolvent whose
terms lie in Z{e}, the coefficient ring of the polynomial P. We will not consider {¢; }?:1
in this paper again.
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We will use the Kolchin [8] notation for the adjunction of differential elements to
rings and fields. For any set of elements a = {ai,...,a,}, lying in an ordinary dif-
ferential ring extension of S, let S[a], S{a}, S(a), and S{a) denote, respectively, the
nondifferential ring, the differential ring, the nondifferential field, and the differential
field generated by S and a. For any m € Ny, let S{a},, and S{a),, denote, respec-
tively, the nondifferential ring and field generated by S, a, and the derivatives of a up
through mth order. Then, S{a}o = S[a] and S{a)o = S(a). By an easy generalization
of the material on [10, pages 19-25] to the differential case, we have Q{p}, = Q{e}m,
Z{p}tm CZ{e}m, and Q(p)m = Q(e)m, for any m € Ng and Q{p} = Q{e}, Z{p} C Z{e}.
Even though the powersum formula uses powersums p,, whose weights g are much
bigger than n, specifically up through weight n(n?—mn+2)/2, it is worth mentioning
that D"p, € Z{e}m, VM € Ny and Vg € Ny. That is, every entry in the matrix of the
powersum formula lies in the differential ring Z{e}, generated by the coefficients e of
P over Z. Therefore, the determinant of this matrix lies in Z{e}.

Let « be transcendental over Z{e} with Dx = 0. For each root z; of P, let y;
denote a nonzero solution of the first-order logarithmic differential equation z; -
Dyj—«-yj-Dz; = 0. Formally, we may think of y as the «th power of z up to
a constant multiple. By [12, Theorem 40, page 71], there exists a nonzero, nth or-
der, linear ordinary differential equation with coefficients 60;,, € Z{e}, of the form
S oS0 - ol - DMy = 0, where Q = n(n—1)/2+1, 6p = 0, and all other
0:m # 0. This ordinary differential equation is called an «th power differential resol-
vent of P. We call the 0, ,, the coefficient functions of the resolvent. Define® = n-Q+1.
Then, ® = (n3-n?+2n+2)/2. There is a total of ® nonzero coefficient functions 0; ,
in this resolvent. Let 3 denote the indices (i,m) of the nonzero coefficient functions
0;m in this resolvent. Then,

J={(i,m)3ie[Q-mly, me[nly, (i,m) = (0,0)}. (3.1)

So, || =®.

The choice of 6, ,, is not unique since we may multiply a resolvent of this form by an
element of Z{e} to get another resolvent of this form. Ideally, we seek a set of 0; ,, that
has no common factor over Z{e} except for the units +1. Define ¥ = n-Q. Then, ¥ =
® — 1. Let Fj,, denote the particular choice of 0;,, we get by applying the powersum
formula with the choice of integers g € [¥]. That is, Z(i,m)e§ Fim - o!D™y =0, where

Fi,m = (_1)sgn(i,m) |qi’Dm’pq | (3.2)

ax(i,m)*
We call (3.2) the determinantal formula for F;.,. Here, sgn(i,m) denotes the order
of the pair of indices (i,m) after ordering them in the set J. In this formula, the
rows of the matrix g D™ pq] are labelled by g as g spans the set [¥], the columns
are labelled by (i’,m’) as (i’,m’) spans the set 3 — {(i,m)}, and |q" D™ pglax(im)
denotes the determinant of [qi’Dm’ Pql. We will assume these conditions and notation
henceforth. We refer to g'D™p, as a column of order m in the determinantal formula
for Fi .
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From this point on, in the resolvent Z(i,m)eg Oim - -D™y =0, let 0;,, denote the
coefficient functions which have no common factor over Z{e} except +1. This resol-
vent, unique up to sign, is called the Cohnian of P. Currently, the Cohnian of poly-
nomials whose distinct roots are differentially independent over constants is known
only for the cases n = 2 and n = 3. It has been shown in [12, Lemma 66, page 121] that
either Fi;;, = 0 V(i,m) € J or there exists some very large common factor ¢ € Z{e},,
such that F, = 9 - 0;, V(i,m) € 3. We will prove that F; ;,; # 0 V (i,m) € 3 when the
distinct roots of P are differentially independent over Q. We will not attempt to factor
F;m over the ring Z{e} in this paper. A general algorithm for completely factoring all
the Fj, is unknown at this time, although a general algorithm for pulling out a large
factor from some of the F; ;, has been proven in [12, Theorem 62, page 114]. However,
we will make use of a trivial factorization of the term F; o in (5.2) to prove that F; o # 0,
from which it follows that the powersum formula yields a (nonzero) resolvent.

4. Powersum nonvanishing theorem. The aim of this paper is to prove the follow-
ing theorem.

THEOREM 4.1 (powersum nonvanishing theorem). Let the univariate polynomial
P(t) =T (t—z)™ = SN o(=1)N=leyn_; -t have n distinct roots {z;}}_, which are
differentially independent over Q. Let 3 be defined by the set of pairs of integers given
by (3.1). Define ® = (n® —n? +2n+2)/2 and assume all other definitions in Section 3.
Then, the powersum formula (3.2) yields a nonzero value for each of the ® coefficient
functions F; », in the «th power differential resolvent Z(i,meg Fim-&'-D™y of P.

