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1. Introduction. The double bubble conjecture states that the least-area way to
enclose and separate two given volumes is a “standard double bubble” consisting of
three spherical caps meeting at 120-degree angles (see Figure 1.1). The conjecture was
proven for R? by the 1990 Williams College NSF “SMALL” undergraduate research Ge-
ometry Group [6]. The equal-volumes case for R3 was proven in 1995 by Hass et al.
[8, 9]. In 2000, Hutchings et al. [11] announced a proof of the general case in R3.
The 1999 “SMALL” Geometry Group [17] generalized this result to R* and, for the
case where the larger volume is more than twice the smaller, to R™. In R> and higher
dimensions, even the case of equal volumes remains open. The 2000 edition of Mor-
gan’s book [13] provides a good general reference on the subject, including all of these
results.

In 1995, Masters [12] proved the conjecture on the two-sphere §2. In Theorem 2.7,
we note that the latest proof for R? applies to the hyperbolic plane H? and immiscible
fluids as well.

In this paper, we prove certain cases of the double bubble conjecture in the three-
sphere §3 and three-dimensional hyperbolic space H3.

THEOREM 1.1. A least-area enclosure of two equal volumes in S® which add up to at
most 90 percent of the total volume of S must be the (unique) standard double bubble.

THEOREM 1.2. A least-area enclosure of two equal volumes in H3 must be the
(unique) standard double bubble.

The proof follows the same outline as the proof for R3 by Hutchings et al. [11],
including component bounds, structure theory, and an instability argument.

A major difficulty in such proofs is that one cannot assume a priori that either of
the enclosed regions or the exterior is connected. If one tries to require each region
to be connected, it might disconnect in the minimizing limit, as thin connecting tubes
shrink away. In principle, the Hutchings component bounds [10, Sections 3 and 4]
extend to the n-sphere S and n-dimensional hyperbolic space H", but the formulae
are difficult to work with. We consider only the cases in $3 and H3 in which the two
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FIGURE 1.1. The standard double bubble, consisting of three spherical caps
meeting at 120-degree angles, is the conjectured least-area surface that en-
closes two given volumes in R", S™, and H™.

regions to be enclosed have the same volume v. In Section 4, we reduce the condi-
tion implying both regions connected to an inequality, F(v) > 0 (Proposition 4.8). In
Section 5, we prove that the function F(v) is positive for small volumes by making
Euclidean approximations to S and H? (Propositions 5.5 and 5.11). For large volumes
in §3, the region exterior to the two volumes becomes very small and may become
disconnected for all we know. For large volumes in H3, we use asymptotic analysis to
show that F(v) remains positive (Proposition 5.19). We prove that F(v) is positive for
intermediate volumes in both cases by bounding the derivative F’' (v) and checking a
finite number of points by computer (Propositions 5.8 and 5.14). We conclude that all
regions of the equal-volume double bubble are connected in S* when the exterior is
at least 10 percent of S3, and in H? for all volumes (Propositions 5.1 and 5.2).

In Section 6, we consider the structure of area-minimizing double bubbles in $” and
H™. We adapt an argument of Foisy [5, Theorem 3.6] to show that an area-minimizing
bubble in H"™ must intersect its axis of symmetry (Proposition 6.8). As a result, the
Hutchings structure theorem [10, Section 5] carries over exactly to H" (Theorem 6.10).
In S™, we have no corresponding method of ruling out bubbles which do not intersect
the axis, and any or all of the three regions may be disconnected. In our structure
theorem for S™ (Theorem 6.5), we consider only cases when we know that one region
is connected, and classify bubbles based on whether this region intersects part, all, or
none of the axis of symmetry.

Finally, we use the instability argument of Hutchings et al. [11, Proposition 5.2] to
show, in Section 7, that a nonstandard competitor in which all regions are connected
is unstable and thus cannot be a minimizer (Propositions 7.3 and 7.7). This argument
supposes that there is a nonstandard minimizer, and produces infinitesimal isomet-
ric motions on pieces of the bubble which maintain volume and reduce area. For con-
nected regions we generalize this method directly to S (Theorem 7.2) and, with some
more work, to H" (Theorem 7.6), where we need to use all three types of isometries
(elliptical, parabolic, and hyperbolic). This proves the double bubble theorem for the
cases in which we know all regions to be connected.

1.1. Open questions

QUESTION 1. Are all but the smallest region of a minimizing double bubble in H?3
or S3 always connected?
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The Hutchings theory (see [11, Proposition 6.2] and [17, Proposition 2.5]) implies
that in R3 and R#, the larger of the two enclosed regions is always connected. By scal-
ing, in R™ one needs to consider only the one-parameter family of double bubbles of
unit total volume. In S™ and H", the unequal-volumes case is a two-parameter fam-
ily. Our generalization of the Hutchings theory reduces the condition that the larger
region of a double bubble enclosing volumes v and w is connected to an inequality,
F(v,w) > 0 for v > w. This function F will be even more difficult to work with than
the single-variable function obtained for the equal-volume case, but our methods of
Section 5 may generalize; for instance, it would be relatively easy to do a computer
plot. (This has recently been done by the 2001 “SMALL” Geometry Group [4].) We do
note that since the larger region is always connected in R3 and R%, it must be con-
nected in S3, $4, H3, and H* for two small volumes. Calculating a precise value for
“small,” however, may be difficult.

QUESTION 2. Are all competing double bubbles in $” and H" unstable if at most
one region is disconnected?

Hutchings et al. [11, Section 5] show that a competitor in R" in which the discon-
nected region has at most two components is unstable. Reichardt et al. [17, Section 8]
generalize their method to show that the bubble is unstable if the disconnected region
has any number of components. The proofs in both cases rely on certain properties of
constant-mean-curvature (Delaunay) hypersurfaces in R". A generalization for $" and
H™ most likely would use properties of Delaunay surfaces in those spaces. (Treatments
of these surfaces can be found in [3, 7, 18].) The R" proofs also make extensive use
of planar Euclidean geometry, and many steps may not generalize to non-Euclidean
spaces.

To prove the double bubble conjecture in the general case for $3 and H3, it would
suffice to show that the answer to both of the above questions is Yes. To prove the
double bubble conjecture in S™ and H" for the case in which the smallest region
is less than half as large as the others, it would suffice to show that the answer to
Question 2 is Yes, for in these cases all but the smallest region must be connected
(see [10, Theorem 3.5, Corollary 3.10]).

Finally, we make the following conjecture for small volumes in any smooth Rie-
mannian manifold M with compact quotient M /T by the isometry group T.

CONJECTURE 1.3. On any smooth n-dimensional Riemannian manifold M with
compact quotient M /T by the isometry group I, the least-area enclosure of two small
volumes is a standard double bubble.

For n = 2, a nontrivial small stable double bubble is known to be standard [15]. For
n = 3 and n = 4, for fixed volume ratio a small double bubble in a smooth, closed, flat
Riemannian manifold is known to be standard [2].

2. Existence and regularity. The existence of area-minimizing double bubbles
(Proposition 2.3) is a fairly standard result of geometric measure theory. The fact that
a minimizing double bubble is a surface of revolution about a line (Proposition 2.4)
has long been known and was proven by Foisy [5] and Hutchings [10, Theorem 2.6,
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Lemma 2.9]. The proof of uniqueness of the standard double bubble in S™ and H"
(Proposition 2.6) is adapted from Masters’ proof for §2 [12, Theorem 2.2]. Finally,
Theorem 2.7 notes that the latest proof (after Hutchings) for the double bubble con-
jecture in R? (see [14]) carries over to HZ2.

We begin, however, with a precise definition of “double bubble.”

DEFINITION 2.1. Let M be a smooth n-dimensional Riemannian manifold. A dou-
ble bubble in M is the union of the topological boundaries of two disjoint regions of
prescribed volumes. A smooth double bubble 3. in M is a piecewise smooth oriented
hypersurface consisting of three compact pieces X1, 3, and 33 (smooth up to bound-
ary), with a common (n — 2)-dimensional smooth boundary C such that X; + X, (resp.,
>3+ 3) encloses a region Ry (resp., R») of prescribed volume v, (resp., v2). None of
these is assumed to be connected.

DEFINITION 2.2. A standard double bubble in R"™, S", or H" is a smooth double
bubble in which 3, 3, and 35 are spherical surfaces meeting in an equiangular way
along a given (n —2)-dimensional sphere C.

PROPOSITION 2.3 [13, Theorem 13.4, Remark before Proposition 13.8]. In a smooth
Riemannian manifold M with compact quotient M /T by the isometry group T, for any
two volumes v and w (whose sum is less than or equal to vol(M) if M is compact),
there exists a least-area enclosure of the two volumes. This enclosure consists of smooth
constant-mean-curvature hypersurfaces, except possibly for a set of measure zero.

PROPOSITION 2.4 [10, Lemma 2.9, Remark 3.8 and following]. For n > 3, an area-
minimizing double bubble in S™ or H" is a hypersurface of revolution about a line.

PROOF. The proof is the same (adapted to S and H" instead of R™) as those of
Foisy [5] and Hutchings [10, Theorem 2.6, Lemma 2.9]. O

The standard double bubble is said to consist of three spherical caps; however,
these caps need not be pieces of actual spheres. We thus define precisely what we
mean when we say a surface is “spherical.”

DEFINITION 2.5. The term spherical denotes a surface for which all principal cur-
vatures are equal. The term circular denotes a constant-curvature curve.

The only (n — 1)-dimensional spherical surfaces in S™ are spheres. Such surfaces in
R™ are spheres and planes, while those in H™ are spheres, horospheres, hypospheres,
and geodesic planes.

PROPOSITION 2.6. For two prescribed volumes v, w (with v +w < vol(S™)), there is
a unique standard double bubble in S™ (up to isometries) consisting of three spherical
caps meeting at 120 degrees that encloses volumes v and w.

For two prescribed volumes v, w, there is a unique standard double bubble in H™ (up
to isometries) consisting of three spherical caps meeting at 120 degrees that encloses
volumes v and w. The outer two caps are pieces of spheres, and the middle cap may
be any spherical surface.
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FIGURE 2.1. Construction of a standard double bubble from three spherical caps.

21 33

FIGURE 2.2. Increasing the curvature of X; while keeping the curvature of
3, fixed increases the curvature of 33. The volumes of R; and Ry both de-

crease.

PROOF. Masters [12, Theorem 2.2] proved the existence and uniqueness of the stan-
dard double bubble in S$?; this result generalizes directly to S merely by considering
spherical caps instead of circles. We use similar methods for H". The main idea of the
proof is to parameterize double bubbles by the mean curvatures of one of the outer
caps and the middle cap.

Consider two mean curvatures (sums of principal curvatures) H; € (n—1,o) and
H; € [0,). Draw two spherical caps X, 3, with these mean curvatures, meeting at
120 degrees, so that X; has positive mean curvature when considered from the side
on which the angle is measured and X, has negative mean curvature when considered
from this side. It is obvious that the caps must meet up, since X; is a portion of a
sphere (because H; > n —1). Denote the enclosed region R;. Complete this figure to a
double bubble with a third spherical cap 23 that meets the other two at 120 degrees
at their boundary, enclosing a second region R,. Note that ¥, will necessarily be the
middle cap. (See Figure 2.1.) Obviously there is at most one way to do this. To see that
this can always be done, note that if H; is equal to zero, then ; and X3 are identical.
As we increase H, with H; fixed, the mean curvature of X3 increases, as shown in
Figure 2.3. Thus X3 has mean curvature greater than or equal to H; and is thus a
portion of a sphere, so there is no problem with surfaces going off to infinity without
meeting up.

Let V; be the volume of R, and V> be the volume of R». Define amap F: (n—1,) X
[0,00) = {(x,¥) € R.gXR-o | X = ¥} such that F(Hy,H>) = (V1,V2). As can be seen in
Figures 2.2 and 2.3, with H fixed, as H, increases, both V; and V, decrease. With H;
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31 33

FIGURE 2.3. Increasing the curvature of ¥p while keeping the curvature of
> fixed increases the curvature of 3. The volume of R; increases and the
volume of R» decreases.

fixed, as H; increases, V7 increases and V, decreases. (Note that V> < V7, with equality
only at H» = 0.) Thus we conclude that the map F is injective.

To show that F is surjective, we first note that the map is continuous. We now
consider limiting cases. With H; fixed, as H» goes to zero (and X, becomes a geodesic
plane), the two volumes enclosed become equal. With H, fixed, as H; approaches
infinity, both volumes V; and V» approach zero. With H; fixed, as H» goes to infinity,
V1 approaches the volume of a sphere of mean curvature H, and V» goes to zero. With
H, fixed, as H; decreases, V; increases without bound. By continuity of F, all volumes
(V1,V>) are achieved by our construction. Note that since V; > V5, V; must become
infinite first, which will happen when H; = n—1 and X; becomes a horosphere. Thus
F is surjective. In addition, each outer cap must be a sphere and not a horosphere or
a hyposphere.

By construction, the total volume of the double bubble is greater than the total
volume of a spherical surface with mean curvature Hy, so if H; < n— 1, the enclosed
volume is infinite. Thus we achieve each pair of volumes Vi, V, with a standard dou-
ble bubble and that every finite-volume standard double bubble is achieved in our
construction, so we have the stated result. O

2.1. Proof of the double bubble conjecture for H?

THEOREM 2.7. The least-area way to enclose two volumes v and w in H? is with a
standard double bubble, unique up to isometries of H?.

PROOF. The proof that the minimizer is the standard double bubble is identical to
that given for R? by Hutchings [14]. The uniqueness of the standard double bubble
for two given volumes follows from Proposition 2.6. O

The proof that works for R? and H? fails for S? because the least-area function for
double bubbles is not increasing with volume enclosed; for certain volumes, it is pos-
sible to enclose more volume with less area. This proof also applies to the immiscible
fluids problem in R? and H? (see [13, Chapter 16]), answering a problem posed by
Greenleaf, Barber, Tice, and Wecht [19, problem 6].

3. Volumes and areas in S"™ and H". In order to calculate component bounds in
Sections 4 and 5, we will need to know the area and volume of spheres and double
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bubbles in S™ and H™. We begin with the formulae for spheres, which we then use
to calculate area and volume for the standard double bubble enclosing two equal
volumes in §% and H?3.

The surface area of an (n — 1)-dimensional sphere of radius v in n-dimensional
Euclidean space R™ is Agn () = na,¥" 1, where «, is the volume of a ball of unit

radius
.n.n/2

T (m/2)
In Euclidean space, differential length in a direction tangent to a sphere is v d0,

while in spherical space and hyperbolic space, this differential length is sin» d6 and
sinh7 d 0, respectively. We thus have the following formulae.

