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The generalized inverse AT s of amatrix A is a {2}-inverse of A with the prescribed range
T and null space S. A representation for the generalized inverse A(2 has been recently
developed with the condition o (GA|T) C (0,%), where G is a matrix w1th R(G) =T and
N(G) = S. In this note, we remove the above condition. Three types of iterative methods
for A(T2 s are presented if o (GA|r) is a subset of the open right half-plane and they are
extensions of existing computational procedures of AT s, including special cases such as

the weighted Moore-Penrose inverse A 4 v and the Drazin inverse AP. Numerical examples
are given to illustrate our results.

2000 Mathematics Subject Classification: 15A09, 65F20.

1. Introduction. Given a complex matrix A € C"™*"| any matrix X € C"*™ gsatisfy-
ing XAX = X is called a {2}-inverse of A. Let T and S be subspaces of C" and C™,
respectively. A matrix X € C"*™ is called a {2}-inverse of A with the prescribed range
T and null space S, denoted by AT s, if the following conditions are satisfied:

XAX =X, R(X)=T, N(X) =S, (1.1)

where R(X) is the range of X and N (X) is the null space of X. It is a well-known fact
[1] that if dimT = dimS* < rank(A), then there exists a unlque A 5 if and only if
AT @ S = C™. It is obvious from the definition above that AAT s = Pars and A(Z)
Pr,(axs1y1, where Ps, s, is the projector on the subspace S; along the subspace 52.

There are seven types of important {2}-inverses of A: the Moore-Penrose inverse
At the weighted Moore-Penrose inverse AL, ~» the W-weighed Drazin inverse A, 4, the
Drazin inverse AP, the group inverse A”, the Bott-Duffin inverse AEL_)I), and the gen-
eralized Bott-Duffin inverse AEB All of them are the special cases of the generalized
inverse A(T2; of A for specific T and S.

LEMMA 1.1. (a) Let A € C"™*" [1]. Then, for the Moore-Penrose inverse A" and the
weighted Moore -Penrose inverse AL N
D) AT = AR (A%),N(A*)7
(ii) AM_N = A;QZ(;\T—IA*M),N(N”A*M)’ where N and M are Hermitian positive definite
matrices of order n and m, respectively;
(i) Adw = (WAW)R v ayaNiagwaay, Where W € C™m and q = Ind(WA), the
index of WA.
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(b) [1, 2, 3] Let A € C™*™. Then, for the Drazin inverse AP, the group inverse A*, the
Bott-Duffin inverse AEZ)”, and the generalized Bott-Duffin inverse AEB,
(iv) AP = A](?Z()Ak)yN(Ak), where k =Ind(A);
(V) in particular, whenInd(A) = 1, A* = A;QZ()A)‘N(A);
(vi) AEZ)” = P(AP; + P;)7 ! = A(L?L)l, where L is a subspace of C" such that
ALe&L* = C" and P, is the orthogonal projector on L;
i) A} = Alg)) = AYL., where S = R(PA).

The {2}-inverse has many applications, for example, the application in the iterative
methods for solving nonlinear equations [1, 9] and the applications to statistics [6, 7].
In particular, {2}-inverse plays an important role in stable approximations of ill-posed
problems and in linear and nonlinear problems involving rank-deficient generalized
inverse [8, 12]. In literature, researchers have proposed many numerical methods for
computing A(TZ’)S, see [2,3,11,13,15, 16, 18].

As usual, we denote the spectrum and the spectral radius of A by o(A) and p(A),
respectively. The notation || - || stands for the spectral norm. The following theorem
applied in this note is from the theory of semi-iterative method.

THEOREM 1.2 (see [5]). Let B € C"*™ be a nonsingular matrix and let o (B) C Q,
where Q is a simply connected compact set excluding origin. If a sequence of polyno-
mials {s,,(z)}%_o uniformly converges to 1/z on Q, then {s,,(B)} converges to B~

In this note, a representation for the generalized inverse A(TZ)S with a condition
0 (GA|r) C {z:Re(z) > 0}, where G is a matrix with R(G) = T and N(G) = S is pre-
sented in Section 2. Euler-Knopp iterative method and semi-iterative methods for A%Z)S
with linear convergence are derived in Section 3. Quadratically convergent methods
for A(Tzfg are developed in Section 4. Finally, numerical examples are given to illustrate
our results.

