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ON THE DIOPHANTINE EQUATION x2 + p2k+1 = 4yn
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It has been proved that if p is an odd prime, y > 1, k > 0, n is an integer greater than or
equal to 4, (n,3h) = 1 where h is the class number of the field Q (,/=p), then the equation
x2 4 p2k+l — 49" hag exactly five families of solution in the positive integers x, y. It is
further proved that when n = 3 and p = 3a? + 4, then it has a unique solution k = 0,
y=a’+1.
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1. Introduction. The purpose of this note is to compute positive integral solutions
of the equation x2 + p2*! = 49" where p is an odd prime and 7 is any integer greater
than or equal to 3. The special case when p = 3 and k = 0 was treated by Nagell [7] and
Ljunggren [3] who proved that this equation has the only solutions y =1 and y =7
with n = 3. Later on, Ljunggren [4, 5], Persson [8], and Stolt [9] studied the general
equation x2 + D = 4y™ and proved that it has a solution under certain necessary
conditions on D. Le [2] and Mignotte [6] proved that the equation D;x? +DJt =4yn
has a finite number of solutions under certain conditions on m and n but did not
compute these solutions. We will prove the following theorem.

THEOREM 1.1. The Diophantine equation

2 2k+1

X“+p =4y", y>1, (1.1)

where p is an odd prime, k > 0, n is an integer greater than or equal to 4, (n,3h) =1,
where h is the class number of the field Q (./—p) has exactly five families of solutions
given in Table 1.1.

TABLE 1.1
p n k X y
7 5 5M 11-7°M 2.72M
7 13 13M 181 713M 2.72M
7 7 M +1 13-77M 2.72M
11 5 5M 31-11°M 3.112M
19 7 7™M 559-197M 5-19°M

We start by the usual method of factorizing in the field Q(.,/=p), then we use a
recent result of Bilu et al. [1], about primitive divisors of a Lucas number.
We start by giving some important definitions.
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DEFINITION 1.2. A Lucas pair is a pair («, ) of algebraic integers, such that &+
B and «f are nonzero coprime rational integers and «/f is not a root of unity.
Given a Lucas pair («,f3), we define the corresponding sequence of Lucas numbers
by un(x,B) = (& —p")/(x—B) (Where n =0,1,2,...).

A prime number p is a primitive divisor of u, («, ) if p divides u,, but does not
divide (&x—B)%u s - - Up_1.

The following result has been proved in [1].
LEMMA 1.3. For n > 30, the nth term of any Lucas sequence has a primitive divisor.

Also in [1], for 5 < n < 30, all values of the pairs («, 8) have been listed for which
the nth term of the Lucas sequence 1, (, ) has no primitive divisors.
We first consider the case when (p,x) = 1 and prove the following theorem.

THEOREM 1.4. Equation (1.1), where n and p satisfy the conditions of Theorem 1.1,
has no solution in the positive integers x when (p,x) =1 except whenp = 7,11, or 19.

PROOF. First suppose that n is an odd integer. Without loss of generality, we can
suppose that n is an odd prime. Factorizing (1.1), we obtain

(PP () e

We can easily verify that the two numbers on the left-hand side are relatively prime
integers in Q (,/—p). So that

x+pk/~p (a+byp\"
- , (1.3)
2 2
where a and b are rational integers such that a = b(mod?2) and 4y = a® + pb?, where
(a,pb) =1.
Let
a:% i a:% VTP (1.4)

Then from (1.3), we get

n_ yn k
(64 x" p

=2 1.
x—& b (1.5)
By equating imaginary parts in (1.3), we can easily conclude from (1.5) that
n_ xn +1 if (p,n) =1,
S (p,n) (1.6)
X—«X +p ifn|p.

It can be verified that («, &) is a Lucas pair as defined earlier and the only positive
prime divisor of the corresponding nth Lucas number

o(n_&n

X—«

Up = (1.7)
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is p which is not a primitive divisor because it divides (x — &)? = pb?. So the Lucas
number defined in (1.7) has no primitive divisors. Using Lemma 1.3 and [1, Table 2],
we deduce that (1.1) has no solutions when n > 13. When 5 < n < 13, again using [1,
Table 2], we find all values of « for which the Lucas number 1, («, ) has no primitive
divisors. We consider each value of n separately.