(3.1

Xn

REMARK 3.1. The surface area of (n —1)-spheres of radius » in S” and H" are

Agn (1) = not, sin™ v, Agn(r) = nog, sinh™ . (3.2)
REMARK 3.2. The volumes of n-balls of radius r in S and H" are, for n = 2 and
n=23,

Ve (¥) =21 (1 —cosr),
Ve (r) = 21t (coshr — 1),

Vs (r) = (27 —sin2r), (3.3)

Vi (r) = r(sinh 2v — 27).

These volume formulae are obtained by integrating the area formulae in Remark 3.1.

REMARK 3.3. For an (n — 1)-sphere of radius » in S", the mean curvature dA/dV
is equal to (n—1) cotr.In H", the mean curvature is equal to (1 —1) coth?, and in R"
itisequalto (n—1)/r.

PROOE. The volume of a sphere of radius 7 in S™ is [; A(r")dr’. The derivative
dA/dV is (dA/dr)/(dV/dr) = A'(r)/A(r). From Remark 3.1, this is equal to
(n—1)sin™® 'vcos¥/sin™r, or (n—1) cotr. The same calculation in H" gives dA/dV =
(n—1)cothr and in R" gives (n—1)/r. O

For the following derivations, we will refer to Figure 3.1, which shows the generating
curve for a double bubble enclosing two equal volumes. When revolved about the
axis of revolution, both arcs become spherical caps, line AB becomes a flat disc, and
triangle ABC becomes a cone. We calculate the surface area of the bubble by adding up
the areas of the two caps and the disc, and we calculate the volume of one half adding
the volume of the cone to that of the fraction of the sphere subtended by one cap.
Throughout, we use standard formulae from spherical and hyperbolic trigonometry,
which can be found in Ratcliffe’s book [16] or in any introductory text on non-Euclidean
geometry.

PROPOSITION 3.4. Construct a standard double bubble enclosing two regions of
equal volume by gluing together two identical spherical caps of radius v and a flat
disc such that the three pieces meet at 120-degree angles (see Figure 3.1). The surface
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FIGURE 3.1. Generating curve for a standard double bubble enclosing two
equal volumes. g is 60° in R™, greater than 60° in $™, and less than 60° in

H™.

area of this bubble in S3 is

(3.4)

A5(7,7)=41Tsinzr(1i V2cosy >+21T(1¢ 2/2cosr )

\/7+Cos2r \/7+Cos2r

where the top sign of = and ¥ is used for v < 1t/2 and the bottom sign is used for
r>T17/2.
The surface area of the bubble in H3 is
Ap(r,v) = 41TSinh21’<l + v2coshr ) +21T< 2J/2coshr

—— 1. 3.5
V7 +cosh2r V7 +cosh2r ) (8530

PROOF. We derive the formula for §3. The derivation for H? is entirely analo-
gous, and in fact somewhat simpler, since hyperbolic trigonometric functions are not

periodic.
From Figure 3.1 and spherical trigonometry, we have

sinx
sinr’

tanx = tan? cos 30°, singg = (3.6)

which we can solve for x and @q. Note that if ¥ = 71/2, then AC and BC are part of
the same great circle, so g =1/2 and x = /2. If r > 11/2, then @ > 1T/2.

We set up our integrals using spherical coordinates in §3. In this coordinate system,
the integral for the area of one of the identical spherical caps is

21T fTT—@o
J J sinzrsincded(p, (3.7)
o Jo
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which evaluates to

(3.8)

271rsin®r 1+M
“V7+cos2r )’

where the + is determined by @ (positive for o < /2 and negative for g > 1/2).
The area of the disc separating the two bubbles is just that of a circle of radius x,
21 (1 — cosx), which evaluates to

2n(1: 2y2cosy ) (3.9)

\7 +Cos2r

where the ¥ is determined by @ (negative for o < 1m/2 and positive for @ > 1T/2).
Adding the two spherical caps to one flat disc gives us the surface area of the bubble.
O

PROPOSITION 3.5. Construct a standard double bubble enclosing two regions of
equal volume by gluing together two identical spherical caps of radius v and a flat
disc such that the three pieces meet at 120-degree angles (see Figure 3.1). In S3, the
volume Vs (v,v) of one of the enclosed regions is

™ V2 cosr
Vi(r,r) = —(2r —sin2 1+ ——
s(r,7r) 2( ¥ —sin r)( +m) 1o
el tan-! V2sinr '\ 2rcosr .
7 +Cos2r 7+cos2v )’
and in H3, the volume Vy, (v,v) of one of the enclosed regions is
m V2 coshr
Vi(r,r) = —(sinh2r -2 1+ ——
h(r,7) 2 (sinh2r T)< " \/7+cosh2r> 3.11)

o V2¥ coshr ~tanh-! V2sinhr
V7 +cosh2r V7+cosh2r ) )’

PROOF. Again, we derive the formula for S* only, as the derivation for H? is anal-
ogous. To simplify our calculations, we compute V;(r,7) using integrals for » < 11/2,
while for larger v we find V;(v,7) in terms of V(1T —7,1m—7).

We split each region of the double bubble into a portion of a sphere whose cross
section is bounded by arc AB and geodesic segments AC and BC, and a cone whose
cross-section is triangle ABC. Again, we set up our integrals in spherical coordinates
in S3. The integral to find the volume of the spherical part is straightforward; it is

2T U@ (T
J J J sin®psinpdpde do, (3.12)
o Jo 0
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which evaluates to

M)_ (3.13)

7 +cos2r

To set up the integral for the cone, we must consider the range of p as @ ranges from
0 to @q. Consider a geodesic segment from C meeting AD at E such that ~ECD = .
We then have tanCE = tanCD sec @, and from our original triangle ABC, we have
sinCD = sinrsin30°. Therefore p ranges from 0 to the length of CE, which is
tan~! (sec @ (sin¥/v4 —sin®7)). Thus the integral for the volume of the cone is

%(21’—511’127’) (1 +

21 Qo tan’l(secqx(sinr/\/él—sinzr))
J J J sin® psingp dpde do, (3.14)
o Jo Jo
which evaluates to
o tan-! V/2sinr B \2v cos¥ . (3.15)
7+ Cos2r 7+ Cos2r

Adding the volume of the cone to that of the sphere gives the volume of one half
of the double bubble.

Forr > 11/2, we find the volume in terms of the formula for » < 17/2. The completion
of the disc separating the two bubbles divides S3 into two hemispheres. On each
hemisphere, the region exterior to the double bubble is bounded by a portion of a
sphere of radius 7T — 7. By supplementary angles, this portion of the sphere meets the
disc at a 60-degree angle. Now consider the completion of the sphere of radius m—7.
The portion added is a spherical cap cut off by a flat disc at a 120-degree angle, so its
volume is V (1t — v, m — v). The volume of the exterior is thus the volume of the sphere
of radius ™ — ¥ minus the portion added: t (2(r—7) —sin2(mr—7)) - V(T —7,m—7) =
212 — 11 (2r —sin2r) — Vi (1t — v, 1T — ¥). The volume of each region of the original
double bubble is thus the volume of the entire hemisphere (172) minus the volume of
the exterior on that hemisphere: Vi (1t =7, —7) + 17 (2% —sin27) — 112. Simple algebraic
manipulation shows that this expression is equivalent to the formula in the theorem
statement. O

We will also need formulae for the area and volume of a standard double bubble
in R3 enclosing two equal volumes. This is easy to calculate from the drawing in
Figure 3.1, so we omit the algebra here.

REMARK 3.6. Construct a standard double bubble enclosing two regions of equal
volume by gluing together two identical spherical caps of radius + and a flat disc such
that the three pieces meet at 120-degree angles. The surface area of this bubble in
R3 is

Aelr,r) = %nrz (3.16)

and the volume of one of the enclosed regions is

Ve(r,7) = %nr? (3.17)
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Note that these formulae give
Ao (v,v) = (36m) 3023, (3.18)

Finally, we derive formulae for the curvature of double bubbles in all three spaces.
The method is the same as in Remark 3.3, and we omit the algebra.

REMARK 3.7. For a standard double bubble in S3, the mean curvature dA/dV is
equal to 4 cotr. In H3, the mean curvature is equal to 4cothr, and in R3 it is equal to
4/r.

4. Component bounds for area-minimizing double bubbles. In this section, we
develop in §™ and H" the Hutchings theory of bounds [10] on the number of com-
ponents of area-minimizing double bubbles. Proposition 4.8 gives a new, convenient
statement of the basic estimate.

4.1. Concavity of the least-area function and applications

PROPOSITION 4.1 [10, Theorem 3.9]. For n > 3, the least area required to partition
the sphere S™ into three volumes is strictly concave on every line in the simplex

{v1+v2+v3=vol(S™)}. (4.1)

COROLLARY 4.2 [10, Corollary 3.10]. Consider an area-minimizing partition of S™
into volumes vy, v, v3 (With vy + vz +v3 = vol(S™)). If v; > 2v; for some i, j, then the
region enclosing volume v; is connected.

Hutchings [10, Section 3] proves the following results for R™. He notes [10, Remark
3.8] that the proofs carry over to H" with minor rewording, and that one needs to
check only that the least area function for one volume is concave. This concavity is
obvious from Remark 3.3, since cothr is decreasing in 7.

PROPOSITION 4.3 [10, Theorem 3.2]. For n > 3, the least area A(v,w) of a double
bubble enclosing volumes v, w in H" is a strictly concave function.

COROLLARY 4.4 [10, Corollary 3.3]. For n = 3, the least area function A(v,w) of
double bubbles enclosing volumes v, w in H" is strictly increasing in v and w.

COROLLARY 4.5 [10, Theorem 3.4]. An area-minimizing double bubble in H" has a
connected exterior.

PROPOSITION 4.6 [10, Theorem 3.5]. If v > 2w, then in any least-area enclosure of
volumes v and w in H", the region of volume v is connected.

4.2. Component bound formulae. Let A(x) denote the minimal area enclosing vol-
ume x in R", S™, or H", and A(v,w) denote the area of the minimal double bubble
enclosing volumes v and w.

LEMMA 4.7 (Hutchings basic estimate). Consider a minimizing double bubble enclos-
ing volumes vy and wy on some Riemannian manifold for which a minimizer exists.
Suppose further that the least-area function for two volumes, A(v,w), is concave. If
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the first region has a component of volume x > 0, then
2 A (vo, wo) zA(w0)+A(v0+wo)+%A(x). 4.2)

PROOF. Hutchings [10, Theorem 4.2] proves the statement for R". The proof in the
more general case is identical, except that one cannot simplify by scaling. O

PROPOSITION 4.8. Suppose that on a Riemannian manifold in which there exists a
minimizer, A(v,w) is concave. If (vo/x)A(x) is decreasing in x for x < vy, and for
some integer k > 2,

Vo

o

) +A(wo) +A(vo +wo) —2A(vo, wq) > 0, (4.3)

then the region of volume vo has fewer than k components.

PROOF. Suppose that the smallest component of the region of volume v, has vol-
ume x; the region thus has at most vo/x components. By our concavity assumption,
we can apply Lemma 4.7 to find

%A(x) < 2A(vg,wo) —A(wy) — A(vo+wp). (4.4)

If the left-hand side of (4.4) is decreasing in x for x < vy, and kA(vg/k) > 2A(vo, wp) —
A(wg) — A(vg + wy) for some k, then (4.4) is false whenever x < vg/k. We conclude
that the region of volume vy has no component of volume x or smaller, so the region
has fewer than k components. a

REMARK 4.9. Since the area of a minimal enclosure of two volumes is no greater
than the area of the standard double bubble enclosing those two volumes, we can
substitute the area of the standard double bubble for the area of the minimal enclosure
in the left-hand side of (4.3). Thus from now on, we will use A(v,v) to denote the area
of the standard double bubble enclosing two volumes v.

LEMMA 4.10. In R", S", and H", (v/x)A(x) is decreasing in x for all x and v.

PROOF. Since v is a constant, we only need to show that the area to volume ratio for
a sphere decreases as the sphere grows. In R", this is obvious, since A(v)/V(r) =n/r.
For S™ and H", we see from Remark 3.3 that dA/dV is decreasing for spheres. Thus
the area of a sphere as a function of volume is concave, and A/V is decreasing. O

PROPOSITION 4.11. In R", S and H"™, a minimizing double bubble has finitely
many components.

PROOF. By Proposition 4.8 and Lemma 4.10, we have that when (4.3) holds, then the
region of volume v, has fewer than k components. We claim that kA(vy/k) increases
without bound as k increases. This suffices to prove the proposition, for then there is
some k such that (4.3) is true, since all other terms remain constant.

We let k = vo/x, and let x approach zero. The term we are considering becomes
(vo/x)A(x).Let x = V(7). Since v, is a constant, we only need to show that A(r) /V (r)
increases without bound as * gets small. Denote the area and volume functions for R"
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by A.(r) and V, (7). Since A.(v)/V,.(r) = n/r, the ratio obviously increases without
bound. For S™, denote the area and volume functions by A;(#) and V;(v). Then

As(r) _n As(r) Ve(r)
Vi(r) v Alr) Vi(r)

(4.5)

Since S™ is locally Euclidean, for small enough volumes we can make the ratios
As(r)/A. () and V, (v)/Vs(r) arbitrarily close to 1, and since n/r increases without
bound, A;(r)/Vs(r) does as well. The proof for H" is identical. ]

5. Component bounds for equal-volume double bubbles in S3 and H3. Propo-
sitions 5.1 and 5.2 show that both regions are connected in most area-minimizing
double bubbles in $3 and H3 enclosing two equal volumes.

PROPOSITION 5.1. In an area-minimizing double bubble enclosing two equal vol-
umes in S*, each enclosed region has only one component. When the volume of the
exterior is at least 10 percent of the total volume of S3, the exterior also has only one
component.

PROPOSITION 5.2. In an area-minimizing double bubble enclosing two equal vol-
umes in H3, each enclosed region has only one component.

The proofs appear at the end of Sections 5.1 and 5.2.

DISCUSSION. By considering only double bubbles enclosing two equal volumes, we
eliminate one degree of freedom. We will show that in both spaces, both of the regions
of equal volume are connected. We will also show that in S3, the exterior is connected
when its volume is at least 10 percent of the total volume of S3. (In H3, the exterior is
always connected by Corollary 4.5.)

Let A(v) denote the area of a sphere enclosing volume v and A(v,v) denote the
area of a standard double bubble enclosing two equal volumes v. By Proposition 4.8,
to show that the number of components of each region of an equal-volume double
bubble is less than two, it suffices to show that the quantity

F(v):2A(%>+A(v)+A(2v)—2A(v,v) (5.1

is greater than zero.