We will prove Theorem 4.1 in Section 9.
Define 3 = - {(1,0)}. Then, J is the set of pairs of nonnegative integers (i,m) such

thati € [Q—m]o, m € [n]oy, and (i,m) ¢ {(0,0),(1,0)}. The set J represents all the
terms o - D™y, except « - v, that appear in the Cohnian of P. We will prove that the
coefficient of « - in the differential resolvent > _o S " F; ,, - o - D™y = 0, given
by F10 = (=1)* 917" D™ p | 4 (ir.m) Where (i',m’) spans 3, is not identically zero.
By the author’s minimal form theorem [12, Theorem 40, page 71], P can have no «th
power resolvent of order lower than n, and, among those resolvents of order n, none
can have fewer than ® nonzero coefficient functions of «. Therefore, if the powersum
formula yields one nonzero coefficient, then the powersum formula for all the other
coefficients must be nonzero. Therefore, to prove Theorem 4.1, it will be sufficient to
prove Fi o # 0.

We will now give in Sections 5 through 9 the prerequisite material and theorems
for the proof of Theorem 4.1. From this point on, we assume that we have ordered
the pairs (i,m) such that (—1)ss21.0) =1,

5. Factorization of the term F; in the resolvent. Consider the differential ring
inclusion Z{p,...,py} C Z{z1,...,zx}, where the smaller ring is generated by the
first ¥ powersums of the roots zi,...,z,. The powersum formula shows that F; o €
Z{p1,--.,Py¥}in CZ{p1,...,py}. Consider further the ordinary ring inclusion 7 {z,, ..., z.}
- Z{zl,...,zn}[zfl,...,z;Ll]. We will factor F; as the product of an element of the
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ordinary ring Z[z,,...,z,] and an element of the ring Z{zl,...,zn}[zl’l,...,zgl]. The
element from Z{z,,...,z,} [zl’l, ...,z 1 will not depend upon the variable q.

We define a monomial in the derivatives of the roots to be formal products of the
form [T, [T,n=0(D™z;)Vmi, with v, ; € No, without any integer coefficients.

We factor Fj in the following way. For each m € [n], express the mth derivative
of p, in the following way:

M:

D™py= > m- szl

~
l
—

Il
M=
M=

Bm,j(Dz;,D%zy,...) - (@) jz]”

~
Ul
—

j=0
(5.1)

M: T M:

-3 b2 3ol

k=0

-z ZAmlkq ,
1 k=0

~
Il

where By, j{z;} are the partial Bell polynomials in the derivatives of z; as defined on
[10, page 30], s,{ are the Stirling numbers of the first kind as defined on [10, page
31] using the notation on [13, page 7], and Ay 1k = Z;n:kBm,j{Zl} -s,{ - z[j. Then,
Amik € Z{zl,...,zn}[zl’l,...,z,;l] and does not depend upon gq. Later we will state
the definitions and properties of By, j{z;} and s;i that are necessary for the proofs.

Next, multiply D™p, by g’ to get g'D"pg = X1 Sito Amuik - q'** - z]. Define t =
i+k. So, k = t —1i, and, hereafter, we need consider only i <t < i+m. So g'D"p, =
Zl LT t ” Ampi—i-qt -zf. Since i+ m € [Q], V(i,m) € J, we have t € [Q],
Y(i,m) € S. Thus, we may factor Fj o as

Fl,O = |qlepq | qx(i,m)
t=i+m

n
S D Ampe-ica'-z) (5.2)
- t=i

ax(i,m)

= |‘1t'7Tl 'Z? |q><(l,t)' \Amyl‘t*i|(l,t)><(i,m)'

Thus, (I,t) labels the rows and (i,71) labels the columns in the first determinant on
the right. The pair (l,t) spans the Cartesian product [n] x [Q] and the pair (i,m)
spans the set 3. Define the matrix

A= [Am,l,t—i](l,t)x(i,m)- (5.3)
Define 8 = [n] x [Q]. Then, the rows of A are labelled by (I,t) € 8 and the columns
are labelled by (i,m) € 3.
6. First factor is nonzero

THEOREM 6.1. The determinant |q" - 11, - zfqu(l,t) in the factorization of F, ¢ is not
zero as the row index q spans [Y] and the column index (l,t) spans the Cartesian
product [n] x[Q].
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PROOF. The matrix [q' - 1 - z]' lgx) is ¥ x V. To see that |g' - 11, - 2] | gty # O,
pick out the highest powers of z; first. These will come from the QxQ block [gt - 777 -
z1l(v-a+12q<v)x(teq)) With determinant

lq" - - 21 1(\1/ Q+1<q<¥)x(te[Q]) = 771 : (Hzl) -|q' |q><t

=m. (ZF) . x ]_[(q” a’) #0,
q’<q’

(6.1)

where 1 = Zgj—ml gand x; = ng-ml q. The highest power of z; in the remain-
ing matrix comes from the Q x Q block [q! - T, -zg](\y,zgﬂsqsxy,mx(te[g] with de-
terminant |q! - 10 - 28| w_20+12a<v-yxreran = T8 - ([Tg 2D - 1@t lgxe = T8 - (257) - x2 -

[1g7<q (@ —a’) # 0, where B, = Zq $ ?mlq and x» = HZZ$:§2Q+1 q. By sumlar proce-
dures, we may continue and ultimately prove that det[g - 11 -zf lgerynxiernlteran # 0.
This concludes the proof of Theorem 6.1. a

7. Properties of the second factor. As noted in [10, page 31], the Stirling number
of the first kind Sk is (=1)7k times the (j — k)th elementary symmetrlc function of
the j—1 integers [J 1] when j > 0. Thus, Sk¢0VJ>k>0 50—0V1>0andsk—
Vj > 0. We define s{ = 1.