2. Representation. In this section, we give a representation for the generalized in-
verse A(TZ)S which may be viewed as an application of the classical theory summability
to the representation of generalized inverse.

LEMMA 2.1 (see [13]). Suppose A € C"*", Let T and S be subspaces of C" and C™,
respectively, such that AT @ S = C™. Suppose that G € C"™*"™ satisfies R(G) = T and
N(G) = S. Denote byA = (GA)|t the restriction of GA on T. ThenInd(GA) = 1 and

ARy = A71G. (2.1)

It follows from Lemma 1.1 that the existence of G is assured for each of the common
seven types of generalized inverses: A*, N"1A*M, A(WA)4, A¥, A, P;, and Ps. Now we
are in a position to establish a presentation theorem.

THEOREM 2.2. Let A, T, S, G, and A be as in Lemma 2.1. If o (A) is contained in a
simply connected compact set Q) excluding origin and a polynomial sequence {$y,(z)}
uniformly converges to 1/z on Q, then

APy = Jlim 5, (A)G. (2.2)
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Furthermore,

[|$m ( A)G Al
|| || < max |zsm(z) 1| +0(e), (2.3)
p zeo (A

where P is invertible such that P~'GAP is the e¢-Jordan canonical form of GA and
|Bllp = [|[P~'B|| for each B € C"™™,

PROOF. Assume that o (A) c Q. With applying Theorem 1.2, we get

lim s, (A) = A~! (2.4)

m—o0

uniformly on Q. It follows from Lemma 2.1 that

lim 5, (A)G = A7'G = A, (2.5)
The error can be written as
m(A)G— ALY = (sm(A)A-T)ATs. (2.6)

Since P is nonsingular such that P~1GAP is the e-Jordan canonical form of GA, it is
well known that

[[P71GAP|| < p(GA) +e. (2.7)

Thus

||5m(A)G_A(T2,L)S‘HP:’|P71(SM(A)A I)PP~ lA sl
n)P|| [|ATs]] (2.8)

< [ max |sm(z)z—1| +O(€)]||A(T2,)s||1>-

zeo(A)

<[P (sm(A)A-

The last inequality is based on the spectrum mapping since s,, (z) is a polynomial
in z. This completes the proof. a

In order to make use of this general error estimate in Theorem 2.2 on specific ap-
proximation procedures, it will be convenient to have lower and upper bounds for
o (A). This is given in the next lemma.

LEMMA 2.3. Let A, T, S, G, and A be as in Lemma 2.1. Then for each A € o (A),

— < |A| < ||GA 2.
TG < A = 16AlL (2.9)

PROOF. We only show the first inequality since the second is trivial. It follows from
Lemma 2.1 that Ind(GA) = 1. Then the Jordan canonical form of GA is

1€ 0], s ct ol .,
GA—P[0 O]P , (GA) —P[ 0 o0 P, (2.10)
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where C is invertible. For each A € 0(A), 1/A € o (A1) since A is invertible. Conse-
quently, we have

ﬁsp(A*l) =p(C™) <|[(GAY*|], (2.11)

which leads to (2.9). This completes the proof. a

REMARK 2.4. Theorem 2.2 extends the representation of A<T2)s in [15] in which
0 (GA|1) C (0,0) is required. The theorem also recovers the representations of AP in
[16] and AL’N in [17] as special cases.

3. Iterative methods for A(TZ)S In this section, we present applications of Theorem
2.2 and Lemma 2.3 in developing specific computational procedures for the general-
ized inverse A(TZ)S and estimating corresponding error bounds.