In R3, we can solve for F(v) explicitly, and see that it is equal to some positive con-
stant times v2/3, which is positive for positive v. Thus both regions of an equal-volume
double bubble in R? are connected. In spherical space and hyperbolic space, however,
we cannot find an explicit expression for F(v). We thus use a different method. For
volumes near zero, we show that F(v) is close enough to the Euclidean F(v) so that
the derivative F’ (v) must be positive, which guarantees that F(v) is positive in some
neighborhood around zero. We then start at the edge of this neighborhood and use
a lower bound on the derivative F’'(v) to break up the positive v-axis into intervals
and show that F(v) is positive on each. This method relies on our ability to use a
computer to find values of F(v) with high precision. For large volumes in H?3, we use
asymptotic analysis to show that F(v) is always positive.
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F Component bound in §3

(@)

F  Component bound for exterior in §3

(b)

FIGURE 5.1. (a) A Mathematica plot of Fs(v) for v € [0,712] suggests that
Fg(v) is positive in this interval, and thus each region of a double bubble
enclosing equal volumes has one component. (b) A Mathematica plot of Fs (v)
for v € [4,1r2] suggests that F (v) is positive for v < 9, and thus the exterior
of an equal-volume double bubble is connected when it is at least 10 percent
of the total volume of S3.

5.1. Proof of component bounds for equal-volume double bubbles in S3. Let
A (v) be the area of a sphere in S3 of volume v, and let A;(v,v) be the area of the
standard double bubble in $3 enclosing two equal volumes v. Define the functions
Fs(v) and ﬁs(v) as follows:

F.(v) :ZAS(%)+As(v)+A5(2v)—2AS(v,v), (5.2)
Fs(v) = 2A4 (%2 —v) + A, (V) + A (212 —v) = 2A4 (v, V). (5.3)

By Proposition 4.8 and Lemma 4.10, if F¢(v) > 0 for some v, then the two enclosed
regions of a double bubble enclosing two equal volumes v are connected. Again by
Proposition 4.8, Lemma 4.10, and the fact that a minimal enclosure of two volumes v
in §3 must also be a minimal enclosure of volumes 272 —2v and v, if I?S(v) > 0 for
some v, then the region exterior to a double bubble enclosing two equal volumes v
is connected.
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Mathematica plots of F¢(v) and ﬁs(v) for v € [0,7r2] (see Figure 5.1) suggest that
F;(v) is positive on this whole interval and that I?S(v) is positive for v < 9. Thus the
plots suggest that for a double bubble enclosing two equal volumes in S3, both regions
of equal volume are connected for all volumes, and the exterior is connected when its
volume is at least 10 percent of S3. However, the plots are not rigorous proofs, as F
or ﬁs may behave badly between plotted points.

We first find a neighborhood around zero in which Fs(v) must be positive. Our
method makes use of the fact that for very small volumes, S3 looks nearly flat. Thus
the area of a sphere or double bubble of radius » in $3 approaches that of a sphere
or double bubble of the same radius in R3. The following two lemmas give precise
formulations of this statement.

LEMMA 5.3. Let A.(v) and As(v) be the surface area of spheres of volume v in R3
and S3, respectively. Let v, and v, be the radii of these spheres in R3 and S3, respectively.
Then forvs <1/2,

|AL(v)— AL (V)] < 1.67. (5.4)

PROOF. By Remark 3.3,

A,(v)-AL(v) = %—2(:0“/5. (5.5)

e

Since the volume of a sphere increases less rapidly with radius in S3 thanin R3, 7 > 7.
Since cotx decreases in x on (0,1), A,(v) — A, (v) is obviously positive for all v. It
remains to find an upper bound on this quantity for small v.

By Remark 3.2,

v= %mﬁ = 11 (2¥s —8in 275), (5.6)
and thus
3 1/3
Yo = [Z(er—sinZn)] . (5.7)
For x < 1, sinx < x—(1/3D)x3 + (1/5))x°, so for 7, < 1/2 we have
3 4 ;5

. 4
2vs —sin2rg > §TS - ﬁrj . (5.8)

Thus for v, < 1/2,

3(4 4 13
Ve > |:Z<§TS3—1—STSS>:| , (5.9)
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and substituting this expression into (5.5) gives

-1/3
|AL(v)-AL(v)] < %(k%rﬁ) —2cotr,
23 ) (5.10)
< T—(1+Erf) —2cotrs,
)

since (1—x)"13 <1+ (2/3)x for x <1/2.For x <1/2, tanx < x + (2/3)x3, so

2 2 2

Al(v) - A <= (1+= 2)—7

|4 () = A () rs( 157%) "t 2/3)r8
5 ’ 5 5 (5.11)

<—(1+—r2)7—<17772>

¥ 15 ¢ 7 3 °)

since (1+x)1 >1—-x for x < 1/2. Thus we have, for r; < 1/2,
, , 8

|AL(v)-AL(v)] < =7 (5.12)
O

LEMMA 5.4. Let A,(v,v) and As;(v,v) be the surface area of standard double bub-
bles enclosing two equal volumes v in R® and S3, respectively. Let v, and v be the radii
of these bubbles in R3 and S3, respectively. Then for vy < 1/2,

|AL(v,v)— AL (v,v)]| <3.775. (5.13)
PROOF. From Remark 3.7, we have

A;(v,v)—A;(v,v)=;—4cotrs. (5.14)
e
Since the volume of a standard equal-volume double bubble increases less rapidly with
radius in S3 than in R3, ¥ > 7. Since cotx decreases in x on (0,7), A, (v,v) —AL(v,v)
is obviously positive for all v. It remains to find an upper bound on this quantity for
small v.

From Proposition 3.5 and Remark 3.6, we have

3

v = 9171*3 = — (2%, —sin2r) <1+ _2cosrs )

8 2 \7 +C0S275
+Tr(tan1( V2 sin )_ /27 COSTs >,

\J7 + o827 7 +C0S27;

(5.15)

SO

4 . /2 cos7s
=| = (2ry—sin2 1+ ——
e [9( fsosm TS)( +\/7+c052n)

. 173
+g<tan‘1 ( V2 sinr; )_ V275 cos Ty )] .

\J7 +cos2r; 7 +C0oS 275

(5.16)
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We use power series expansions to find upper bounds on each term of this formula.
We begin with the second half of the formula. For x < 7r/2, tan"!x > x — (1/3)x3, so

4 . V2 cos
2 (2ry—sin2r) [ 1+ =2
Te> [9( s VS)( \/7+COSZTS)
13 (5.17)
+§ V2 (sins — 75 cosT. )—l _Y2sint;
9 \ /7 +cos 27 $ 7 3\ /7 +cos2r, )
For x <1/2,c0o82x >1-2x%2and (1-x)"1/2 <1+x, so
1 1 vz 1
1--7r 2) <—<1+—r2>. 5.18
w/7+c0521f5 ( 3" V8 45 ( )
In addition, sinx < x for x > 0, so we have
3
1( 2sinr, 1(@( 1 2))3 1 1 -
<—({=(1+ < =¥+ — 5.19
3 <\/7+c05275> 3 2\ Tah 22" g (5.19)
To deal with the term (+/2/+/7 + oS 2¥;) (sin¥s — 7, cos¥;), we note that for all 7,
V2 1
> -, 5.20
\J7+cos2rs 2 ( )
and for vy < 1,
sin¥s — ¥, COS¥s > l1/3— 1 =7 (5.21)
200 $73% 30 ’
Substituting these approximations into (5.16) gives
4 ) 1
Ve > [6(275731n275)<1+§cos1@)
(5.22)

w527 -307) - (Gt eae))|
9 3 Vs 30 ° 24 24°° ’

We now attack the first half of the expression. By the Taylor series expansions for
sinx and cosx we have, for ry < 1,

41'3 - i,ﬁ cosrs > 1— 172. (5.23)

2¥s —sin2vs > 3 15 57

We now have a polynomial approximation for 7, that holds whenever v; < 1/2
474 5 4 5 11 2)
T‘*>[9(3rs 155)<1+2 3"

Wl ) (e
Vs s) 7 \24"s T og's
9 3 30 (5.24)
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Using this approximation for 7., we have, for »; <1/2,

4 17 ,\ 73
[AL(v,v) - AL (v,v)] <T—<1——72> —4cotry
S

s
45 (5.25)
<i<1+ﬁrz>—4cotr
¥ 135 ¢ o
since (1-x)"1/3 <1+ (2/3)x for x <1/2.For x <1/2, tanx < x + (2/3)x3, so
4 34 4
AL(v,v) - AL (v, 2+ 22 2)—7
|4, v) - As(w,v) | <rs< 135°) " r+(2/3)13
(5.26)
<i(1+£72)7i<173r2>
¥ 135 ¢ ¥ 3°)
since (1+x)"!>1—x for x <1/2. Thus we have, for ; < 1/2,
|AL(v,v) - AL (v,v)] < %1’3<3.71’5. (5.27)
O

We now use these two lemmas to show that Fs is positive for small v.
PROPOSITION 5.5. LetF;(v) be defined asin (5.2). Then for 0 < v < 0.002,F;(v) > 0.

PROOF. By (5.2), we have

v

F;(v):A;< )+A;(v)+2A;(2v)—2A;(v,v) (5.28)

N

in both R3 and S3. By Lemmas 5.3 and 5.4, we have

|F.(v) —FL(v) | <1.6n<%

<13.87(2v)

) +1.675(v) +3.2vs(2v) + 7.4rs(v,v)
(5.29)

when all of the v, are less than 1/2. The largest of the four 7; is obviously 7 (2v), so
we can replace all of the others with that one.

Direct computation from the volume formula (Remark 3.2) shows that the volume
of a sphere in $3 of radius 0.1 is greater than 0.004, so if v < 0.002, then 7, (2v) < 0.1
and |F,(v)—-F;(v)| <1.38.

In R3, we can solve the area and volume formulae to find that F,(v) = cv?/3, where

c=(36m)3(1+213422/3) _2.3°37113 5 0.327. (5.30)

Thus F,(v) is equal to (2/3)cv~1/3, which is greater than 1.72 when v = 0.002.
Since F,(v) is obviously decreasing in v, F;(v) > 1.72 for v < 0.002.

We conclude that F;(v) > 0 for v < 0.002. Since F;(0) is obviously zero, F,(v) must
be positive when 0 < v < 0.002. |



SPHERICAL AND HYPERBOLIC DOUBLE BUBBLES 659

Next we calculate a lower bound on the derivatives of Fs;(v) and ﬁs(v) and use a
computer to show that these functions are positive on the required intervals.

LEMMA 5.6. Let Fy(v) and ﬁs(v) be defined as in (5.2) and (5.3). Then for v €
(0,(4/5)m2],

1/3
Fl(v) > —2.5—8cot(8—”) (5.31)
91t
and forv € (0,(9/10)1?],
~ 1/3
) > —3—8c0t<8—v> . (5.32)
91T
PROOF. From (5.2), we have
F.(v) =A;(§) +AL(V) +2AL(20) — 2AL (v, V). (5.33)

By Remark 3.3, A} (v) = 2cotr,(v), where 7,(v) is the radius of a sphere of volume
v. By Remark 3.7, A (v,v) =4cotrs(v,v), where 7, (v, v) is the radius of one half of
the double bubble enclosing two equal volumes v. We thus have

F;(v) =2cotrs (%) +2cotrg(v)+4cotrs(2v) —8cotrs(v,v). (5.34)

Similarly, from (5.3) and the fact that A;(21w2 - 2v,v) = As(v,v), we have
Fl(v) = =2cotrs (2 —v) +4cotrs(v) —2cotrs (2% —v) —8cotrs(v,v).  (5.35)

Since a sphere of radius 17/2 encloses a volume of 172, or half of $3, and since 7, (v)
is increasing in v and cotx > 0 for x € (0,71/2), the first two terms of F; and the
middle two terms of F, . are always positive. For the other spherical term in F;, we note
that a sphere of radius 2.1 has volume greater than (8/5)7r2, so in the interval we
are considering, the third term of F; is greater than 4 cot2.1 (since cotx is decreasing
in x), which is greater than —2.5. In addition, a sphere of radius 0.6 has volume less
than (1/10)71r2, so in the interval we are considering, the first term of 195’ is greater
than —2 cot0.6, which is greater than —3.

Since an equal-volume double bubble of radius 7 has less volume in $3 than in R3,
and (v, v) is increasing in v, by Remark 3.6, ¥;(v,v) > 7. (v,v) = (8v/97)1/3. This
suffices to put a lower bound on the fourth term of both equations. We thus have, for
v < (4/5)1?,

1/3
Fl(v) > 72.578c0t<3—:{> , (5.36)
and for v < (9/10)1r?,
R 1/3
) > —3—8c0t<g—z> . (5.37)

It is clear that these bounds are increasing in v. a
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We will also need the following algebraic properties of the volume function for
double bubbles.

LEMMA 5.7. LetV(7,v) be the volume of one half of an equal-volume double bubble
inS3, and let V. (r,v) and V! (r,r) be the first and second derivatives of V with respect
to v, respectively. Then

(1) Vi(r,r) = msin’r(2—-+/3) forr € [0,m],
(2) V{(r,r) = 2mtsiny forr € [0,17/4].

PROOF. Differentiating the formula for V(7,7) given in Proposition 3.5 gives

, ., 6y/2msin’rcosr 2/2msin’r cosr
Vi(r,v) =2msin“r +

(74 cos2r)3/2 (7 +cos2r)1/?
. 6/2 22 (5.38)
2 .
> TT SIN T(Z—m—m)

> sin®r (2 -+/3).

Differentiating again gives

. V2sin®r . V2 cosr
Vi(r,r)=-24m 7+ cosar)i? +41rsinrcosr| 1+ (74 cos 21172 30
24sinv cos?r —8cos* rsinr + 16sinr —4sin®» .
+32m .
(7 +cos2r)>/2
For v € [0,11/4], we have
., . V2(1/v2)° 1 V2(1/v2)
Vi(r,r) = smr(—ZéITrT +47Tﬁ 1+T
24(1/v/2)° 8+4(1//2)° (40
+
Simplifying the right-hand side gives
12./2 9 302
%4 > 17 81 - +2V2 41+ - —=
s (1’,1’)>1TSH’11"( 777 NA 32 49\/7) (5.41)
> 21rsiny. O

PROPOSITION 5.8. Let Fi(v) and I?S(v) be defined as in (5.2) and (5.3). Then for
v €[0.002,(4/5)12], F(v) > 0, and forv € [(1/2)12,(9/10)72], Fs(v) > 0.