We continue with the definitions and some of the notation in [10, page 1]. We must
use the letters i and m elsewhere in this paper; so, in place of these letters in Mac-
donald’s definitions, we will use the letters u and 6. For our purposes, a partition A
is a finite decreasing sequence of positive integers Ay > Ay > - - - > Ay called the parts
of A. The number of parts £ is the length of A. To emphasize the particular partition,
we will sometimes write £(A) for the length of A. For our purposes in this paper, we
need to consider only partitions all of whose parts are < n. For each u € [n], define
0. € Ny to be the number of parts of A equal to u. We call 0,, the multiplicity of u in A.
Thus, 0, = 0 for all u > n since all parts of A are < n. We will no longer deal directly
with the individual parts A, of a partition A but rather with these multiplicities and
write A = (191202...10%) Hence, £ = >);_; 0,. We define |A| to be the sum of the
parts of A and call it the weight of A. Hence, |A| = Zﬁzl u-0,. We say A is a partition
of the integer |A|. The weight of A is not to be confused with the weight g of the gth
powersum py, although they are related.

From these definitions, it follows that 1 <-£(A) < m for all partitions A of a positive
integer m. We need to consider only the case m < n. We note the two extreme cases
on Y(A). There exists exactly one partition A such that £(A) = 1, namely, A = (m!).
Thus, 6,, =1 and 6,, = 0 for all u + m. There exists exactly one partition A such that
{(A) = m, namely, A = (1"™). Thus, 0,, =m and 0, = 0 for all u # 1.

Let us temporarily drop the subscript [ on the root z;. According to [10, page 31],
Bm,jiz} = Saea-TIv_1(DY2)%, where the sum is over all partitions A = (1% - - . n%)
of m of length j and c) = m!/ Hﬁ:l (0! (u!)G" ). The constant c, is always a positive
integer. This formula for By, j{z} implies the following three remarks. Firstly, for r €
[n], the inequality v - 0, < Z _1u-0y =|A| = m implies that there exist no partitions
of m with 0, > 0 if » > m. Secondly, if ¥ < m and j € [m], there might exist no
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partitions of m of length j with 8, > 0. This occurs in the case » < m and j = 1, for
which the only partition, namely, A = ('), has 6, = 0 for » < m and 0,, = 1. Thirdly,
B, j{z} = 0if j > m. When any of these three conditions occurs, we say that D"z does
not appear in By, j{z} and define the degree of D"z in By, j{z} to be 0.

Since all roots {z;}}*, are differentially independent over constants, any root z is
differentially transcendental over constants. Therefore, if A = (191 ---n%) and A’ =
(191 - .. n%) are two distinct partitions, even if they have the same length and weight,
the monomials []}}_, (DYz)? and []/'_; (D¥z)% cannot cancel. Therefore, the degree
of D"z in By, j{z} equals the maximum 6, over all partitions A of m of length j if they
exist. By the inequalities 0, < 3" 0, =€(A) =jand r- 0, <> u-0, = |A| =m,
the degree of D"z in By, j{z} is < j and < m/r. This includes the possibility that the
degree of D"z in By, j{z} is 0. Therefore, in the case m = 7, the degree of D"z in
By jiz}is <m/v =v/r =1, so it must equal O or 1.

If ¥ > 1 and m = 7, then the inequalities >,_, 0, = j and > _;u -0, = v imply
(r—1)-0, <>, »(u—1)-0, = (r—j). Thus, if j > 1, there exists no partition A of
v of length j such that 8, > 0. Therefore, D" z; does not appear in B, ;{z;} for j > 1.
If j = 1, then there exists exactly one partition of r of weight j, namely, A = (+1).
Therefore, D" z; appears in B, ; {z;} with nonzero coefficient c; = c¢(,1) = 1. By the last
statement of the previous paragraph, the degree of D"z, in B, 1{z;} equals 1.

For reasons that will become apparent in the induction step of the proof of Theorem
6.1, we need to determine the degree of D"z, in Ay 1k = Zj:j;" Bm,jizi} -s,{ -z[j only
for the case m = r and the degree of Dz; in Ay, 1« for any m € [n]. If k € [r], since
si + 0 Vj=k>O0, the degree of D"z, in A, equals the maximum over k < j <7
of the degrees of D"z; in B, j{z;}. This maximum is achieved when j = » with the
partition A = (r!), 0, = 1. So, the degree of D"z, in A, ;x equals 1.

If r > m, D" z; does not appear in A, x because D" z; does not appear in By, j{z;}
for any j. If v = m, since A, ;x involves only B, ; with j = k, it follows that D" z; does
not appear in A, for k > 1.