A well-known summability method is called the Euler-Knopp method. A series
S _0@m is said to be Euler-Knopp summable with parameter « > 0 to the value a
if the sequence defined by

i

m
Smo=00)

(é)(l—a)"fafaj (3.1)
i=0 j=0 J

converges to a. If we choose a,, = (1—2z)™, m = 0, then as the Euler-Knopp transform
of the series >, _(1—2z)™, we obtain a sequence {s,,(z)}, where

sm(2) = > (1-az). (3.2)
j=0

Clearly, lim,; .. S;n (z) = 1/z uniformly on any compact subset of an open set Ey :=
{z: |1—xz| < 1}. We assume that o (A) C {z: Re(z) > 0}. Denote

¢ = max {lArg)\I: —E<Arg2\<z}. (3.3)
Aco(A) 2 2
It follows from Lemma 2.3 that
oc(A)clz=re: ri<r<nr, -p<0<¢}=:F, (3.4)

where 71 = 1/][(GA)*|| and ¥, = ||GA||. It can be shown with the law of Sines that

_ lIGAIl
2cos¢’

Fclw: lw-gl=<g}, forg (3.5)

If a parameter « satisfies

2cos¢

O<ax< ,
IGAI

(3.6)
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then o (A) C Ey. There is always a simply connected compact set Q such that o (A) c
Q C Ey.Hence s, (z) of (3.2) uniformly converges to 1/z on Q. It follows from Theorem
2.2 that

APy = > (I- aGA)"G. 3.7)
n=0

Notice that if A, is the mth partial sum, that is, Ay, = ¢ 372, (I - xGA)/G, then an
iteration form for {A,,} is given by

Ap = xG, Ami1 = I -axGA) A +xG, m=0. (3.8)

For an error bound, we note that the sequence of polynomials {s,,(z)} satisfies

ZSm1(2)—1=(1—-&z)(zspm(z)—1). (3.9)
Thus
|zsm(z2)—1| = |1 - axz|™! < g™t — 0, (M — ), (3.10)
where
B= max |1-o«az| <max|l-«z|<]1. (3.11)
zeo(A) zeF

Actually, by the maximum modular theorem, max.cr |1 — xz| = max.csr |1 — xz|. We
denote four parts of oF as follows:

I={nel:—p<0<¢}, L=re®:r<r=<nr}

" ) (3.12)
G={rnel: —p<0<¢p}, L={re®:r<r<nrl}
If z €Ty, then |1 —«z|? = 1-2ar; cos @ + o?r? and it is obvious that
max |1 —«z| = |1-are®|. (3.13)
zely
With an analogous argument, we have
max |1 —«z| = |1 - arei®|. (3.14)
zel3

If ze b Uly, then |1 — az|? = 1 - 2arcos¢ + o®r? is a quadratic function of ¥ on
[71,72], which achieves its maximum at either » =77 or v = 5. So

max |1-oz|=max{|1-are®|,|1-are®|}. (3.15)
zelpuly

It follows from Theorem 2.2 that an error bound is given by

|Am — AFS |l

<™l 1 0(¢), (3.16)
Az, F
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where
B <max{|1-ae?/||(GA*]|],|1-xe'®|GA||}. (3.17)

Therefore, we have shown the following general convergence theorem.

THEOREM 3.1. Let A, T, S, and G be as in Lemma 2.1. Suppose the spectrum of
GA|r is contained in the open right half-plane. Then the sequence {A,,} of (3.8) linearly
converges to A%, if 0 < x <2cos/||GAll, where ¢ is given by (3.3). Moreover, the
relative error is bounded by (3.16).

We remark that Theorem 3.1 is an extension of corresponding results in [15, 16].
The procedure of semi-iterative methods [5, 10] for solving a linear system can
easily be extended to solve

X=HX+C, forCeC™m, (3.18)
If p(H) < 1, then a sequence of matrices {X,,}, yielded by
Xo =C; Xmi1=HXpu+C (m=0), (3.19)

converges to (I —H)~'C. In general, let 1 ¢ o (H). As usual, based on a sequence of
polynomials {p,,(z)} given by

m m
pm(z) = Z Ttm,iz!, Wwhere Z i =1, (3.20)
i=0 i=0

the corresponding semi-iterative method induced by {p,,(z)} for the computation of
(I-H)~!C is defined as

m
Y= TmiXi, m=0. (3.21)
i=0

Moreover, the matrices Yy, and the corresponding residual matrices R,, are given by
Yim =pm(H)Yo+qm-1(H)C,  Rm =pm(H)(C—I-H)Yp), (3.22)

where
Am-1(z) = (1-pm(2))/(1—2z) withg_,(z) =0. (3.23)

If {qm(H)} converges to (I - H)™!, or equivalently, if {p,,(H)} converges to 0, then
the sequence {Y,,} of (3.21) converges to (I — H) !C. Especially, for H = I — GA|r
and C = G, {Y;,} converges to A(TZ’ g With an application of Theorem 1.2, we have the
following corollary.