PROOF. Our method is as follows: given an interval [vo, V], we find a ¢ such that
Fs(v) > 0 for v € [vg,vg + dg]. We then let v, = vg+ ¢ and repeat the process until
Vp+0n > Vs,

We now consider a single iteration of this process, beginning at vy. Let Gs(v) be
our lower bound on the derivative F;(v) (the right-hand side of (5.31)). Since G,(v) is
increasing in v, for all v > vy, F;(v) > Gs(vo) and thus Fs(v) > Fs(vg) + Gs(vo) (v —
Vo). Thus if Fs(vg) > 0 and Gs(vg) < 0, then Fs(v) > 0 for all v in the interval [vg, Vo —
Fs(v9)/Gs(vo)]. If Gs(vg) =0 then Fs(v) > 0 for all v > vy.
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Since we cannot compute F(v) explicitly, we make use of Mathematica’s equation-
solving abilities. For a volume v, Mathematica uses Newton’s method to find, with
10 digits of accuracy and 25 digits of internal working precision, the radii 7;(v/2),
¥s(v), and 7, (2v) of spheres of volumes v /2, v, and 2v, respectively, as well as the
radius 7 (v, v) of the standard double bubble enclosing two volumes v. We must verify
that Newton’s method gives a number near the actual solution and not a spurious or
negative number. However, since all of the functions we consider are increasing for
positive volumes, we need only check that the number returned by Newton’s method
is between zero and 7. Once this is verified, since Mathematica’s internal calculations
have 16 digits of precision and no radius is ever greater than 7r, we need only consider
how much the error from Newton’s method is magnified when the calculated radii are
plugged into the area formulae to calculate F¢(v).

The statement that Mathematica calculates the solution x = x( to the equation
f(x) = yo with n digits of accuracy means that

| f(x0) = yo| <107, (5.42)
Let € = 10" (where for our purposes n is 10) and let A > 0 be a lower bound on

|f"(x)| over all x in some interval [a,b] that contains the exact solution X and the
calculated solution x:

A< min |f'(x)]. (5.43)
xela,b]
Then we have
|%—x0| <A le. (5.44)

To find the error in the calculated value of Fs(v) = 2A5(v/2) + As(v) + As(2V) —
2A(v,v), we will consider each term separately. We first consider the terms that are
areas of spheres. In this case, the function f in which we are interested is V(7), the
volume of a sphere of radius v, given by V,(#) = m(2r —sin2v). (See Remark 3.2.)
Since the derivative V;(7) is increasing on (0,77/2) and decreasing on (17/2,17), we
may take A to be any number smaller than the values of the derivative at the smallest
and largest v we are considering, which are r(v/2) for v = 0.002 and » (2v) for v =
(9/10)172, respectively. The value ¥ = 0.062 gives V() < 0.001 — € and the derivative
Vi (r) > 0.048, while the value » = 2.33 gives V;(r) > (9/5)12 + € and Vi(r) > 6. We
may thus bound V; (r) by A; = 0.048.

If we want to calculate A;(r), the area of a sphere of radius 7, then we have

|As(r) — As(10) | <A[1€( sup |A;(r)|) (5.45)
)

re(ro—Aile,ro +AI1€

for v € (rg— A7'e, 19+ A7'€e). By Remark 3.1, AL(v) = 41rsin2v, so |AL(r)| < 4 for
all . Setting A, equal to 0.048, we conclude that the error in the calculated value of
A (r) is less than 847re.
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To bound the error on the term of F (v) that is the area of the double bubble, we first
bound the derivative V;(7,7) (where V,(7,7) is the volume of one half of an equal-
volume double bubble of radius 7). The values of » in which we are interested are
those for which 0.002 —€ < Vs (r,7) < (9/10)72 + €. Since v = 0.082 gives Vi (r,r) <
0.002 —¢, ¥ = 2.07 gives Vs (r,r) > (9/10)1% + ¢, and V; is increasing in r (by part (1)
of Lemma 5.7), these v fall within the range [0.082,2.07]. By part (2) of Lemma 5.7,
V;(r,7) is increasing on (0,1r/4], so

min  V;(r,r) =V;(0.082,0.082) > 0.071, (5.46)
re[0.082,1/4]

while by part (1) of the same lemma,

min _V/(r,r)> min (nsinzr(Z—\/g))
rel[m/4,2.07] rel[m/4,2.07]
21T(2—x/§)(min{sinzg,sin22.07}) (5.47)
> 0.42.

We may thus bound the derivative V| (7,7) by A, = 0.071.
We now take the derivative of the area formula in Proposition 3.4

AL (r,r) =4msin2r +41 sinzr% +471r8in2vC 1471%, (5.48)

where € = /2 cos7 /+/7 +cos2r. We thus have

6+/2sinr
7 _ . _ 2 _
Ay (r,r) = 41r8in 27 F 4717 COS r( 7(7+c0521/)3/2> o)
-+ amrsinoy /2087 '
- V7 +cos2r )’
and therefore
|AL(r, 1) | s4n+877; (5.50)

By the formula analogous to (5.45) with A;(¥) replaced by As(r,7), we conclude that

|As(r,7) = As(ro,70) | < Agle(4n + %) <1227r€. (5.51)

We add up the errors from the four terms of Fs(v) to get the final result
| Fs(r) —Fs(r0) | < €(2(847) + 841 + 8471 +2(1227)) < 580T7T€. (5.52)

We conclude that if Mathematica returns a positive value for F;(vg), then F;(v) is
guaranteed to be positive on the interval [vg, vy — (Fs(vg) —58017€) /G (v0) .

We write a simple Mathematica program to carry out this procedure; for the pro-
gram’s code, see Appendix A. We enter 0.002 and (4/5)7r2 for the starting and ending
values of v, and the program tells us that Fs(v) is positive everywhere in between.
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We carry out the same procedure for ﬁs, using the same error bound (with @S, the
right-hand side of (5.32), in place of Gs) and starting and ending values of (1/2)r?
and (9/10)7r?, and the program tells us that I?S is positive everywhere in between.

O

PROOF OF PROPOSITION 5.1. By Proposition 4.8 and Lemma 4.10, the two regions
of equal volume v are connected if F;(v) = 2A5(v/2) + Ag(v) + As(2v) — 2A,(v, V)
is greater than zero. By Propositions 5.5 and 5.8, Fs(v) is greater than zero for v <
(4/5)1r2. When v is greater than (4/5)7r?2, the regions of volume v are more than twice
as large as the exterior, so they are connected by Corollary 4.2.

Similarly, by Proposition 4.8 and Lemma 4.10, the exterior region is connected if
Fo(v) = 2A,(t%2 —v) + As(v) + A, (2112 — v) — 2A,(v,v) is greater than zero. By
Proposition 5.8, ﬁs(v) is greater than zero for v € [(1/2)12,(9/10)1t?]. When v is
less than (1/2)72, the exterior is more than twice as large as either of the other
two regions, so it is connected by Corollary 4.2. Thus the exterior is connected when
v < (9/10) 772, that is, when the bubble’s volume is less than 90 percent of the volume
of §3. O

5.2. Proof of component bounds for equal-volume double bubbles in H3. We now
prove component bounds for equal-volume double bubbles in H3. We use the same
techniques as in §3 for small and intermediate volumes, and for large volumes we use
asymptotic analysis of Fj(v).

Let A, (v) be the area of a sphere in H? of volume v, and let A, (v, v) be the area of
the standard double bubble in H3 enclosing two equal volumes v. Define the function
Fj, (v) as follows:

F(v) =2Ah<%)+Ah(v)+Ah(2v)—2Ah(v,v). (5.53)

By Proposition 4.8 and Lemma 4.10, if F;, (v) > 0 for some v, then the two enclosed
regions of a double bubble enclosing two equal volumes v are connected.

Mathematica plots of Fj,(v) for v € [0,10°] (see Figure 5.2) suggest that this func-
tion is positive on the range plotted, and thus both regions of a double bubble enclos-
ing two equal volumes v in H? are connected when v is less than one million. Again,
the plot is not a rigorous proof, as the function Fj(v) may behave badly between
points plotted. In addition, although the function appears to approach an asymptote
of 0.499 as v increases, in theory it could eventually go negative.

Again, we begin by giving a precise formulations of the statement that for small
volumes, H3 is nearly flat, and the area of a sphere or double bubble of radius » in H3
approaches that of a sphere or double bubble of the same radius in R3.

LEMMA 5.9. Let A.(v) and A, (v) be the surface area of spheres of volume v in R3
and H3, respectively. Let v, and vy, be the radii of these spheres in R3 and H3, respec-
tively. Then for v, <1/2,

A, (V)= A, (V)] < 1.67p. (5.54)
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FIGURE 5.2. Plots of Fj,(v) for v € [0,106] suggest that Fj, (v) is positive
in this interval, and thus each region of a double bubble enclosing equal
volumes has one component. (Graph (a) plots Fj(v) for v € [0,100], and

graph (b) plots Fj, (v) for v € [100, 10%] on a logarithmic scale.)
PROOF. By Remark 3.3,

2
Ay (v)—A,(v) = 2cothry — —.

e

(5.55)

Since the volume of a sphere increases more rapidly with radius in H? than in R3,
7 < 7. Since cothx decreases in x for x > 0, Aj, (v) — A, (v) is obviously positive for
all v. It remains to find an upper bound on this quantity for small v. By Remark 3.2,

v = %Trrg = 1r(sinh 27y, — 2773,),

and thus
3 1/3
Ve = [Z(sinhZTh—Zm)] .
For x <1, sinhx < x+ (1/30)x3+(2/5!)x°, so for #;, < 1/2 we have

sinh2vy, — 21, < 3Tht 5T

(5.56)

(5.57)

(5.58)
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Thus for v, <1/2,

1/3
e < [%(érﬁ+ —1’2)] , (5.59)

and substituting this expression into (5.55) gives

~1/3
A, (v)—A,(v)| < 2C0thrh—r£(1+grﬁ>
h

; 52 (5.60)
_ = _ =2
< 2cothry " (1 157’;1)1

since (1+x)71/3>1-(1/3)x for x < 1/2. Since tanhx > x — (1/3)x3 for x <1/2, we
have for r, <1/2,

/ / 2 22 2)
A=A < S g rh(l 15"

(5.61)
<£(1+gr2>—£(1—372)
T 30 15 ")
since (1-x)"! <1+2x for x <1/2. Thus for r;, <1/2,
! 14 8
A, (v)—A,(v) | <§1’h. (5.62)
|

LEMMA 5.10. Let A.(v,v) and Ap(v,v) be the surface area of standard double
bubbles enclosing two equal volumes v in R3 and H3, respectively. Let v, and vy, be the
radii of these bubbles in R and H3, respectively. Then for vy, <1/2,

| A, (v,v) = A, (v,v)| < 3.87. (5.63)

PROOF. From Remark 3.7, we have

A;l(v,v)—Aé(v,v):4cothrh—%. (5.64)
Since the volume of a standard equal-volume double bubble increases more rapidly
with radius in H3 than in R3, 7, > 7,. Since cothx decreases in x for x > 0, A}, (v,v) —
A, (v,v) is obviously positive for all v. It remains to find an upper bound on this
quantity for small v.
From Proposition 3.5 and Remark 3.6, we have

95 om, V2 coshry,
V=T =5 (sinh 2wy, 2rh)<1+7\/m) o
- 27y coshry, ~tanh-! V2 sinh¥y ’
V7 +cosh2ry, V7 +cosh2ry,
o)
4 . V2 coshry,
= | Z(sinh2r, —2m,) [ 1+ =
Te [9(Sm "h rh)( +\/7+COSh21’h>
(5.66)

N 8 ( /2rncoshry ~tanh! \/2sinh¥, 13
9\ \/7+cosh2w, 7 +cosh?2ry )
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We use power series expansions to find upper bounds on each term of this formula.
We begin with the second half of the formula. For x < 1, tanh ' x > x + (1/3)x3, so
for r, <1 we have

4, . V2 coshry,
— h2r, -2 1+ ——
re<[9(sm h Th)( \/7+cosh21’h>
. . e AN\ (5.67)
. 1 sinhry,
= | —— hr, —sinhry) — = | —— .
9(\/7+cosh21fh(rhcos "= sinh7,) 3<\/7+cosh2m> )]
For x <1/2,cosh2x <1+4x%and (1+x)"12>1-(1/2)x, so
1 1 1 ,\°Y 1 1
S W W Y W ) 68
7+ cosh 27, ” \/g( 2"h > /8 4" (5.68)
In addition, sinx > x for x > 0, so we have that for 1, <1,
: 3
1(_\2sinhr, >1(@(171n§))
3\ \/7+cosh2r, 3\ 2 4
3
V(. 3,2, 3 4 1 6) (5.69)
2 (1 AT A
1,3 1.5
24 0 32"

since (3/16)x* > (1/64)x% for x < 1.
To deal with the term (+/2/+/7 + cosh27y,) (, cosh7y, — sinh#y,), we note that for all
Yh!

V2 1
< - 5.70
\J7+cosh2r, 2 ( )
and for 1, < 1,
, 1, 1 -
p coshry —sinhy, < §Th + l—srh. (5.71)

Substituting these approximations into (5.66) gives

re<|

O W~

(sinh 27y, —27y,) (1 + % coshrh)

8(1(1 5 1 5 1 5 1 S\ ©-72)
+§<§(§Th+ﬁr")_<ﬂr"_§rh))] '
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We now attack the first half of the expression. By the Taylor series expansions for
sinh x and coshx we have, for 1, <1,

5

4
sinh 27y, — 21, < o7j + %Th cosry < 1+77. (5.73)

3

We now have a polynomial approximation for ¥, that holds whenever v, < 1/2
4(4 5 8 ) ( 1 ) )
+— 1+=(1+
Te<[9(37h 15" 2 (147

33 (i i)~ 5)) )
g\2\3' " " 15°h 24 0 3p°h

; 383 - 16 \'/® S
=<Yh %T“ﬁrh)
3,9 5 13
<(1’h+61’h) .
Using this approximation for 7., we have, for ; < 1/2,
4 5 0\
|A),(v,v) - AL(v,v)] <4cothrh——(1+ r,f)
Tn 6
4 s (5.75)
4coth f—(lf— 2)
< 4cothry 18

since (1 +x)"1/3 >1-(1/3)x for x < 1/2. Since tanhx > x — (1/3)x3 for x < 1, we
have, for v, < 1/2,

4 4 5

A, (v,v)-AL(v, V)| < ——————s - — (1——1’2

[Anvv) = A (v.v)] rm-1/3)r m\ 18"
4 2 4 5 (5.76)

2 R

(“3 h) ™ (1 18Th)’
since (1-x)"! <1+2x for x <1/2. Thus for r;, <1/2,
, , 34
] - ] ~rh . h- .

A, (v,v) - A, (v,v)] < 9" < 3.87 (577D)

PROPOSITION 5.11. Let F;(v) be defined as in (5.53). Then for 0 < v < 0.002,
Fh(‘()) > 0.