We define By, ; for m = 0 and j = 0 so that the defining property of the Bell poly-
nomials, which in this paper is simply D™z = 37" (Bp,; - (q), - 227/, still holds.
We can easily see that By, o = 0, for all m > 0, Byj = 0 for all j > 0, and By = 1.
From the definition A,k = Zﬁf Bm,jizi} -s,{ . z[j, it follows that A = 0 for all
k > 0. Because both By,; = 0 for all j > 0 and sé =0 for all j > 0, it follows that
Amio = 25231 B jiz1} -s,{ -2;" = Bmoizi} 59 -27° = Bmolzi}. Thus, Ap,o = 0 for all
m > 0 and Ag,0 = 1. Thus, it trivially follows that D"z does not appear in A,k if
k-m=0.

We must now summarize these results for the entries Ay, ;;—; of the matrix A. We
have already mentioned that it is necessary that i <t < i+m in order for Ay, ;:—i # 0.
And we just proved that it is necessary that m - (t —i) # 0, excluding Ao, = 1. For
a given monomial of the form D"z, for v € [n], we must determine necessary con-
ditions on the indices (L,t) and (i,m) of the entry A, ;-; for the monomial D"z, to
appear in Ay, ;-; with nonzero coefficient. And, when these conditions are met, we
must determine the degree of D"z, in the entry Ay, 1+—i. Since A, ;- involves only
the lth root z;, it is necessary that L = 7. Hence, the following properties hold.
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PROPERTY P. If r € [n] with» > 1, =v, t —i =1, the degree of D"z, in Ay ;i
equals 1. If ¥ € [n] with» > 1, but l # v or t —i # 1, then D"z, does not appear in
Ar,l,tfi-

PROPERTY Q. Ifr € [n], thedegree of Dz, in Ay 1i—jismifme [n],r <m,l=v,
and i < t < i+m. If any of these conditions is not met, then Dz, does not appear in
Am,l,tfi-

PROPERTY R. The entry Ay, —i=0ift <iort>i+morm-(t—i) =0, excluding
Ao,0 = 1.

We include Property R for reference, even though we will not refer to it again. In
the preceding discussion, Property R has been used implicitly to derive Properties P
and Q.

8. Induction step. Define x,, = (¥ —2)(r —1)/2 + 1. Observe that the formula in this
definition is independent of n. Note also that x, =x, 1+r—-2and x, =Q-n+1 so
xn—1=Q-mn.Note that x; = x» = 1 and x,, € N V¥ € N. Our next goal is to prove
the claim that the monomial

n

(o)

(Dzr)m"”(”’), 8.1)
=1

made up of the smaller monomials (D"z,)* and (Dz, )@= appears with
nonzero coefficient in F; 9. Theorem 8.1 gives necessary conditions on the rows and
columns of the matrix A of (5.3) which can contribute to the monomial M in determi-
nant Al = [Am, il @,0xim)-

THEOREM 8.1. Letn € N withn = 3.

First half. For each v € [n], the monomial (D" z, )X in M can come only from the
product of the x, entries of A, withl=v,t € [x,],i=t—-1,and m =r.

Second half. For each v € [n] with v > 1, the monomial (Dz,)®>)0-1 jn M can
come only from the product of the Q — x, entries of A withl=v,t=i+r—-1,x,1 <
i<Q-7r+1,andm=vr-1.

PrROOF. We will prove Theorem 8.1 by downward induction on the index 7 in the
product defining M. Any term in the expansion of the determinant of a ¥ x ¥ matrix
such as A is the product of ¥ entries of A taken from exactly ¥ distinct rows, indexed
by (I,t) € R, and exactly ¥ distinct columns, indexed by (i,m) € J, of A. From now
on, we will say “row” in place of “row of A” and “column” in place of “column of
A.” When we say that a particular monomial, (D" z,)* for instance, “comes from” a
certain set of x, (resp., Q — x,) rows and X, (resp., Q — x;) columns, we mean that
the monomial appears with nonzero coefficient in the determinant of the x, x x;,
(resp., (Q —x;) X (Q — x;)) minor of A formed from these rows and columns. We
say that we have “used up” these rows and columns, suggesting that the remaining
monomials comprising M must come from the determinant of the minor formed from
the remaining rows and columns of A not already considered in all the previous steps.
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We define the following subsets of the rows and columns of A. We include the
definitions of & and J again for reference. We need to define 8,, X,, J,, and 9, for
eachr € [n]:

N=[n]x[Ql.
8, ={(,t) er>1<r}. So, 8, =N.
R, =(,t)ersuchthatl<rorl=randx, +1 <t <Q.
J={(i,m)>me[n]y, i€ [Q-m]y} excluding {(0,0),(1,0)}.
J,=@{,m)eJsuchthat m<rorm=randie [x,—1]p.Since x,—1=Q-n,
I, =3.
fi, ={(iim)eI>m<r}.

We say a column of A indexed by (i,m) has order m.

INDUCTION HYPOTHESIS. Let v’ € [n].

FIRST HALF. For each v > v', (D" z,)* can come only from rows in 8, with [ = r
and t € [x,] and columns in J, with i € [x, —1]p and m =+ pairedup by t =i+ 1.

SECOND HALF. Let ¥’ > 1. For each v = v/, (Dz,)@*)-1 can come only from
rows in N, withl =7 and x, +1 <t < Q, and columns in 3, with x,_; <i <Q—(r—1)
and m=v—1pairedupbyt=i+r—1.

