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Let R be a ring, and denote by [R,R] the group generated additively by the additive com-
mutators of R. When R;, = My, (R) (the ring of n X n matrices over R), it is shown that
[Ry,Ry ] is the kernel of the regular trace function modulo [R,R]. Then considering R as a
simple left Artinian F-central algebra which is algebraic over F with CharF = 0, it is shown
that R can decompose over [R,R], as R = Fx + [R,R], for a fixed element x € R. The space
R/[R,R] over F is known as the Whitehead space of R. When R is a semisimple central F-
algebra, the dimension of its Whitehead space reveals the number of simple components
of R. More precisely, we show that when R is algebraic over F and CharF = 0, then the
number of simple components of R is greater than or equal to dimr R/[R,R], and when
R is finite dimensional over F or is locally finite over F in the case of CharF = 0, then the
number of simple components of R is equal to dimr R/[R,R].

2000 Mathematics Subject Classification: 12E15, 16K40.

1. Introduction. Additive commutator elements of a ring R and the groups and
structures they make have a great role in the general specification of a ring, and their
study is one of the approaches to recognize rings in noncommutative ring theory
[2, 3, 4, 5]. The reason is clear, they have covered the secrets of noncommutative
behaviour of the structure. In recent years, these elements are returned once again
under a full consideration, and a lot of wonderful works has been done on them
[1, 10, 11, 12, 13]. Our study here is also among these studies, and it reveals some of
bilateral relations between substructure given by additive commutators (the additive
commutator group [R,R], the additive Whitehead group, and the space R/[R,R]) and
some characteristics of the ring. In what follows let R be a ring. By [R,R] we denote
the group generated additively by the additive commutators of R. Following [2], the
additive group R/[R,R] is called the additive Whitehead group of R. This group is an
F-vector space when R is a central F-algebra, and is called the Whitehead space of R.

2. Results. Our first result is about the additive commutator subgroup of a matrix
ring over a given ring.

PROPOSITION 2.1. Let R be a unitary ring and let R,, = M,,(R) be the ring of n xn
matrices over R. Consider the regular trace function on R,,, as tr: R,, — R, then

[Ru,Rn] = {A €R, | tr(A) € [R,R]}. (2.1)

PROOF. The inclusion “<” follows by the fact that tr(AB — BA) € [R,R]. In order
to show the reverse inclusion, let {E;;} be the matrix units and note that if i # j, we
have Eij = EiiEij _EijEii S [Rn,Rn] and Eii —EJ'J' = EijEJ'i —EjiEij e [Rn,Rn]. For any
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A = (aij) € Ry, we have the following congruence:
A= ZaijEij = ZaiiEii = Za“En (mod [Rn,Rn]). (2.2)

In particular, if tr(A) € [R,R], then A € [R,,R,]. O

COROLLARY 2.2. Consider the trace function on R,, module of [R,R]. Clearly the
group isomorphism Ry, /[R,,,R,] = R/[R,R] can be derived.

THEOREM 2.3. Let R be a left Artinian central simple F-algebra which is algebraic
over F with CharF = 0. Then R decomposes over [R,R] as R = Fx +[R,R], for a fixed
X €R.

PROOF. By Wedderburn-Artin theorem, R = M,, (D) for a division ring D and suit-
able n € N [6, 14]. We divide our proof into two parts.
(i) Let n = 1, in other words let R = M; (D) = D be a division ring. Let a € R and
let f(t) =t" +byt" 1+ ... +b, be the minimal polynomial of a over F, where b; € F,
i=1,2,...,v and v = dimg F(a). By the Wedderburn theorem [9, page 265], f(t) splits
completely in R[t], this means that there exists ¢c; €« R* =D - {0},i=1,2,...,v — 1,
such that f(t) = (t—a)(t - clacl‘l) - (t —cr,lac;,ll). Then we have

Trryr(a) = a+ciacy ' +coacy' +- - - +cp1ac;},

=ra+ (clacfl fa) N (cr_lac;_l1 fa)
=ra+ <c1 (acfl) _ (acfl)cl) I (cr,l (ac;,ll) - (ac;}l)cy,l) (3)

=ra+di+dy+---+dy-1=ra+d,

where di,...,d,_1, d € [R,R]. This simply yields a € F + [R,R] which imply that R =
F+[R,R], x =1.