PROOF. The proof is essentially the same as that of Proposition 5.5. By (5.53) and
Lemmas 5.9 and 5.10, we have

|F,(v)=F,(v)| <141, (2v) (5.78)

when 7, (2v) < 1/2. Direct computation from the volume formula (Remark 3.2) shows
that the volume of a sphere in H3 of radius 0.1 is greater than 0.004, so if v < 0.002,
then 1, (2v) < 0.1 and |F,,(v) —F,(v)| < 1.4. As shown in the proof of Proposition 5.5,
F,(v) > 1.72 for v < 0.002, so we conclude that F;, (v) > 0 for v < 0.002. Since F;,(0)
is obviously zero, Fj, (v) must be positive when 0 < v < 0.002. O
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We will now show that Fj,(v) is positive for intermediate volumes. We begin by
finding a lower bound on the derivative, Fj, (v).

LEMMA 5.12. Let F,(v) be defined as in (5.53). Then for v > 0,
F(v) > —16%. (5.79)
PROOF. From (5.53), we have
F,(v) =A;l<%) + AL (V) + 245 (20) — 24}, (V,V). (5.80)

ByRemark 3.3, A" (v) = 2cothry, (v), where 7, (v) is the radius of a sphere of volume v.
By Remark 3.7, Aj, (v,v) = 4cothry (v,v), where 7, (v,v) is the radius of one half of
the double bubble enclosing two equal volumes v. We thus have

F,(v) = 2cothrh<%) +2cothr,(v) +4cothry,(2v) —8cothry, (v, v). (5.81)

To obtain a lower bound on Fj,(v), we first note that cothx > 1 for all x > 0, and
thus the sum of the first three terms is always greater than 8. To work with the final
term, we note that the volume of one half of a double bubble of radius 7y, is less than
that of a sphere of the same radius. Thus for any v, 1, (v,v) > r(v). We also note
that V (1) = 1t (sinh 27y, — 2¥,) < 1sinh 27y, and thus 1, (v) > (1/2)sinh™ (v /). By
concavity (Proposition 4.3), A; (v,v) is decreasing in v and thus in 75, as well. By
bounding 7, (v,v) from below, we have bounded A} (v,v) from above, giving us a
lower bound for the last term of F; (v). We conclude that

F(v) >8—8coth<%sinh‘1%). (5.82)

Using hyperbolic trigonometric identities, this simplifies to

2
F;L(v)>8<1—,/1+n2—n) > 16 (5.83)
v v v

It is clear that this lower bound is increasing in v. a
We will also need the following algebraic lemma.

LEMMA 5.13. Let Vi, (v,v) be the volume of one half of an equal-volume double
bubble of radius v in H3, and let V), (r,7) be the second derivative of V), with respect
tov. Then for all positive v, V;/ (¥,v) > 0.

PROOF. Differentiating the formula in Proposition 3.5 twice gives

V2 coshr )

(7+cosh2r)1/2

V2sinh®r

7 =Yy P
Vie .7 Tr(7+cosh21f)3/2

+ 21T sinh 27 (1 +
(5.84)

24sinh# cosh® ¥ — 8 cosh* 7 sinh7 + 16 sinh 7 + 4 sinh®
+3v2m - .
(7 +cosh2r)5/2
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All terms in this expression but one are positive for positive 7; it therefore suffices to
show that

24./27 cosh ¥ sinh7
(7 +cosh2r)5/2

< 27rsinh2r. (5.85)

But cosh?2# > 2 cosh? v, and thus

24+/2mcosh*rsinhr _ 6/2msinhr
i i : 5.86
(7 +cosh?2r)5/2 < J7 icoshor <~2mrsinhr < 27 sinh2r ( D)

We use Lemmas 5.12 and 5.13 and a computer to show that Fj, is positive for all
volumes between 0.002 and 100, 000.

PROPOSITION 5.14. Let Fy(v) be defined as in (5.53). Then for v € [0.002,10°],
Fh(‘l)) > 0.

PROOF. Our method is the same as that used to prove Proposition 5.8: we bound
the derivative of F} (v) and use the computer to determine intervals for which Fj (v)
is positive. The only difference is that the error in the computer’s calculations will
be different; we need to calculate an upper bound on this error using our hyper-
bolic formulae. As in the spherical case, Mathematica uses Newton’s method to calcu-
late the radii of various spheres and double bubbles. Since the volume functions for
spheres and double bubbles have positive first and second derivatives for positive
(see Remark 3.2 and Lemma 5.13), if Newton’s method takes a positive starting point
and returns a radius such that the corresponding volume is within € of the desired
volume, then the radius is in fact near the desired radius. Since Mathematica’s internal
calculations have 16 digits of precision and no radius is ever greater than 10, we need
only consider how much the error from Newton’s method is magnified when these
values are used to calculate areas.

Recall that the statement that Mathematica calculates the solution x = x( to the
equation f(x) = yo with n digits of accuracy means that

| f(x0) — 0| <107™ (5.87)

Let € = 107" (where for our purposes n is 10) and let A > 0 be a lower bound on
| f'(x)| over all x in some interval [a,b] that contains the exact solution X and the
calculated solution x:

A< min |f'(x)]. (5.88)
x€la,b]

Then we have

X-x0| <A7le. (5.89)
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To find the error in the calculated value of F, (v) = 2A,(v/2) + Ap(v) + Ap(2v) —
2Ap (v,v), we will consider each term separately. We first consider the terms that are
areas of spheres. In this case, the function f in which we are interested is Vj (v), the
volume of a sphere of radius 7. This function has increasing derivative (see Remark
3.2), so we may take A to be any number smaller than the value of the derivative at
the smallest » we are considering, which is ¥ (v /2) for v = 0.002. The value ¥ = 0.062
gives Vi, (r) < 0.001 — € and the derivative V' (r) > 0.048, so we may bound V; (v) by
A =0.048.

If we want to calculate the difference between Ay (v), the area of a sphere of radius
r =v(v), and Ay (), where 1y = 79 (v) is our calculated value for the radius 7, then
we have

|AL(r) —Ap(ro) | <A7'e ( sup | A}, () |) , (5.90)

re(ro-a7 e, rp+a7te)
since Aj,(v) = 41 sinh 27 is increasing in #, we have, for sufficiently small A,

|Ap(r) —Ap(ro) | <A7'eA) (ro+A7e)

<4mA; esinh (2¥y +2A7 e)
» (5.91)
< 27TAI1€€270+2A1 €

<2mATtee? (1+4A7 ),

with the last inequality following because e* < 1+ 2x for x < 1, and 2A7'e < 1. For
A1 = 0.048 we thus have

|Ap(r) —An(rg) | <42mee®. (5.92)

To bound the error on the term of Fj (v) that is the area of the double bubble, we
first note that by Lemma 5.13, the derivative of Vj (v,7) (the volume of one half of
a double bubble of radius 7) is increasing, and therefore we may take A to be any
number smaller than the value of the derivative at the smallest » we are considering.
The value v = 0.082 gives Vj, (¥,7) < 0.002 —€ and V; (r,¥) > 0.071, so we may bound
the derivative V, (v,7) by A, = 0.071.

We now take the derivative of the area formula in Proposition 3.4, with v =7 (v,v)
now referring to the radius of one component of a double bubble enclosing two equal
volumes v, and 7y = 79 (v, v) to our calculation of this value using Newton’s method

Ay, (r,r) =4msinh2r +4m sinhZT% +471rsinh2r & +41T%, (5.93)
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where & = /2 coshr/+/7 + cosh27. We thus have

A;l(r,r)—41Tsinh21f+4rrcosh21f( 6v2simh2r )

(7 4+ cosh2r)3/2

V2 coshr
\/7 +cosh2r

< 4mcosh?7 (V12) +4msinh 27 (1 ++/2)

<41 (x/ﬁezr + :HZ\/EeZY)

+47rsinh2r (
(5.94)

< 191e?",
since coshx < e* and sinhx < e¥/2 when x > 0. Thus we conclude that

|Ap(r,r) = Ap(ro,70) | < Agle(lﬁ)nez“*mils)
<19mA; e (1+44; ) (5.95)

< 2681TEe?

by the same chain of reasoning as in the case of Ay (r) above.
We add up the errors from the four terms of Fj (v) to get the final result:

| Fn(r) —Fp(v0) | < 841mee?0V/2 4 4277€e?0)

+421ee?0 V) 4 2681ree’ 0V V), -96)

Let Ej (v) be the right-hand side of this inequality.

We conclude that if Mathematica returns a positive value for Fj (vq), then, as in
Proposition 5.8, Fn(v) is guaranteed to be positive on the interval [vo,vo —
En(v)/Gp(vo)], where here G, (v) is the right-hand side of (5.79).

We write a simple Mathematica program to carry out this procedure; for the pro-
gram’s code, see Appendix B. We enter 0.002 and 10° for the starting and ending
values of v, and the program tells us that Fj (v) is positive everywhere in between.

O

We now will use asymptotic approximations to show that F, is positive for large
volumes. We begin by approximating the area of a sphere of volume v.

LEMMA 5.15. Let Ap(v) be the area of a sphere of volume v in H3. Then for all
v =0,

Ap(v) >2v—21‘r+21‘rln<2?v). (5.97)
PROOF. From area and volume formulae (Remarks 3.1 and 3.2), we have

Ap(v) =2v =2 +2me 7V t4mrr (v)
(5.98)
>2v -2 +4mnr (v),
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where v (v) is the radius of a sphere of volume v. In addition, from the volume
formula, 2v /1 = e?" —e 2" —4r < e?", so v(v) > (1/2)In(2v /). Thus A, (v) >
2v =21+ 2mIn(2v /1T). O

It is easy to see that the right-hand side of (5.97) becomes asymptotically close
to Ap(v) as v gets large. To derive a similar approximation for Ay, (v,v) for double
bubbles, we will need two algebraic lemmas.

LEMMA 5.16. Let & = /2coshr/+/7 +cosh2r. Then forr > 1.5,
tanh™! (Etanh7) <7 —In2+9e~2". (5.99)

PROOF. Note first that

V2((e" —e7")/2)

Etanhr = . (5.100)
J7+ ((e2r +e2r)/2)
Since tanh ™' x = (1/2)In((1+x)/(1—x)), we have, for r > 3/2
. 1, (VId+eTte el —o "
tanh ! (£tanh7) = =1
anh™" (& tanh7) 2n<\/14+e27+e—27—e7+e—7>
(5.101)

—lln 1+ (14e=2" e 4)+1—e2r
27 \JT+(de 2" +e¥)—1+e2r )

Since 1+ (1/2)x —(1/4)x? </IT+x <1+ (1/2)x for x <1, and 14e=2" +e~ %" < 1 for
r>3/2,

—-2r —4r _ ,2r
tanhl(gtanhr)<%ln< 1+(1/2)(14e 2" +e4) +1—e >

1+(1/2)(14e-2" +e~4r) — (1/4) (14e-2r +e~4r)* —1 +e-2r
(5.102)

Since e=%" < e~2" for v > 0, we have for » > 3/2,

1 1 ( 2+8e %" )
tanh™ " (Etanh7) < > In 8o -2 — 56 dr

m( 2(1+4e7%) )

8e2r(1—7e2r)

(5.103)
<

N = N =

1n(ie27(1 +4e72") (1 + 14e‘2’)>

—r—-In2+ %ln(l +4e7%") + %ln(1+14e’27),

since 1/(1 —x) <1+2x for x <1/2 and 7e " < 1/2 for v > 3/2. Finally, since In(1 +
x) < x for all x, we have for r <3/2,

tanh ' (Etanh7) <7 —In2+9e~2". (5.104)
O
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LEMMA 5.17. Let Vi (7,v) be one volume enclosed by a standard double bubble in
H3 consisting of two spherical caps of radius v with a flat disc in between. If v = 5, then
Vin(r,r) > 0.991r sinh 27.

PROOF. As above, let & = /2coshr/+/7 +cosh2r. By Proposition 3.5, we have for
r>3/2

Vn(r,r) = g(sinhZT —2r)(1+ &) +m(rE—tanh ' (Etanhr))

=n<1;——§) sinhZT—Trr—'rrtanh’l(gtanhr) (5.105)
+&

> 7T<1T) sinh2v —2mr + wln2 - 9mme™?",
by Lemma 5.16. Since 9¢~2¥ <1n2 for x > 3/2, we have
1+&\ .
Vi (r,r) >1T<T>smh21'—2rr1f. (5.106)

Note that & is increasing in 7, since

d§  /2sinhv (7 +cosh2r) — /2 coshr sinh2r
ar (7 +cosh2v)3/2

(5.107)

and the numerator is equal to 6+/2 sinh#, which is positive for ¥ > 0. In addition, it is
easy to see that & < 1 for all r. Simple calculation shows thatwhenr =5,1-(1+¢&)/2 <
0.001, and thus |1 - (1+&)/2] < 0.001 whenever » > 5. In addition, 0.0097r sinh 10 >
107t and 0.0187r cosh10 > 2, so for v = 5, 0.0091r sinh 2+ > 27rv. Thus for » > 5,

V(r,r)>1m(1-0.001)sinh27 —0.00971r sinh 27 = 0.9971r sinh 27. (5.108)
O

We use these two lemmas to approximate A, (v,v) for large volumes.

LEMMA 5.18. Let Ay (v,v) be the area of the standard double bubble in H? enclosing
two equal volumes v. Then for v = 10°, A, (v,v) <4v -2 +4mIn(v/m) +0.14.

PROOF. From the area and volume formulae (Propositions 3.4 and 3.5), we have

Ap(v,v) =4v + (1 + &) (2mme 2" = 21w +4717)

B (5.109)
+2m(2E-1) —4m(r&—tanh " (Etanhr)),
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where 7 is the radius of the standard double bubble enclosing two regions of volume v,
and & is, as usual, +/2 coshr/+/7 +cosh2r. Simplifying and using Lemmas 5.16 and
5.17 and the fact that € < 1, we have for » > 5,

Ap(v,v) <4v =21 +41T7r + 4mrtanh™! (Etanhr) + 41re72"

<4v =21 +8mr —4min2 +40me %" (5.110)

<4y -2 +41sinh™! (L> —41In2 +401e 2",
0.991r

Since sinh ' x < Inx +1n2+1/4x2 for x > 1, and v/0.997t > 1 for » > 5, we have for
v =5,

2
Ap(v,v) <4v—21‘r+41‘rln(%> —41In0.99 + w +401e 2"
<4v—2rr+4rrln(%> +0.127+ 1075+ 0.006 (5.111)
v
<4v—21‘r+41‘rln<;> +0.14,
since v > 10* when r > 5. O

PROPOSITION 5.19. Let F(v) be defined as in (5.53). Then for v = 10°, Fp,(v) > 0.