START OF INDUCTION

FIRST HALF. We begin the induction with v’ = n. Then, (D" z, )X = (D"z,,)*". Since
the nth derivative is the highest derivative in the columns in J, = g, it follows that
the monomial (D"z,)*" can come only from columns with m = n. By Property P, the
monomial (D"z,)*" can come only from rows and columns with I =n and t —i = 1.
By Property P, the degree of D"z, in Ay, 1r—i forl=n,m=n,and t —i =1 equals 1.
Therefore, the monomial (D"z,,)** must come from X, columns and, therefore, from
Xy, rows. But there are only x,, = Q—n+ 1 columns (i,m) € J,, with m = n, namely,
(i,m) € [xn,—1]o X {n} C J,. So, all x,, columns of order n in J,, have been taken.
For each column i € [x, — 1], there exists a corresponding row t subjecttot—i=1,
by Property P. Therefore, as i spans i € [x, —1]o, t spans [x;]. Thus, we have used
up x, rows in X, with (I,t) € {n} x[x,] C Ry.

Removing {n} x [x,] from &, leaves Ry,. Removing [x, —1]o X {n} from J,, leaves
fin. Therefore, in the second half of this induction step, we may look for rows only in
R, and columns only in J,,.

SECOND HALFE. The previous statement implies that the monomial (Dz,,)(©-Xn)(n-1)
must come from columns with m < n. By Property Q, the monomial (Dz,,)(©?-n)(n-1)
can come only from rows with [ = n, and, for each m € [n — 1], the degree of Dz, in
Amnt—i is m. Suppose that (Dz,)@ X "= came from a set of columns indexed by
some subset T C §n withm <n-1 V(i,m) € T. The degree of Dz,, coming from the
columns of T, is < 3. ; m)er M and must equal the degree of Dz, in (Dz,) @ *n)/n-1)
which is obviously (Q—x;)(n—1). Hence, (Q—xy)(n—1) < > (i myer M.

If some column (i,m) in T had m < n—1, then T would contain strictly more than
Q — x;, columns to make the inequality (Q —x,)(n—1) < > merm hold. But this
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would imply that (Dz,)@=¥) =1 comes from strictly more than Q - x,, columns in
3, and thus from strictly more than Q — x,, rows in X, with | = n. This contradicts
the range of [ and t in the indexing set X,. Therefore, we must have m = n —1 for all
pairs (i,m) € T C J. The only condition that (i,m) € J places upon i and m is that
i € [Q—m]o. Therefore, i must span some subset Y C [Q— (1n—1)]o with |Y]| = Q—x;,.
We will shortly prove that Y ={i>x,-1 <i<Q-(n-1)}.

Since we have used up x;, rows in 8, with l =n and t € [x;] to get (D"z,)*n, this
implies that (Dz,)©@Xn)®-1) myst come only from the Q — x,, rows in X, with l =n
and t spanning the set x,+1 <t < Q.

So, we have now accounted for Q rows with [ = n and Q columns such that

(i) (D"™z,)*n can come only from the x;, rows in X, with | = n and t spanning
[xy], and the x, columns in J, with m = n and i spanning [x; — 1]o, with the
rows and columns paired up by the relation t =i+ 1;

(i) (Dzy)@ > -1 can come only from the Q — x,, rows in 8, with [ = n and
t spanning x, +1 <t < Q and Q — x;;, columns in 5n with m = n—1 and
ie[Q—(n-1)]y, with the rows and columns subjecttoi <t <i+n—1.

We will show that the three conditions on i and t in (ii) force i and t to be related
byt =i+n—-1.We have t spanning x, +1 <t <Q,ie€[Q-(n-1)jpand t <i+n-1.
When t = Q, the second two conditions force i = Q — (n — 1). This leaves t to span
Xpn+tl<t<Q-1,ie[Q-(n-1)-1]p,and t <i+n—1. When t = Q -1, the second
two conditions force i = Q— (n—1) — 1. Continuing in this manner, we see that i and
t get paired up by t =i+n -1, forcing i to spantheset Y ={i>x,—-(n—-1)+1
i<Q-(n-1)} of size Q —x,. Since x,,_1 = x, —n+2, it follows that Y = {i > x,,_1
i<Q-(m-1)}.

Removing the Q —x, rowswithm =n—-1land x,-1 <i<Q—-(n-1) from 5,1 leaves
Jn-1. Removing the Q — x;, columns with [ =7 and x, +1 <t < Q from X, leaves

<
<

Np-1-

GENERAL STEP OF INDUCTION. We assume that the induction hypothesis is true
for ¥’ > v > 1. This means that we may choose only from rows in &, and columns in
J,. We now wish to prove the induction hypothesis true for v’ =+ > 1.

FIRST HALF. Since the rth derivative is the highest derivative in the columns in J,,
it follows that the monomial (D" z,)* can come only from columns with m = ». By
Property P, the monomial (D" z, )* can come only from rows in 8, and columns in 3,
with [ = » and subject to t —i = 1. By Property P, the degree of D"z, in Ay, ;,;—; for I =7,
m=7v,and t —i =1 equals 1. Therefore, the monomial (D" z,)*" must come from x,
columns and, therefore, from x, rows. But there are only x, columns (i,m) € 3, with
m = v, namely, (i,m) € [x, —1]ox {r} C J,. So, all x,- columns in J, of order » have
been taken. By Property P, for each column i € [x, — 1], there exists a corresponding
row t subject to t —i = 1. Therefore, as i spans i € [x;, — 1]o, t spans [x; ]. Thus, we
have used up x, rows in 8, with (I,t) € {r} x[x,] C 8.