COROLLARY 3.2. LetA,T,S,andG be asinLemma 2.1 andletH =I1—-GA|r.If o (H)
is contained in Q1, a simply connected compact set excluding 1, and {q,(z)} of (3.23)
uniformly converges to 1/(1 —z) on Q, then the sequence {Yy,} of (3.21) converges to
A(Z) f _

T.s for Yo =G.
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Especially, Q; is either a complex segment [, 8] excluding 1 or a closed ellipse in
the left half-plane {z : Re(z) < 1} with foci & and B. Let a sequence of polynomials
{pm(2)} given by

T ((z-9)/%) (5_ o+ p

T ((1-0)/8) 7 &° —> (3.24)

pPm(z) =

where T, is the mth Chebyshev polynomial. The semi-iterative method induced by
{pm(2)} is the Chebysheyv iterative method optimal for ellipse Q,. The corresponding
two-step stationary method with the same asymptotically optimal convergence rate
is given by

Yo=G; Y1 =pu(HY+G);

(3.25)
Y1 = Ho(HY i +G) + i Y + oY1, (m=1),
where
4 o+
Ho = o M= Ho,  H2=1-—po—pi. (3.26)
0 (ﬂ+ﬂ)2 1 5 Ho 2 0— M1

The sequence {Y},} converges asymptotically optimally to A(ng

4. Quadratically convergent methods. Newton-Raphson method for finding the
root 1/z of the function s(w) = w~! — z is given by

W1 = Wi (2—zwy,), for a suitable wy. (4.1)
For o > 0, a sequence of functions {s,,(z)} is defined by
so(z) =0, Sms1(2) =sm(2)[2-zsm(2)]. (4.2)

Let z € 0(GA|r) and 0 < & < 2cos¢/||GA]||. Tt follows from the recursive form
ZSm+1(2) =1 = —[zsm(2) —1]2 that

|zsm(z) 1] = laz-1"" <p?" — 0, asm — oo, (4.3)
where an upper bound of § is given by (3.17).

The great attraction of the Newton-Raphson method is the generally quadratic na-
ture of the convergence. Using the above facts in conjunction with Lemma 2.3, we see
that a sequence {sm (A)} defined by

s0(A) = o, Sm1(A) = sm(A)[2] - Asin (A)] (4.4)
has the property that lim,_.. S (A)G = A(TZ; If we set Ay, = S (A)G, then

Ap = &G, Ami1 = Am (21— AAy). (4.5)

Thus we have the following corollary.
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COROLLARY 4.1. Let A, T, S, and G be as in Lemma 2.1. Suppose that the spectrum
of o (GA|r) C {z: Re(z) > 0}. Then the sequence { Ay, } of (4.5) quadratically converges
to A(Tz,fg, for 0 < x < 2cos¢/l|GA|. Furthermore, an error bound is given by

|Am — AT, < (B2" + 0 () [|AFY]]p, (4.6)

where an upper bound of B is given in (3.17).

We remark that Corollary 4.1 is an extension of [4, 13, 15]. It covers iterative meth-
ods for AL,N in [17].

The Newton-Raphson procedure can be speeded up by the successive matrix squar-
ing technique in [14] if two parallel processors are available. In fact, the sequence in
(4.5) is mathematically equivalent to

A = &G, Py =1-aGA,

Ami1=I+Ppn)An,  Pmyi=P2. @7
There are two matrix multiplications each step both in (4.5) and (4.7). However, A, +1
and Py, .1 in (4.7) can be calculated simultaneously.

Two algorithms given by (3.8) and (4.5) are also valid in the case when the spectrum
of A is contained in the left half-plane with slight modification.

Moreover, all results in the previous two sections are valid without the restriction on
o (GA) if G is substituted by another matrix. This is stated as the following corollary.