PROOF. By (5.53), Fp(v) = 2Ap(v/2) + Ap(v) + Ap(2v) — 2A,(v,v). By Lemmas
5.15 and 5.18, we have

Fp(v) > 2(v—2n+2nln(%>)+ <2v—2'rr+2'rrln(2?v)>

+ (4v 72n+2n1n(4?”)) 72(41; —2m +4Trln(%> +o.14) (5.112)
=61mIn2 -4m-0.28,

which is greater than zero. o

Note that by choosing a larger lower bound for volume, we can make arbitrarily
small the constant which we have calculated as 0.14. Thus the limit as v approaches
infinity of F(v) is 6mmIn2 — 41 ~ 0.499146. This is the value that Fj,(v) appears to
approach in Figure 5.2, so this plot is indeed an accurate picture of Fj (v ).

We now have all the tools necessary to prove that a double bubble enclosing two
equal volumes in H? must have two connected regions.

PROOF OF PROPOSITION 5.2. By Proposition 4.8 and Lemma 4.10, the two regions
of equal volume v are connected if F,(v) = 2Ap(v/2) + Ap(v) + Ap(2V) — 2A, (V,V)
is greater than zero. By Propositions 5.11, 5.14, and 5.19, Fj,(v) is greater than zero
for all v. a

6. The structure of area-minimizing double bubbles. Our Theorems 6.5 and 6.10
extend the Hutchings structure theorem [10, Theorem 5.1] for minimizing double
bubbles from R" to S™ and H™. Before we prove these theorems, we need a stronger
regularity theorem (Proposition 6.1) using the fact that the bubble is a hypersurface
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of revolution about a line (see Proposition 2.4). We also need the fact that the bub-
ble is connected, which we show in Lemma 6.2, and that certain pieces of bubbles
must be spherical, which we show in Lemma 6.3. We generalize a result of Foisy
[5, Theorem 3.6] to show that a minimizing double in H"™ must touch its axis of
symmetry (Proposition 6.8), so the same structure theorem applies in H" as in R"
(Theorem 6.10). In S, we do not have such a result, and thus the situation is more
complicated. In our structure theorem for S" (Theorem 6.5), we consider only cases
when we know that one region is connected, and classify double bubbles based on
whether this region intersects part, all, or none of the axis of symmetry.

The proofs in this section assume 7 > 3. The statements are true for S? by [12] and
for H? by Theorem 2.7.

In this section, all figures of S? are drawn using the stereographic projection of the
upper hemisphere, and all figures of H? are drawn using the Poincaré disc model.

PROPOSITION 6.1. An area minimizing double bubble B in S™ or H" consists of
finitely many smooth constant mean curvature hypersurfaces of revolution meeting in
threes at 120-degree angles and meeting the axis of symmetry orthogonally.

PROOF. By Proposition 2.4, B is a hypersurface of revolution about a geodesic line.
Like Hutchings [10, Section 5], we consider the half-planar generating curves with a
smoothly varying density function dependent on the distance from the axis of symme-
try. These curves must be smooth and meet in threes at 120-degree angles. The only
potential problem is at the axis, where the density goes to zero, but Proposition 4.11
rules out infinite complexity here. A standard variational argument shows that the
hypersurface must have constant mean curvature and intersect the axis orthogonally.

O

LEMMA 6.2. In R", S, or H", an area-minimizing double bubble for two given vol-
umes is connected (and thus its generating curve is as well).

PROOF. If not, we can translate one component of the bubble until it touches an-
other, creating an illegal singularity. a

NOTATION. Let X (in R", §™, or H") be an area-minimizing double bubble of revo-
lution about an axis L, with a generating curve I in the upper half plane (of R?, S2, or
H?) that consists of arcs I';, with interiors I; ending either at the axis or in threes at
vertices vji.

LEMMA 6.3. In R", S™, or H", if removing one point in the interior of one of the I
disconnectsT, thenT; is a constant curvature arc which, if completed, would hit the axis
of rotation L orthogonally. In particular, in R" T; is a piece of a straight line or circle,
in S™ it is a piece of a circle, and in H™ it is a piece of a circle, horocycle, hypocircle, or
geodesic line.

PROOF. We consider a separating set consisting of one of the points in the interior
of I; and apply [11, Proposition 5.2] for R", Theorem 7.2 for S", or Theorem 7.6 for
H™. O
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COROLLARY 6.4. Any I; which intersects the axis of rotation L must be a constant
curvature arc and intersect L orthogonally.

6.1. Structure of minimizers in S"

THEOREM 6.5. Consider a nonstandard area-minimizing double bubble in S" in
which at least one of the three regions is connected, and label one connected region the
exterior. Then the bubble is one of the following.

(1) If the exterior intersects part, but not all, of the axis of rotation, then the bubble
consists of a topological sphere with a tree of toroidal bands attached. The two
caps are pieces of spheres and the root of the tree has just one branch. (See
Figure 6.1.)

(2) If the exterior intersects the entire axis of rotation, then the bubble consists en-
tirely of toroidal bands and has the graph structure of a bipartite tree. (See
Figure 6.2.)

(3) Ifthe exterior does not intersect the axis of rotation, then the bubble has the graph
structure of a bipartite graph with only one cycle. The regions corresponding to
nodes in this cycle intersect the axis of rotation and are the only regions to do so.
If the cycle is not trivial (i.e., one node), then each node represents a region which
is a topological sphere. If the cycle is trivial, then that region is a topological torus
containing the axis of rotation. The other nodes all represent toroidal bands. (See
Figure 6.3.)

PROOF. By Proposition 6.1, we know that the bubble is a hypersurface of revo-
Iution about a geodesic line and consists of constant mean curvature pieces which
meet in threes at 120-degree angles and meet the axis of symmetry orthogonally. By
Lemma 6.2 we know that the generating curve I is connected. By Lemma 6.3, if remov-
ing a point from a I; disconnects I, then this I} is a piece of a circle centered on L.
There are three cases to consider.

CASE 1 (Both the exterior and the bubble touch the axis). We follow the method
of Hutchings [10, Section 5]. Consider the generating curve B of the boundary of the
exterior. This curve B must touch L twice. Start at one end and follow B to the first
triple point p. Let C be the portion of the boundary between R; and R, (the two other
regions) which meets B at p. (See Figure 6.4.) Extend C along the boundary of this
component of R; until it touches the axis L or comes back to B.

We consider first the subcase where C comes to touch L without returning to B. (See
Figure 6.5.) We claim that this bubble must be the standard double bubble. If not, then
either B or C has a branch off of it at some point. This cannot happen at the boundary
between R; and R;, for the exterior is connected. Nor can it happen at the boundary
between the exterior and R, for this portion of B was constructed to be the boundary
of both of these regions. Thus there can only be a branch in the boundary between
the exterior and R», which we denote D. Let g be the point of branching closest to
p. (See Figure 6.6.) Between p and g, D must be a piece of a circle centered on L by
Lemma 6.3, for removal of a point separates I. We can therefore roll the (toroidal)
component of the bubble on one side of g around the portion of a sphere generated
by D until it touches the component of the bubble on the other side of p, preserving
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FIGURE 6.1. The generating curve for a nonstandard area-minimizing double
bubble in which the exterior intersects part, but not all, of the axis of rev-
olution; the bubble consists of a topological sphere with a tree of toroidal
bands attached, and the root of the tree has one branch.

FIGURE 6.2. The generating curve for a nonstandard area-minimizing dou-
ble bubble in which the exterior intersects the entire axis of revolution; the
bubble consists entirely of toroidal bands.

FIGURE 6.3. The generating curve for a nonstandard area-minimizing double
bubble in which the exterior does not intersect the axis of revolution. The
bubble’s graph structure has at most one cycle, whose nodes correspond to
regions intersecting the axis. If this cycle is nontrivial (left), then each region
in the cycle is a topological sphere with trees of toroidal bands attached. If
the cycle is trivial (right), then the region intersecting the axis is a topological
torus with trees of toroidal bands attached.
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Exterior

FIGURE 6.5. C intersects the axis of rotation L without returning to the
boundary of the exterior.

Exterior

FIGURE 6.6. The boundary between the exterior and R» first branches at
point g.

area and volume but creating an illegal singularity, since the I; would meet in fours,
contradicting Proposition 6.1; see Figure 6.7 and [10, Section 5]. (Note that this rolling
is an operation on the bubble as a whole and not the generating curve; indeed, the
bubble does not remain rotationally symmetric about L after this operation.) Thus
there is no branch off of D as well, and thus I' consists only of the three arcs B, C, and
D, and the bubble must be the standard bubble, for the arcs must be circular, hit the
axis orthogonally and meet at 120-degree angles, and by Proposition 2.6 this bubble
is unique.

We next consider the subcase where C comes back to B at a point g, enclosing a
component of Ry. (See Figure 6.8.) There cannot be any branching on the boundary
between the exterior and the component of R; in question after the point g, for then we
could roll the point of branching to g, giving a contradiction as above. It follows that
the exterior and this component of R; are the only components which touch the edge,
and are topological spheres. The rest of the components must all be topological tori
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Exterior

FIGURE 6.7. After rolling the toroidal component of R; along the spherical
surface corresponding to D, we obtain an illegal singularity. (Note that dou-
ble bubble does not remain a surface of revolution after rolling, and that this
figure is not the generating curve after rolling, but rather is the hemisphere
slice where contact happens.)

. Exterior
Exterior

FIGURE 6.8. C returns to the boundary of the exterior at the point g.

since they do not touch the axis. The bubble’s graph structure must be a bipartite tree
in which the root has one branch; the root corresponds to the component of region
R; which touches the axis, and the branch to the boundary between this component
of Ry and the component of R, which it touches.

CASE 2 (The exterior touches the axis of rotation and the bubble does not). The
resulting graph structure for the other two regions cannot have any cycles, for then
the exterior would be disconnected. Thus the graph is a bipartite tree. Since only
the exterior touches the axis, every node in this tree represents a toroidal band. (See
Figure 6.2.)

CASE 3 (The exterior does not touch the axis). The generating curve must touch
the axis an even number of times, for the other two regions R; and R, must alternate
at the axis. Since the bubble is connected, it is possible to start at a point where the
bubble touches the axis and follow a path to the boundary of the exterior. By the
rolling argument, there can be no branching on this path. Thus the components of
R; and R, which intersect the axis are either a single topological torus containing the
axis or an even number of topological spheres. Between the exterior (which must be
a single topological torus by connectedness) and the regions touching the axis there
can be further topological tori belonging to regions R; and R», and we see that the
graph structure must be a bipartite graph with one (possibly trivial) cycle, the cycle
corresponding to those regions touching the axis. a

COROLLARY 6.6. Any nonstandard area-minimizing double bubble in S™ in which
at least two of the three regions are connected is one of the following (see Figure 6.9).
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(@) (b)

(c)
FIGURE 6.9. The three cases of Corollary 6.6.

(1) A topological sphere intersecting the axis of rotation, with one toroidal band
around it and some number of toroidal bands around that. This is analogous to
the 1+ k bubble of Reichardt et al. [17].

(2) A region consisting of a single toroidal band, which has some number of toroidal
bands on it belonging to the (possibly) disconnected region. In this case, the bubble
does not intersect the axis of rotation.

(3) Two adjacent toroidal bands representing the two connected regions, with some
number of toroidal bands inserted at their interface, which belong to the region
which intersects the axis. In this case, the bubble does not intersect the axis of
rotation.

PRrROOF. This follows directly from consideration of the cases in Theorem 6.5. O

COROLLARY 6.7. Any nonstandard area-minimizing double bubble in S™ in which
all three regions are connected is one of the following.
(1) A topological sphere intersecting the axis of rotation, with one toroidal band on
top of it. (The third region is also a topological sphere intersecting the axis.)
(2) Two topological tori which touch and neither intersect nor contain the axis. (The
third region is a topological torus which contains the axis of symmetry.)
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FIGURE 6.10. Construction of a coordinate system on H?.

PROOF. This follows directly from consideration of the cases in Theorem 6.5. O
6.2. Structure of minimizers in H"
PROPOSITION 6.8. A minimizing double bubble in H™ intersects its axis of symmetry.

PROOF. Like Foisy [5], we deform the bubble toward the axis while maintaining
volume and decreasing surface area.

We work with the generating curve I' in the hyperbolic plane H2. Choose a geodesic
line K orthogonal to the axis of revolution L. We place a coordinate system on H? as
follows: let the coordinates of a point p be (x,y), where x is the geodesic distance
between the point and K, and 1y is the distance between p and L measured along the
hypocircle through p that is a constant distance x from K. (See Figure 6.10.) These
coordinates divide the plane into four-sided figures whose top and bottom sides are
geodesic segments and whose left and right sides are portions of hypocircles, with
all pieces meeting at right angles. If the hypocircles are a distance dx apart and the
geodesics are a distance dy apart, then the area of an infinitesimal grid “square” is
dx dy.If the square is a distance » from the axis of revolution L, then its volume when
revolved is proportional to sinh™ v dx d v.1f a portion of our generating curve inter-
sects such a square for a length dl, then its surface area when revolved is proportional
to sinh™ 27 dlL

Given a point p = (x,y), we can find y, the distance between p and L along the
appropriate hypocircle, as a function of x, the geodesic distance from K, and 7, the
geodesic distance between p and L. Let this function be v = G, (), and let the de-
rivative dy /dr be g, (r). We note that g,(r) > 1 for all x and r and that g, (r) is
continuously differentiable.

We seek a deformation of the generating curve which moves points p = (x,y)
along hypocircles toward the axis L and preserves volume to first order. As we deform
an infinitesimal square, dx by dy, the distance » from this square to L will change
and the differential length dy will change, but the differential length dx will remain
constant. Thus to preserve volume to first order, we need only preserve sinh" 2 rdy.
If we also ensure that differential length dy always increases (to first order), such
a transformation will also decrease surface area to first order, for the surface area
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associated with an infinitesimal piece is proportional to sinh™ 2 7./dx2 + dy?, which
is equal to sinh™ %7 dy./1 + dx2/dy?2.

We construct a vector field with norm c, (v) pointing along the hypocircles towards
L, and consider the flow fx ¢ (¥) = ¥ —€cx(¥), which is the distance from L to which
we will move a point p = (x,y) which is initially a distance » away from L. If we con-
sider a differential length dy along a certain hypocircle, and find the corresponding
differential distance from L, dr, we have dy = g, (v)dr by above. Now, if we consider
how dr changes under the transformation f, we find that dr = Sfrc(r)dr and thus
EJ\/ = 9x (fx,e (M) fre(r)(dy/gx(r)), where dr and E)\/ represent dv and dy after the
transformation.