(ii) Let m € N be an arbitrary positive integer. We have R = M, (D), where D is a
division ring. By (i), D = F+[D, D], so

R=M,(D)=M,(F+[D,D]) = My(F) +M,([D,D]) < M, (F) +[R,R] € R. (2.4)

This implies that R = M,,(F) + [R,R]. By this formula, given A € R, there exist B €
M, (F) and C € [R,R] such that A =B+ C, hence A = (B— (trB/n)I) + (trB/n)I + C,
where I is the identity matrix of size n. By Proposition 2.1, (B — (trB/n)I) € [R,R],
and A = (trB/n)l+ ((B— (tr/n)I) + C), consequently

R=FI+[R,R], x=1. (2.5)
|

To see a different statements and initial ideas of these theorems we refer the reader
to [1, 2]. Also a multiplicative version of Theorem 2.3 could be found in [11].

Now, we are going to state our main result, which is about the Whitehead space of a
semisimple ring. This theorem is a generalization of a nice theorem due to R. Brauer
[8, page 130].



NOTES ON WHITEHEAD SPACE OF AN ALGEBRA 511

THEOREM 2.4. Let R be a left Artinian semisimple central F-algebra and let k be the
number of left simple components of R. Then,
(i) if R is algebraic over F and CharF = 0, then k > dimgR/[R,R];
(ii) if R is finite dimensional over F, or is locally finite over F, and CharF = 0, then
k =dimgR/[R,R].

PROOF. Consider the following chain of functions:
R-L My, (D1) X - X My, (D) -2 Dy /[D1,D1] % - - - X Die/ [ Dy, Di ], (2.6)

where f; is the isomorphism given by the Wedderburn-Artin theorem for the decom-
position of a semisimple left Artinian ring into a direct product of simple ring [6, 14],
and f> is the F-algebra homomorphisms, by considering component-wise the trace
function on My, (D;) mod[D;,D;],i=1,...,k.

By Proposition 2.1 we have, ker(f>o f1) = [R,R], noting that [R,R] = [R;,R] X - - X
[Rk,Rk], where Ry, = My, (D;), i = 1,...,k. Therefore the following F-isomorphism
holds:

R/[R,R]=D:/[D1,D1]x - - - x Dy/[D, Di]. 2.7)

It remains to compute the dimension of Whitehead space of a division ring in the two
cases (i) and (ii) above.

First let D be algebraic over F and CharF = 0. We show that any two elements
a,b € D/[D,D] are linearly dependent. By Theorem 2.3, there exist elements «,8 € F
and di,d» € [D,D], such that a = x+d; and b = 8 +d». In other words, fa—ab =0
in D/[D,D]. Hence in this case dimgD/[D,D] < 1.

Now let D be finite dimensional F-central algebra. Let RTp,r : D — F be the reduced
trace function which is surjective by [7, page 148]. Furthermore, by a theorem of
Amitsur and Rowen [5, page 171] its kernel is equal to [D, D] and so it is a hyperplane
over F, in this case dimgD/[D,D] = 1.

As alatter case let D be alocally finite division ring over it’s center F and Char F = 0.
Now consider the function TR : D — F defined by

TR(x) = Tre(x)F(x), (2.8)

I
degp(x)

we show that this function is an F-linear surjective map, whose kernel is [D,D]. The
claim then is clear.

First note that in this case 1 ¢ [D,D], for if 1 € [D,D], then there exist some x;’s
and y;’s in D, such that 1 = > (x;y; — yiXi). Let D be the division ring generated by F
together with x;’s and ;’s. Taking the reduced trace of D; over its centre of both sides
of 1 =>(xiyi— vixi), we get a contradicting result. Therefore [D,D]NF = {0}. Now,
by considering the trace formula (given in the proof of Theorem 2.3) for elements a,
b and Aa+b (A € F) in D, it is readily verified that

1Tr()\(u—b) = ATI‘((Z,)-FiTr(b), (2.9)
¥ n m
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where 7, n, and m are degrees of Aa + b, a and b. So TR is F-linear. The surjectivity
is clear. In order to specify the kernel of TR, consider the trace formula for elements
of [D,D]. Suppose that a € [D,D]. Now, we have Trr),r(a) =na+d € [D,D]INF,
where n is the degree of a over F and d € [D,D]. Therefore TR(a) = 0. By the same
argument we can see that if TR(a) =0, then a € [D,D]. O
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