Removing the rows {r} X [x, ] from X, leaves Ry Removing the columns [x;, —1]g X
{r} from 3, leaves 57. Therefore, in the second half of this induction step, we may
look for rows only in X, and columns only in fiy.
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SECOND HALF. The previous statement implies that the monomial (Dz, )@~ (-1
must come from columns with m < v. By Property Q, for each m € [ — 1], the mono-
mial (Dz,)©@*) =1 can come only from rows in X, with [ = n and the degree of Dz,
in Apn¢—i is m. Suppose that (Dz, )@=~ came from a set of columns indexed by
some subset T C 57 with m <v—1 V(i,m) € T. The degree of Dz, coming from the
columns of T is < Y (; ,uyer m and must equal the degree of Dz, in (Dz, )@ =1,
which is obviously (Q—x,)(r —1). Hence, (Q—x,) (¥ =1) < > (j m)er M.

If some column (i,m) in T had m < r — 1, then T would contain strictly more than
Q — x, columns to make the inequality (Q —x;)(r —1) < > (; m)er m hold. But this
would imply that (Dz,)©@-*) =D comes from strictly more than Q — x, columns in
57 and thus from strictly more than Q — x;,, rows in X, with [ = 7. This contradicts
the range of [ and t in the indexing set R,. Therefore, we must have m = v — 1 for all
pairs (i,m) € T C fly. The only condition that (i,m) € fir places upon i and m is that
i € [Q—m]o. Therefore, i must span some subsetY C [Q— (¥ —1)]o with |[Y]| = Q—x,..
We will shortly prove that Y = {i > x,_1 <i < Xx;}.

Since we have used up x, rows in 8, with l =7 and t € [x, ] to get (D" z,)*", this
implies (Dz,)@=*1) -1 must come only from the Q — x, rows in 8, with | =+ and t
spanning the set x,, +1 <t < Q.

So, we have now accounted for Q rows with [ =+ and Q columns such that

(i) (D"z,)*" can come only from x, rows in &, with [ = v and t spanning [x, ],
and x, columns in J, with m = and i spanning [x, — 1]o, with the rows and
columns paired up by the relation t =i+ 1;

(i) (Dz,)©@ > -1 can come only from Q — x, rows in 8, with [ = + and ¢ spanning
Xy +1<t=<Q and Q- x, columns in fIy withm=7r—-landie[Q-(r—-1)]o,
with the rows and columns subjecttoi <t <i+vr—1.

We will show that the three conditions on i and ¢ in (ii) force i and t to be related by
t=i+7r—1.Wehavet spanning x, +1 <t <Q,ic[Q—-(r—1)]pand t <i+7r—1.When
t = Q, the second two conditions force i = Q— (v —1). This leaves t tospan x, +1 <t <
O-1,ie[Q-r-1)-1]p,and t <i+r—1.Whent = Q—1, the second two conditions
force i = Q — (r — 1) — 1. Continuing in this manner, we see that i and t get paired up
byt=i+v—1, forcingitospanthesetY={i>x, - (r—-1)+1<i<Q-(r—1)} of
size Q —x,. Since x,_1 = x, —v +2,itfollows that Y = {i>x,_ 1 <i<Q—-(r—-1)}.

Removing the Q —x, rowswithm=r—-1land x,_1 <i<Q-(r-1) from 5y leaves
J,-1. Removing the Q —x, columns withl =7 and x,, +1 <t < Q from R, leaves 8,_1.

This proves Theorem 8.1. a

9. Termination of the induction

THEOREM 9.1. A sufficient condition for |A| = 0 is that | Am,1,t-il + 0.

(R=N1)x(I-37)

PROOF. The first half of Theorem 8.1 is true for v’ > 1, and the second half is
true for v’ > 2. Therefore, after obtaining the monomial M, Theorem 8.1 leaves the
rows 8y = {(,t) ex>l=1,x;+1 <t <Q}=1{(1,t) 32 <t <Q}, and the columns
51 ={(i,m) € 3> m < 1} = {(i,0) 2 2 < i < Q}. Therefore, M = [['_, (D" z,)*" -
[T, (Dz,) @) =1 must come from all the rows of A except 81 and all the columns
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of A except 51. Let |Amvl't*i|(x—{z1>x(s—§]> denote the determinant of the (¥ - Q+1) x

(Y —Q+1) minor formed from all the rows of A except xX; and all the columns of A
except J;. Let |Am,l,t—i|§1><“l denote the determinant of the (Q—1) x (Q—1) minor of

3
A formed from the rows 8, and the columns J;. Then, |A| = |Am’l’t_i‘(N—zfz1)><(8—§1) .
IAm'l't’i‘Fz]xﬁl + X where X denotes terms which cannot cancel with M, and we

have proven in Theorem 8.1 that, if M appears in |A|, then it must appear in
[Amte-il (o gwo5,) SInCe [Ampe-ily 5
and Apy:-i = 1 if t = i, we have |Ag1i-il2<t<0,2<i<o = 1. Therefore, |A| =
)+X. Therefore, if [Ay -l + 0, then |A| # 0. |

= |Ao,1,t-il2<t=0,2<i<0, Ao1t-i = 0if £ # 1

|Am'l't*i‘m—§1>x(s—§l (R—R)X(5-31)

We will now prove |Ap,¢—il, # 0.