We note that all we now need for volume to be preserved is for the equation

sinh™ 2 (fyc (r))dy = sinh" v dy 6.1)

to hold to first order in €. This is the condition that (to first order in €)

(sinh"‘2 (r—ecx (1)) ) (g(r —€cx (7))

T 20 )(1ecx(r)) =1. (6.2)

Note that for any continuously differentiable function h(x), h(x +€)/h(x) = 1 +
e(h'(x)/h(x)) to first order in €. Thus the above condition reduces to

(1-€ecx(r)(n—2)cothr) (1 —€Cx(¥) ‘Zl((:)) ) (1-€ecy(r)) =1. (6.3)
This gives the differential equation
cx(r)((n—Z)cothr+g,(T)> +ce(r) =0, (6.4)
gr)

which has the solution ¢, (r) = A(csch™ 27/ g(r)), giving us a vector field which pre-
serves volume. Note also that c(7) is always positive (for positive 7). Deforming
toward the axis L thus decreases v everywhere, so for volume to be preserved dy
must increase everywhere, and thus, as desired, surface area decreases. O

REMARK 6.9. This method generalizes to show that in $", any bubble whose gen-
erating curve is contained in any half of the hemisphere must touch the axis; one
translates along concentric circles about a point on the axis. In R", this method
gives a deformation vector field of 1/7" 2 downward along lines orthogonal to the
axis of revolution. We note that this deformation agrees with Foisy’s formula [5],
v — (r1—e)/m=-1 10 first order in €.

THEOREM 6.10. Any nonstandard area-minimizing double bubble in H" is a surface
of revolution about some line, and consists of a topological sphere with a tree of toroidal
bands attached. The two caps are pieces of spheres, and the root of the tree has just
one branch. (See Figure 6.11.)
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FIGURE 6.11. Generating curve for a possible nonstandard area-minimizing
double bubble in H™.

PROOF. The proof is identical to that of Hutchings [10, Theorem 5.1], making use
of Propositions 6.1 and 6.8 and Lemmas 6.2 and 6.3. a

COROLLARY 6.11. Any nonstandard area-minimizing double bubble in H" in which
at least one of the enclosed regions is connected consists of a topological sphere
intersecting the axis of symmetry with one toroidal band around it, and some num-
ber of toroidal bands belonging to the first region around that. This is analogous to the
1+ k bubble of Reichardt et al. [17].

PROOF. This follows directly from consideration of the cases in Theorem 6.10.
O

COROLLARY 6.12. Any nonstandard area-minimizing double bubble in H" in which
both enclosed regions are connected is a surface of revolution about some line and
consists of a topological sphere intersecting the axis of rotation with one toroidal band
on top of it.

PROOF. This follows directly from Theorem 6.10. O

7. Stability of double bubbles. We now show how the fundamental instability ar-
gument of Hutchings et al. [11] generalizes to S™ and H" (Theorems 7.2 and 7.6) and
then apply it to rule out nonstandard double bubbles in $™ and H" in which all regions
are known to be connected (Propositions 7.3 and 7.7).

As in the previous section, all figures of S? are drawn using the stereographic pro-
jection of the upper hemisphere, and all figures of H? are drawn using the Poincaré
disc model.

PROPOSITION 7.1 [11, Proposition 5.2]. Consider an area-minimizing double bubble
in R™, S™, or H™. Let v be a vector field corresponding to some isometric motion of R",
S™, or H™. Suppose that the points where v is tangent to the double bubble separate
the bubble into at least four pieces. Then the normal component of v vanishes on any
smooth component of the bubble which is separated into four pieces by these points of
tangency.
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FIGURE 7.1. A bubble which can be separated by cutting at points from which
orthogonal lines intersect the axis of revolution at the same point.

SKETCH OF THE PROOF. Clearly v has vanishing second variation of area. Some
nontrivial linear combination of the restrictions of v to the four pieces vanishes on
one piece, respects the two volume constraints to first order, and has second variation
zero. By stability, the normal component of v must be an eigenfunction. By unique
continuation for eigenfunctions, it must vanish on associated parts of the bubble
which meet smoothly the piece where v vanishes. Thus the normal component of
v will vanish on any smooth component of the bubble which is separated into four
pieces by these points of tangency. See [11, Proposition 5.2] for details. ]

7.1. Stability in S™. Let X c S™ be a smooth double bubble of revolution about an
axis L, with a generating curve I' in the upper hemisphere of S? that consists of arcs
I';, with interiors I; ending either at the axis or in threes in vertices v; jk- Let =; be the
portion of 3 generated by Ij.

We consider the map f : UI; — L/1 which maps each p € UI; to the pair of antipodal
points N(p) N L, where N(p) denotes the geodesic line normal to T at p.

THEOREM 7.2. Consider an area-minimizing double bubble = C S™, n > 3, with axis
of revolution L. Assume that there are a finite number of points {pi,...,px} in UI;
with x = f(p1) = - -+ = f(px) which separate T'. Assume further that {p.,...,px} is
a minimal set with this property. Then every component X; which contains one of the
points p; is part of a sphere centered at x.

PROOF. The fact that the p; all map to the same point x and separate > means that
we can separate X into two pieces by cutting at points where a rotation vector field v
about a line L orthogonal to L through x is tangent to X. (See Figure 7.1.) We further
cut X along the geodesic plane spanned by L and L', again giving cuts at points where
v is tangent to 2.

We now have four total pieces, and by Proposition 7.1 it follows that the normal
component of v vanishes on each smooth component of X which is separated into
four pieces by the cuts. Any of the I; which contains one of the p; corresponds to such
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FIGURE 7.2. Cutting a possible competitor to the standard double bubble in
S™ in which all three regions are connected and two intersect the axis of
rotation L. (Note that here L is the boundary circle.)

a smooth component of 3. Thus, since this component is both a surface of revolution
about L and invariant under one-parameter rotation about L', it must be spherical.
[

PROPOSITION 7.3. An area-minimizing double bubble in S™ in which all three re-
gions are connected must be the standard double bubble.

PROOF. By Corollary 6.7, there are two kinds of nonstandard competitors. One is
a topological sphere intersecting the axis of revolution with a toroidal band around
it, and the other is two adjacent toroidal bands that do not intersect the axis of revo-
lution.

We first consider a competitor that intersects the axis of revolution, L. The gener-
ating curve T is made up of four components. Two of them, I} and I’y are portions of
circles which intersect the axis orthogonally, and the other two, I, and I3, do not. Let
I, I, and I3 meet at A, and let I, I3, and I; meet at B. Draw a geodesic line between
A and B. Choose one of the two points where the perpendicular bisector of this line
intersects L and label it C. Note that A and B are equidistant from C. (See Figure 7.2.)

If I, and I3 are not pieces of circles centered at C, then there are points p» € I and
p3 € I3 that are either closest to or farthest from C. (If one is a piece of such a circle, we
choose any point on it.) The points p» and p3 separate I', and the geodesic segments
p>C and p3C both intersect I orthogonally. Thus f(p2) = f(p3), so by Theorem 7.2,
I, and I3 are pieces of the same circle centered at C, a contradiction. We conclude that
a bubble of this type cannot be minimizing.

Next we consider a competitor that does not intersect L. (See Figure 7.3.) The gen-
erating curve I' is made up of three components I, I, Iy which all meet at two points
A and B. Using the same method as above, we can find a point p; on each I such that
f(p1) = f(p2) = f(p3), and use Theorem 7.2 to derive a contradiction. We conclude
that a bubble of this type cannot be minimizing. |
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C

FIGURE 7.3. Cutting a possible competitor to the standard double bubble in
S™ in which all three regions are connected and only one intersects the axis
of rotation L. (Note that here L is the boundary circle.)

7.2. Stability in H”. We first need some definitions to describe lines in the hyper-
bolic plane, H2.

DEFINITION 7.4. Two geodesiclines L, L, € H? are parallel if they do not intersect,
but for any positive €, we can find a point on each line such that the distance between
the two points is less than e.

In the Poincaré disc model of H?, two parallel lines meet at the same point on the
disc’s boundary.

DEFINITION 7.5. Two geodesic lines L1, L, € H? are disjoint if they do not intersect
and there is some positive € such that if we choose a point on each line, the distance
between the two points is always at least €.

Note that disjoint lines cannot be parallel. Now that we have these definitions, we
can define a function f analogous to the one we defined in spherical space.

Let £ C H" be a smooth double bubble of revolution about an axis L, with a gen-
erating curve I' in the upper hemisphere of S? that consists of arcs I';, with interiors
I; ending either at the axis or in threes in vertices v;;x. Let X; be the portion of X
generated by Ij.

Define N(p) to be the normal line to I' at a point p € UI;. We consider the map
f:uli = ({0,1} X L) U{—0c0,c0}, which we define as follows. If N(p) intersects L, then
f maps p to (0,(N(p)nL)). If N(p) is parallel to L, then f maps p to —c or oo,
depending on which end of L comes arbitrarily close to N(p). Finally, if N(p) and
L are disjoint, then we take the unique line L” which intersects both L and N(p)
orthogonally, and f maps p to (1,(L'NL)).

THEOREM 7.6. Consider an area-minimizing double bubble 3. C H", n > 3, with axis
of revolution L. Assume that there are a finite number of points {p1,...,px} in UI;
which separate T', with x = f(p1) = - - - = f(px). Assume further that {p,...,px} is a
minimal set with this property.
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FIGURE 7.4. Generating curve for a possible nonstandard minimizer, and a
set of points p; from which orthogonal lines meet the axis of revolution at
the same (finite) point.

Then every component X.; which contains one of the points p; is one of the following.
(i) Part of a sphere centered at the second coordinate of x, if x is of the form (0,q),
with q € L.

(i) Part of a horosphere centered at the appropriate end of L, if x is oo.

(iii) Part of a hyposphere intersecting L orthogonally, if x is of the form (1,q), with
q € L. This hyposphere is generated by revolving about L a hypocircle that is a
constant distance from the line L' orthogonal to L through q. (If p; € L', then
this hypocircle is L', and X; is a geodesic plane intersecting L orthogonally.)

PROOF. We consider the three cases separately, as they require use of elliptic, par-
abolic, and hyperbolic isometries of H", respectively, to achieve the required result.
In each case, we pick an appropriate isometry, and cut X into four pieces at points
where the vector field v of this isometry is tangent to 3. (For a good reference on the
isometries of hyperbolic space, see Beardon’s book [1].)

We first consider the elliptic case, in which x is of the form (0,q) for some g € L.
We choose our isometry to be the elliptic isometry corresponding to one-parameter
rotation of a circle C centered at q and intersecting L orthogonally. The fact that the
pi all map to the same x and separate I' means that we can separate X into two pieces
by cutting at points where the vector field v of this isometry is tangent to X. (See
Figure 7.4.) We further cut X along the (n — 1)-dimensional geodesic plane containing
L that is orthogonal to C, again giving cuts at points where v is tangent to .

We next consider the parabolic case, in which x is =o. We choose our isometry to
be the parabolic isometry corresponding to one-parameter rotation of a horocycle H
centered at the appropriate end of L. (Note that H must intersect L orthogonally.) The
fact that the p; all map to the same infinity and separate I' means that we can separate
3 into two pieces by cutting at points where the vector field v of this isometry is
tangent to X. (See Figure 7.5.) We further cut X along the (n —1)-dimensional geodesic
plane containing L that is orthogonal to H, again giving cuts at points where v is
tangent to 3.
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FIGURE 7.5. Generating curve for a possible nonstandard minimizer, and a
set of points p; from which orthogonal lines meet the axis of revolution at
the same infinity.

FIGURE 7.6. Generating curve for a possible nonstandard minimizer, and a
set of points p; from which orthogonal lines intersect the same geodesic
orthogonal to the axis of revolution orthogonally.

Finally, we consider the hyperbolic case, in which x is of the form (1,q) for some
q € L. We choose our isometry to be the hyperbolic isometry corresponding to one-
parameter translation along a geodesic line L’ orthogonal to L and passing through
q. The fact that the p; all map to the same point x and separate I' means that we can
separate X into two pieces by cutting at points where the vector field v of this isom-
etry is tangent to X. (See Figure 7.6.) We further cut X along the (n — 1)-dimensional
geodesic plane containing L that is orthogonal to L’, giving cuts at points where v is
tangent to 3.

In each case, we now have four total pieces, and by Proposition 7.1 it follows that
the normal component of v vanishes on each X; which is separated into four pieces
by the cuts. Each of the I; which contains one of the p; correspond to such a X;. Thus,
since this component is both a surface of revolution about L and invariant under the
appropriate isometry, it must be part of a sphere (if the isometry is elliptic), part of
a horosphere (if the isometry is parabolic), or part of a hyposphere or goedesic plane
(if the isometry is hyperbolic). O
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N2

L I

FIGURE 7.7. Using a parabolic isometry to show that a nonstandard bubble
in H" where each region is connected is unstable.

PROPOSITION 7.7. An area-minimizing double bubble in H™ in which both regions
are connected must be the standard double bubble.

PrROOF. By Corollary 6.12, there is only one nonstandard competitor: a topological
sphere intersecting the axis of revolution, with a toroidal band around it. The gener-
ating curve T of this competitor is made up of four components. Two of them, Il and
I, are portions of circles, horocycles, or hypocircles which intersect the axis orthog-
onally, and the other two, I and I3, do not intersect the axis. Let I'}, I», and I3 meet
at A, and let I, I3, and Iy meet at B. Draw a geodesic segment between A and B and
draw its perpendicular bisector K. Note that A and B are equidistant from any point
on K.

Suppose that K intersects L at a point C. We can then use Theorem 7.6 and the
same argument as in Proposition 7.3 to derive a contradiction.

Next, suppose K is parallel to L. Then there is a unique horocycle H through A and
B that intersects both K and L orthogonally. If I> and I3 are not pieces of horocycles
a constant distance from H, then there are points p» € I, and p3 € I3 that are either
closest to or farthest from H. (If one is a piece of such a horocycle, we choose any
point on it.) The points p» and p3 separate I', and the geodesic lines through p» and
p3 that intersect I orthogonally also intersect H orthogonally, and are thus parallel to
each other and to L. (See Figure 7.7.) Thus f(p2) = f(p3), so by Theorem 7.2, I, and
I3 are both pieces of the horocycle H, a contradiction.

Finally, suppose K and L are disjoint. Then there is a unique geodesic line G that
intersects both K and L orthogonally. If I, and I3 are not pieces of hypocircles a
constant distance from G, then there are points p» € I and p3 € I3 that are either
closest to or farthest from G. (If one is a piece of such a hypocircle, we choose any
point on it.) The points p» and p3 separate I', and the geodesic lines through p» and
p3 that intersect I' orthogonally also intersect G orthogonally. (See Figure 7.8.) Thus
f(p2) = f(p3), so by Theorem 7.2, I, and I3 are both pieces of the same hypocircle
a constant distance from G, the final contradiction. O

7.3. Further structure of minimizers in S”. In this section, we use the above in-
stability argument (Theorem 7.2) to further reduce the possibilities for the structure
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FIGURE 7.8. Using a hyperbolic isometry to show that a nonstandard bubble
in H" where each region is connected is unstable.

of minimizing double bubbles in S™. The result is a stronger structure theorem for
the case in which two of the three regions are known to be connected (Theorem 7.9).
This section is not necessary for our main theorems in Section 8.