COROLLARY 4.2. Let A, T, S, and G be as in Lemma 2.1. Then Theorem 3.1 and
Corollaries 3.2 and 4.1 are valid without any restriction on the spectrum of GA|r if G
is substituted by

Go = G(GAG)*G. (4.8)

PROOF. It suffices to show that
R(Go) = R(G), N(Go) =N(G), 0 (GoAlr) C (0, 00). 4.9

As a matter of fact (4.9) is a direct result of [4, Lemma 3.4]. O

We remark a disadvantage of the choice Gq of (4.8). In the case of computing AP with
Ind(A) = k = 3, Go = AX(AZk+1)* Ak the condition number of GoA|r will be extremely
large since cond(GoA|r) = cond(A|7)*+2. An accurate numerical solution cannot be
obtained if there is any round-off error in A.

5. Examples. Three examples are given in this section to illustrate the computa-
tions of three types of A% All calculations were performed on a PC with MATLAB.

EXAMPLE 5.1. Let A and W be 20 by 10 and 10 by 10 random matrices with en-
tries on [—1,1], respectively. We choose M and N as random symmetric and posi-
tive definite matrices of order 20 and 10, respectively. The stop criterion in (4.5) is
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lAm —Am-1lle < € =10710, Three special cases AT, A;(,,_N, and Ay, are computed in
this example. The choices of G, the number of iterations required and the norm of
errors are listed in Table 5.1.

TABLE 5.1. Newton-Raphson method for AT, AL,N, and Ay -

APy G m 1Am = Am-1lleo I Am - APl
At A* 11 3.25E-14 2.56E-15
Aln N-'A*M 25 1.03E-15 3.09E-15
Adw AWA((WA)*)* WA 36 1.96E-13 1.76E-07

It is remarked that the better accuracy of A, never be achieved and 1.7E-07 is the
best error of [|Ay —Agwlle evenif [[Ay, —Ay-1llo < €=10710is used as a stop crite-
rion. This is because the condition number of GWAW | is as large as 1010, If 2-step
semi-iterative method of (3.25) is applied to compute A(TZ’)S, then {Y,,} converges to At
after 54 iterations. However, the method fails to converge after 1500 iterations in other
two cases because the segments [, 8] containing o (GA|r) are [-187970,0.796] and
[-355800,0.9997], respectively, so that the rate of asymptotic convergence is too
slow.

EXAMPLE 5.2. Let A be 8 by 8 matrix with a complex spectrum given by

3 1 ]

> 3 0 0 0 0 0 0
1
1 1 0 0 0 0 0 0
3 3
-1 -1 7 1 0 0 0 0
-1 -1 —% % 0 0 0 0
A= 3 3 (5.1)
0 0 0 0 1 2 -1 -1
3 3

0 0O -1 O 7 2 -1 -1
1
0 0 0 0 0 0 1 2
1 3

| 0 0 0 0 0 0 3 5 |

In order to compute AP, we choose G = A? since Ind(A) = 2. The spectrum of GA|r,
o(GA|r) = {1.875+0.6741,1.875 +0.6741,3.375,3.375}, is located on the right half-
plane. The foci @ = —2.3 and 8 = —0.5 of an ellipse containing o (I — GA|r) is selected.
It requires 28 iterations of 2-step method of (3.25) to compute AP with the co-norm of
the error less than 10719, As expected, Newton-Raphson algorithm of (4.5) converges
much faster. It achieves the same accuracy with only 8 iterations.
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TABLE 5.2. A(TZ)S of a Toeplitz matrix.

ARy G No. of it. by Newton’s No. of it. by SIM
AT A¥ 10 63

Al N-1A*M 11 75

Adw AWA((WA)*)*W A 31 > 1500

EXAMPLE 5.3. Let v and ¢ be a row vector and column vector, respectively, such
that

Y1 =C = 2.5,

_(DijiG-1)

vi= 16 T for j =2,3,...,16, (5.2)
_ (=D*k _
Ck = 0 fork =2,3,...,10.

A 10x16 complex Toeplitz matrix A is constructed by » and c. The stop criterion is the
same as in Example 5.1. M and N are chosen positive definite diagonal matrix related
to A, and W is a random matrix. The numbers of iterations by Newton’s method and
SIM method for A(TZ)S are shown in Table 5.2.

The data shows that Newton’s method is much faster than that of SIM.
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