R-R1)X(F-37)

10. Interpretation of Theorem 8.1. So far we have shown that if the monomial M
is to appear in the determinant of A, it necessarily comes only from the following
entries of A = [Am i-ilapxim:l=7r,te[x,],ie€[x,—1lop,m=r and t =i+1 for
renlandl=7r,x,+1<t<Q,x, 1<i<Q-(r-1), m=r-landt=i+r-1 for
re€[n]andr > 1.

In other words, in the expansion of the determinant of the minor [A, 1] (
M can appear only in the product

N-R)X(T-7)’

Ar—l,r,r—l)- (10-1)

P= (ﬁ ﬁA““) ' (ﬁr-lj

r=1t=1 +1

Thus, in the expansion of |Am*l't‘i|<x—§1>x(3—51)’ M cannot cancel with terms not
in P. Thus, Theorem 8.1 is equivalent to the statement that if M appears in P with
nonzero coefficient, then |Am'l't_i‘(x—§1)><(8—51) + 0.

Now, we must prove that M appears in P with nonzero coefficient.

THEOREM 10.1. The monomial M appears in the expansion of the determinant of

the minor |Am'l't7i|(N—{z1)><(S—§1) in the product (10.1) with nonzero coefficient.

We wish to compute the product [T}, [T;7, Ay 1 first.
The conditions =7, t € [x,],i € [xy —1]g, m =7, and t = i+ 1 imply

(10.2)

Next, we wish to compute the product []}_, H?:xrn Ar1yr-1-
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The conditions l=7,x, +1 <t <Q,x, 1 <i<Q-(r-1),m=r-1l,andt=i+r—-1
imply

r-1

Am,l,tfi = Arfl,r,rfl = Z Brfl,j{zr} ) S1Jf71 'Z;J
j=r-1
Dz r—1
= Boala) sz = (22) (10.3)
Zy
n Q n n (Q—xy)(r-1)
Q- Dz
1_[ HArlrrl HArlrrl Xy:l_[(—r)
r=2t=x,+1 r=2 re2 N 2r
In other words, P = M - []"_, z, """V | X where the X stands for terms that

cannot cancel with M. Since []"_, z, "~ @ *r)-("=1)

coefficient.
We may now prove Theorem 4.1.

+ 0, M appears in P with nonzero

PROOF OF THEOREM 4.1. By Theorem 10.1, M appears in P with nonzero coeffi-
cient. Therefore, by Theorem 8.1, | Ay, 1,¢- lI (RR X (S5—51) #+ 0. Therefore, by Theorem 9.1,
|A| # 0. Therefore, Fio = |qt zl lgx(ernl, tefa)) - |Al # 0 from the factorization (5.2).
Therefore, the resolvent Z(i,m)eg Fim -« D™y = 0, obtained by the powersum for-
mula, is not identically zero. By remarks made in Section 4, all the terms F; ,,, of this

resolvent are not zero. this completes the proof of Theorem 4.1. ]

11. Cubic example. We would now like to demonstrate the idea behind the proof of
Theorem 4.1 on the smallest possible nontrivial example. Even on this small example,
the 12 x 12 matrix in the powersum formula will be too large to show. Therefore, we
will instead reason as the author had originally formulated the proof of [12, Theorem
1]. Since the author has already provided one example using the powersum formula,
we will not explain how it works in the following example.

Let P(t) = (t—u)(t—v)(t —w) be a monic cubic polynomial whose roots z; = w,
z> = v, and z3 = u are differentially independent over Z. Since n = 3, we have Q =
n-(m-1)/2+1=4,¥Y =n-Q =12. Therefore, the homogeneous x-power Cohnian of
P has the form

(603 +613-x)-D3y

+ (90,2 + 91,2 - X+ 92,2 - 0(2) 'D2_’)/
(11.1)
+ (90’1 + 91’1 . 0(+92’1 . 0(2 +93'1 . (Xg) D_')/

+(91,()-0(+92‘0-0(2+93’0-0(3+94,0-0(4) -y:O,

where all 0;,, # 0 by [12, Theorem 40, page 71]. To obtain 6, , first compute F; o by
the powersum formula, which sets F;, equal to the 12 x 12 cofactor of the matrix
[qt D™ pglaxi,m) where g spans [12] and (i,m) spans 3 = {(0,3),(1,3),(0,2),(1,2),
(2,2),(0,1),(1,1),(2,1),(3,1),(2,0),(3,0),(4,0)}. We show that the powersum for-
mula yields a nonzero value for F; . We expand out the rows of [q D" pglaxim)
for easier reference. To shorten the notation we may drop p,; and indicate the (i,m)
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column simply by gt-D™, so
[a"-D™ Pyl yxiim) = [D?a-D3,D? q-D% q°D?,D,q-D,q°D,a’D,q*,q%,q*]. (11.2)
Denote the terms in each powersum p, and their derivatives in the following way:

pa ~ 29,

Dpq ~(@)1-2%"-Dz,

D?py~(q)2-z72(Dz)? +(q)1 - 2771 - D?z,
Dpg~(@)3-29%(D2)*+3-(q)2- 27 *(Dz-D°z) + (@)1 - 297 ' D’z.