LEMMA 7.8. Let I; be a smooth component of the generating curve of an area-
minimizing double bubble in S™. Then the set of geodesic lines orthogonal to T; sweeps
out an angle of at most 180 degrees along the bubble’s axis of symmetry L.

PROOF. Suppose not. Then two such orthogonal lines must hit the axis L atidentical
points, and thus by Theorem 7.2, I; must be a piece of a circle centered on L. The set
of lines orthogonal to a circular arc hitting the axis orthogonally, however, sweeps out
an angle of zero along the axis, a contradiction. a

THEOREM 7.9. Any nonstandard area-minimizing double bubble in S™ in which at
least two of the three regions are connected is one of the following.

(1) Ifthe bubble intersects the axis of rotation, then it consists of a topological sphere
with one toroidal band around it, and some number of toroidal bands around
that. This bubble corresponds to the “1 + k” bubble of Reichardt et al. [17]. (See
Figure 6.9a.)

(2) If the bubble does not intersect the axis of rotation, then it consists of a single
toroidal band with some number of toroidal bands adjacent to it belonging to
the disconnected region. Furthermore, the disconnected region must have at least
three components. (See Figure 6.9b.)

PROOF. Werule outitem (3) in Corollary 6.6 and show that the disconnected region
in item (2) must have at least three components.

Consider the generating curve of item (3). There are two smooth curves I and I»
bounding the component of the (possibly) disconnected region which contains the
axis of symmetry. We claim that for at least one of I', I», the set of lines orthogonal
to I; sweeps out more than 180 degrees along the axis of symmetry, contradicting
Lemma 7.8. Since the I are smooth, the function f which determines the points at
which the orthogonal lines hit the axis is continuous for each of these curves. Since
the two curves meet at a 120-degree angle, f is discontinuous at these points when
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FIGURE 7.9. The function f backtracks at the points of intersection of the
exterior components.

considered as a function on both. The function f sweeps out more than 360 degrees
because at these points it backtracks when going around the closed curve I7 U I,
due to the fact that the 120-degree angle is convex when considered from the side
containing the axis (see Figure 7.9). Thus at least one of the two curves Ij, I> must
sweep out more than 180 degrees, a contradiction.

The above argument rules out the case in which all three regions in item (2) are
connected. We now proceed to rule out a disconnected region with two components.
Consider the boundary of the region touching the axis. Let the four components of
the boundary be: I and I», forming the boundary between the region touching the
axis and the disconnected region, and I3 and Iy, forming the boundary between the
region touching the axis and the other connected region (see Figure 7.10). Again, due
to the fact that the 120-degree angles are convex when considered from the region
containing the axis, the function f sweeps out more than 360 degrees. By Lemma 7.8,
I must sweep out at most 180 degrees, so the rest of the curve must sweep out more.
Also, the image f(I7) is connected. Consider the amount further swept out by f(I3).
If f(I3) n f(I4) is not empty, then we can cut both to separate the bubble, and by
Theorem 7.2 both must be pieces of circles meeting the axis orthogonally. If both are
such, then f(I>) must sweep out more than 180 degrees, for f (I1 uT3 UTy) would have
swept out at most 180 degrees, contradicting Lemma 7.8. Thus f (I'3) N f(Iy) is empty.
But then f(I UT3 UT) must sweep out less than 180 degrees in order for f(I'1) not
to sweep out 180 degrees and f (I3) and f(Iy) to be disjoint, so f(I>) must sweep out
more than 180 degrees, again a contradiction. a

Note that this method generalizes to show that any minimizing bubble with one
connected region which contains the entire axis of symmetry (item (2) in Theorem 6.5)
cannot have as its graph structure a straight line.

8. Proof of the double bubble conjecture for two equal volumes in S3 and H?

PROOF OF THEOREM 1.1 (S3). By Proposition 2.3, a minimizer exists. By Proposition
5.1, both regions are connected, and the exterior is connected when its volume is at
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FIGURE 7.10. Generating curve for an (unstable) nonstandard double bubble
in S™ where the single disconnected region has two components.

least 10 percent of the total volume of S3. (Hence by Corollary 6.7, anonstandard min-
imizer must be either a topological sphere intersecting the axis with a toroidal band
around it or two adjacent toroidal bands not intersecting the axis.) By Proposition 7.3
(the instability argument), the minimizer must be the standard double bubble (which
is unique by Proposition 2.6). |

PROOF OF THEOREM 1.2 (H3). By Proposition 2.3, a minimizer exists. By Proposi-
tion 5.2 (and Corollary 4.5), both regions (and the exterior) are connected. (Hence by
Corollary 6.12, a nonstandard minimizer must be a topological sphere intersecting the
axis with a toroidal band around it.) By Proposition 7.7 (the instability argument), the
minimizer must be the standard double bubble (which is unique by Proposition 2.6).

O

Appendices
A. Program used in the proof of Proposition 5.8

(* Area and Volume of Equal-Volume Double Bubble in S°3 %)

(x r < pi/2 *)
Abi[r_] :=
2*Pix (1 - 1/Sqrt[1 + 3/4x(Tan[r])"2]) +
2x2*Pi* (Sin[r]) 2% (1 + 1/(2%Sqrt[1 + 3/4*(Tan[r])~2]1))
(x r > pi/2 *)
Ab2[r_] :=
2%Pi*x (1 + 1/Sqrt[1 + 3/4*(Tan[r])"2]) +
2x2*Pi* (Sin[r]) 2% (1 - 1/(2%Sqrt[1 + 3/4*(Tan[r])"21))
(* all r *)
Vb[r_] :=
Pi/2%(2*r - Sin[2*r])*(1 + Cos[r]/(2%Sqrt[1 - 1/4*(Sin[r])"2])) +
Pix(ArcTan[Sqrt [2]*Sin[r]/Sqrt[7 + Cos[2*r]]] -
Sqrt [2] *r*Cos [r]/Sqrt[7 + Cos[2*r]])



SPHERICAL AND HYPERBOLIC DOUBLE BUBBLES 693

(* Area and Volume of Spheres in S°3 *)
As[r_] 4 Pi Sin[r]~2
Vs[r_] Pix(2xr - Sin[2xr])

(* Lower Bound on the Derivative of F[v] in S°3 %)
G[v_] := -2.5 - 8 Cot[(8*v/(9*Pi))~(1/3)]

(* Proof program for two regions of equal volume in S73 *)
Prove[vO_, vf_] := (

(* Findroot parameters *)

acc = 10; (* Accuracy in Newton’s method *)

it = 40; (* Iterations in Newton’s method *)

prec = 25; (* Working Precision *)

epsilon = 107 (-1 * acc); (* Error due to Newton’s Method *)
counter = 0;

Print["v, F[v], error"];
For[v = v0, True,

(* radius of sphere of volume v/2 *)
rli =r /.
FindRoot [Vs[r] == v/2, {r, 1}, MaxIterations -> it,
WorkingPrecision -> prec, AccuracyGoal -> accl;

(* radius of sphere of volume v *)
r2=r1r/.
FindRoot [Vs[r] == v, {r, 1}, MaxIterations -> it,
WorkingPrecision -> prec, AccuracyGoal -> accl;

(* radius of sphere of volume 2v *)
r3=r /.
FindRoot [Vs[r] == 2v, {r, 1}, MaxIterations -> it,
WorkingPrecision -> prec, AccuracyGoal -> accl;

(* radius of equal-volume double bubble for volume v *)
rd =1 /.
FindRoot [Vb[r] == v, {r, 1}, MaxIterations —> it,
WorkingPrecision -> prec, AccuracyGoal -> accl;

(x verify that radii are between O and pi *)
Ifflr1 <0 || r2<0 |l r3 <0 || r4 <O [|
rl1 >Pi || r2 >Pi || r3 > Pi || r4 > Pi,
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Print["Error: Calculated radius outside of range ."];
Break[],
13

Gk F(v) %)

If[v < 2/3*Pi~2,
F = 2xAs[r1] + As[r2] + As[r3] - 2*xAbi[r4],
F = 2xAs[r1] + As[r2] + As[r3] - 2*xAb2[r4],
1;

(* Maximum error in calculated value of F(v) %)
err = 580*Pi*epsilon;

(* Output *)

If[err > F,
Print ["Error in F(v) is greater than calculated value at
v=", v, ". F(v), erxror =", F, ",", err];
Break[],
1
Print[v, ", ", F, ",", err];

(x Iteration *)

counter += 1;

If[G[v] >= 0, Break[],]; (* Derivative is positive;
don’t need to check any more *)

If [v > vf, Breakl[],];

v -= (F - err)/G[v];

If[v > Pi"2, v = Pi~2,];

1;

Print[counter, "iterations"];

)

(* Lower bound on derivative for exterior in S°3 *)
GExt[v_] := -3 - 8 Cot[(8*v/(9*Pi))~(1/3)]

(* Proof program for exterior in S73 *)
ProveExterior[vO_, vf_] := (

(* Findroot parameters *)

acc = 10; (x Accuracy in Newton’s method *)

it = 40; (* Iterations in Newton’s method *)

prec = 25; (* Working Precision *)

epsilon = 107 (-1 * acc); (* Error due to Newton’s Method *)
counter = 0;
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Print["v, F[v], error"];
For[v = v0, True,

(* radius of sphere of volume Pi"2 - v *)
rl =r /.
FindRoot [Vs[r] == Pi"2 - v, {r, 1}, MaxIterations -> it,
WorkingPrecision -> prec, AccuracyGoal -> accl;

(* radius of sphere of volume v *)
r2=r1r/.
FindRoot [Vs[r] == v, {r, 1}, MaxIterations —> it,
WorkingPrecision -> prec, AccuracyGoal -> accl;

(* radius of sphere of volume 2Pi"2 - v *)
r3=1r/.
FindRoot [Vs[r] == 2Pi"2 - v, {r, 1}, MaxIterations -> it,
WorkingPrecision -> prec, AccuracyGoal -> accl;

(* radius of equal - volume double bubble for volume v *)
rd =1 /.
FindRoot [Vb[r] == v, {r, 1}, MaxIterations —> it,
WorkingPrecision -> prec, AccuracyGoal -> accl;

(x verify that radii are between O and pi *)
If[r1 <0 |l r2<0 || r3<0 || r4 <0 ||

r1 >Pi || r2 >Pi || r3 > Pi || r4d > Pi,
Print ["Error: Calculated radius outside of range."];
Break[],

15

(x F(v) *)

If[v < 2/3*Pi~2,
F = 2xAs[r1] + As[r2] + As[r3] - 2*xAbi[r4],
F = 2%As[r1] + As[r2] + As[r3] - 2*Ab2[r4],
1;

(* Maximum error in calculated value of F(v) %)
err = 580*Pi*epsilon;

(* Output *)
If[err > F,
Print["Error in F(v) is greater than calculated value at

v=", v, ". F(v), erxror = ", F, ",", err];
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Break[],
1;

Print([v, ", ", F, ",", err];

(x Iteration *)
counter += 1;
If[GExt[v] >= 0, Break[],]; (* Derivative is positive;
don’t need to check any more *)
If [v > vf, Breakl[],];
v -= (F - err)/GExt[v];
If[v > Pi"2, v = Pi~2,];
1;
Print[counter, "iterations"];

)

B. Program used in the proof of Proposition 5.14

(* Area and Volume of Equal - Volume Double Bubble in H"3 *)
Ab[r_] :=
4+Pi*Sinh[r] 2% (1 + Cosh[r]/(2*Sqrt[1 + Sinh[r]~2/4])) +
2*%Pix(1/8qrt[1 - 3/4*Tanh[r]~2] - 1)
Vo[r_] :=
Pi/2%(1 + Cosh[r]/(2*Sqrt[1 + Sinh[r]~2/4]1))*(Sinh[2*r] - 2*r) +
Pix(r*Cosh[r]/Sqrt[4 + Sinh[r]~2] -
ArcTanh [Sqrt [2] *Sinh[r]/Sqrt[7 + Cosh[2*r]]])

(* Area and Volume of Spheres in H"3%)
As[r_] := 4 Pi Sinh[r]"2
Vs[r_] Pi*(Sinh[2*r] - 2*r)

(* Lower Bound on the Derivative of F[v] in H"3 *)
Glv_] := -16%Pi/v

(* Proof program for two regions of equal volume in H"3 *)
Prove[vO_, vi_] := (

(* Findroot parameters *)

acc = 10; (* Accuracy in Newton’s method *)

it = 40; (* Iterations in Newton’s method *)

prec = 25; (* Working Precision *)

epsilon = 107(-1 * acc); (* Error due to Newton’s Method *)
counter = 0;

Print["v, F[v], error"];
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For[v = v0, True,

(* radius of sphere of volume v/2 *)
rl =1 /.
FindRoot [Vs[r] == v/2, r, Loglv] + 1, MaxIterations -> it,
WorkingPrecision -> prec, AccuracyGoal -> accl;

(* radius of sphere of volume v *)
r2 =r /.
FindRoot[Vs[r] == v, r, Loglv] + 1, MaxIterations -> it,
WorkingPrecision -> prec, AccuracyGoal -> accl;

(* radius of sphere of volume 2v *)
r3=r/.
FindRoot [Vs[r] == 2v, r, Loglv] + 1, MaxIterations -> it,
WorkingPrecision -> prec, AccuracyGoal -> accl;

(* radius of equal - volume double bubble for volume v *)
rd =1 /.
FindRoot[Vb[r] == v, r, Loglv] + 1, MaxIterations -> it,
WorkingPrecision -> prec, AccuracyGoal -> accl;

Gk F(v) %)
F = 2%As[r1] + As[r2] + As[r3] - 2xAb[r4];

(* Maximum error in calculated value of F(v) *)
err = Pixepsilon*(84*Exp[2*rl] + 42*Exp[2*r2] +
42xExp [2*r3] + 268xExp[2*rd] );

(* Output -- Print results on error or every 200 iterations *)
If[err > F,

Print["Error in F(v) is greater than calculated value at

v=", v, ". F(v), erxror =", F, ",", err];

Break[],

15
If [Mod[counter, 200] == 0,

Print([v, ", ", F, ",", err],

1;

(x Iteration *)

counter += 1;

If[G[v] >= 0, Break[],];
If [v > vf, Breakl[],];

v -= (F - err)/Gl[v];

1;
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Print([v, ", ", F, ",", err];
Print [counter, "iterations"];

)
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