When n = 13, then « = (1++/=7)/2 which correspondingly gives k = 0, a = 1,
b =1, p =7 and consequently, y = (a® +pb?)/4 = 2, x = 181 is the only solution of
the equation x? + p2k*+1 = 4y13,

When n = 11, there is no « for which 11 (, &) has no primitive divisors and so no
solution of (1.1).

When n = 7, the values of « for which u;(«x, &) has no primitive divisors, are « =
(1++/~7)/2,(1++/—19)/2 which give y = 2 as a solution of x> +73 =4y7 (x = 13)
and y = 5 as asolution of x2+19 =4y7 (x = 559). Similarly, for n = 5, we get y = 2 as
a solution of x2+7 =4y° (x =11) and y = 3 as a solution of x2+11 =4y° (x = 31).

Now we will prove that there is no solution for (1.1) when n is even. It suffices to
consider that n = 4.

Factorizing x2 + p2**1 = 434, we get

(2y%+x) - (2y? —x) = p?k+L. (1.8)

Since (p,x) = (p,y) =1, then

2924 x =ptl 297 _x=1 (1.9)
which gives 4y?2 = p2k+1 1 1, This can easily be checked to have no solution with y > 1.
O

PROOF OF THEOREM 1.1. Suppose that p | x. Let x = p*x;, y = p*y1, where
(x1,p) = (1,p) =1 and A,u > 1. Substituting in (1.1), we get
p - x? 4 pktl = 4pnH . yn, (1.10)
We have the following three cases.
CASE 1. If 2A =min(2A,2k+1,nu), then

x2 4 pPk-2A1 _ gpnu-2 yn (1.11)

This equation is impossible modulo p unless nu —2A = 0, and then we get x? +
p2k=V+l = 491 where (x1,p) = (y1,p) = 1. According to Theorem 1.4, this equa-
tion has no solution for all n > 4 except when n =13,7,5, k=A,and n=7,k=A+1.
Accordingly, when n = 13, we have 13u = 2A, then A = 13M, u = 2M and so the
solutions of (1.1) are p = 7, x = 181-713M 1, = 2.72M Similarly, considering n = 5,7,
we get exactly the families of solutions given in the statement of Theorem 1.1.
CASE 2. If 2k+1 =min(2A,2k + 1,nu), then

2A-2k-1

p X+ 1 =4pmHkelyn, (1.12)

This equation is known to have no solution [7].



698 S. A. ARIF AND A. S. AL-ALI
CASE 3. If nu =min(2A,2k+ 1,nu), then
p2A L x4 pPk Lo — gy (1.13)

This equation is possible only if 2A —nu =0 or 2k+1—nu = 0. If 2A —nu =0, we get
x2 4+ p2k-D+1 = 491 which is an equation of the same form as considered in Case 1.

If 2k +1—nu = 0, we get p(p* %1 .x1)%2 +1 = 4y, which is known to have no
solution [6]. This completes the proof of Theorem 1.1. O

NOTE 1.5. When n = 3, factorizing (1.1), we get

(1.14)

x+3k/=3 <a+b\/—3)3
2 - ¢ 2 :

k — — 3
X“’ZV p:(‘“bzv ”), p+3, 1.15)

where € = w or w? and w is a cube root of unity. From (1.14), we easily deduce that
k=0and y =1 and 7 are the only solutions as proved in [3]. We treat (1.15) by the
same way as before by taking « = (a+b./=p)/2 and & = (a—b,/—=p)/2, so we get
(o3 —&3)/(x— &) = +1. It can be easily proved that («, &) is a Lucas pair as defined
above. Using [1, Table 2], we find the following two values of « for which the Lucas
number u3(x, &) has no primitive divisors:

m++/+4-3m?
K m>1,
X = P I (1.16)
+4 . —
miv= > m , m#0(mod3),

where (k,m) + (1,2).

The first value of « gives b = 1, k = 0 and consequently, p = 3a®+4, y =a?+1, and
x = a(2a® +3) is the solution of (1.1) with n = 3. No solution is found for the second
value of « since p # 3. Hence, we have the following theorem.

THEOREM 1.6. The Diophantine equation

x2+p?l =4y, (px) =1 1.17)
has the only solutions k = 0 and v =1 and 7 when p = 3. When p is a prime greater
than 3, such that (3,h) = 1, where h is the class number of the field Q(./—p), then
it has solutions only if p = 3a® + 4, and then the solution is k = 0, y = a® + 1, and
x=a(a?+3).
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