(11.3)

The given D™ p, equals the expression following the ~ mark if we sum that expression
over the three roots. For instance, the column q - D?p, of the matrix [g* - D™ pg14x(i.m)
can be expressed as the sum of the six columns q - (q); - z497%(Dz)? and q - (q)1 -
z9-1.D2z one for each of the three roots z, with each column involving exactly one
root and exactly one monomial of the form [[,.,(D"z)" . Thus, the determinant of
[q *D™pylaxim) can be expressed as the sum of the determinants of the six matrices
formed by replacing g - D?p, with each of these six columns.

Wehave x1 =1, x> =1,and x3= (r—-2)(r=1)/2+1|,=3=2. S0, (Q—x3)(3—-1) =
2-2=4and (Q—x,)(2-1)=3-1=3.So,

M=T](D"z)" - T] (Dz,) " = (D3u)* (D?v)" (Dw) (Dw)*(Dv)3. (11.4)
r=1 r=1

We determine the coefficient of M = (D3u)2(Du)*(D?v)(Dv)3(Dw)! in the expan-
sion of the determinant of [gq - D™pglaxiim)-

The monomial (D3u)? can come only from the D3p, and q - D3p, columns since
they are the only columns of third order. Since D3u - Du does not appear in either D3p,
or q - D3pg,, the monomial (Du)* must come only from the columns of second and
first order. Furthermore, since u appears in D?p, only in the form (q)2 - u4-2(Du)? +
(@)1 -u~ - D?u, it follows that the three columns of second order D?p,, q - D?p,, and
a°D?p, will contribute at least two powers of Du. Therefore, (Du)* must come from
either two columns of second order, one column of second order and two columns of
first order, or four columns of first order.

If (Du)* came from one column of second order and two columns of first order,
or four columns of first order, then, at least, two columns of second order would
remain. These two columns of second order would contribute (D?v)? or (D?v)! (Dw)?
or (D%v)Y(Dv)2. Since (D?v)? and (D?v)!(Dw)? do not appear in M, it follows that
the other two columns of second order contribute (D?v)!(Dv)?2 to M. Then, one more
power of Dv would come from the columns of first order. Then, (Dw)? would come
from the remaining two columns of first order. But (Dw)? does not appear in M.

Therefore, (Du)* must come from two columns of second order. We have szq
contributing (q)z - u4=2 - (Du)? (degree 2 in q), q - D*p, contributing q - (q) - u4-2 -
(Du)? (degree 3 in q), and g2 - D*p, contributing g° - (q)2 - u4=2 - (Du)? (degree 4 in
q). Since (D3u)? comes from D3p,;, which contributes (q); - u?-'D3u (degree 1 in g),
q - D3pg,, which contributes q - (@)1 - u9~'D3u (degree 2 in g), and since the column
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(@)2-u972 - (Du)? (from D?p,) is a linear combination of the columns (q); -u4-'D3u
(from D3p,) and q - (@)1 - u4~'D3u (from g - D3p,), it follows that the column D?p,
would contribute nothing to (D3u)? - (Du)* in the determinant of [g?- D™pg]ax(im)-

Therefore, (Du)* must come from the columns g - D?p, and g°>D?p,. Then, D*v
must come from the szq column. Therefore, (Dv)3 must come from three of the
four columns of first order, Dpy, q - Dpg, 4°Dpy, or ¢*Dp,. Since D?p, contributes
(@)1-v41-D?v (degree 1 in q), Dp, contributes (q)1 - v4~!-Dv (degree 1 in q), and the
columns (q)1 - v4~1-D?v and (q); - v4~! - Dv are multiples of one another, it follows
that the column D?p, would contribute nothing to (D?v) - (Dv)? in the determinant
of [a' D™pglaxiim)-

Therefore, (Dv)3 must come only from the q - Dp,, g°Dp,, and g3Dp, columns.
Therefore, (Dw)! must come only from the Dp, column. The remaining columns
q’- w1, ¢* - w1, and g* - w7 must come from the columns g2 - p,, g% - pg, and g* - py,
respectively.

Putting this all together, the coefficient of M in the determinant of [g’ D™ pglaxim)
equals the determinant of

[a-u?™q* - ui™lq- v a® ut™h gt utl g wa

5 (11.5)

2 -1 3 -1 4 -1 2 -1 -1 4 -1
ac-vi gt vl gt vl gt wt g wiT gt wT

where we have reordered the columns as [D3,q-D3,q-D?,q°D?,D?,q-D,q*D,q°D, D,
a%,4°,q*] to demonstrate that each of the n = 3 roots occupies Q = 4 columns and
has a coefficient of g for each i € [Q]. By Theorem 6.1, |q*- z} |gx1,¢) # 0, S0 M appears
in F; o with nonzero coefficient.

To obtain the Cohnian coefficient function 0; o, we must divide F; o by the greatest
common divisor of all the F; ,, in the ring Z{e;,e2,e3}.

12. Conclusions. In [12], the author has factored some terms of a resolvent, given
by the powersum formula, of a polynomial whose roots are differentially independent
over constants using some partial differential resolvents of the polynomial. These par-
tial differential resolvents are the A-hypergeometric relations of Gel’fand and Sturm-
fels. But much more algebraic factorization remains to be done to make the powersum
formula implementable on a computer for polynomials of degree larger than 3.

Furthermore, much work remains to prove that the powersum formula works on
polynomials with differential and algebraic relations among their roots.
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