

ON THE DIOPHANTINE EQUATION $x^2 + p^{2k+1} = 4y^n$

S. AKHTAR ARIF and AMAL S. AL-ALI

Received 12 June 2001

It has been proved that if p is an odd prime, $y > 1$, $k \geq 0$, n is an integer greater than or equal to 4, $(n, 3h) = 1$ where h is the class number of the field $Q(\sqrt{-p})$, then the equation $x^2 + p^{2k+1} = 4y^n$ has exactly five families of solution in the positive integers x , y . It is further proved that when $n = 3$ and $p = 3a^2 \pm 4$, then it has a unique solution $k = 0$, $y = a^2 \pm 1$.

2000 Mathematics Subject Classification: 11D61.

1. Introduction. The purpose of this note is to compute positive integral solutions of the equation $x^2 + p^{2k+1} = 4y^n$, where p is an odd prime and n is any integer greater than or equal to 3. The special case when $p = 3$ and $k = 0$ was treated by Nagell [7] and Ljunggren [3] who proved that this equation has the only solutions $y = 1$ and $y = 7$ with $n = 3$. Later on, Ljunggren [4, 5], Persson [8], and Stolt [9] studied the general equation $x^2 + D = 4y^n$ and proved that it has a solution under certain necessary conditions on D . Le [2] and Mignotte [6] proved that the equation $D_1x^2 + D_2^m = 4y^n$ has a finite number of solutions under certain conditions on m and n but did not compute these solutions. We will prove the following theorem.

THEOREM 1.1. *The Diophantine equation*

$$x^2 + p^{2k+1} = 4y^n, \quad y > 1, \quad (1.1)$$

where p is an odd prime, $k \geq 0$, n is an integer greater than or equal to 4, $(n, 3h) = 1$, where h is the class number of the field $Q(\sqrt{-p})$ has exactly five families of solutions given in Table 1.1.

TABLE 1.1

p	n	k	x	y
7	5	$5M$	$11 \cdot 7^{5M}$	$2 \cdot 7^{2M}$
7	13	$13M$	$181 \cdot 7^{13M}$	$2 \cdot 7^{2M}$
7	7	$7M + 1$	$13 \cdot 7^{7M}$	$2 \cdot 7^{2M}$
11	5	$5M$	$31 \cdot 11^{5M}$	$3 \cdot 11^{2M}$
19	7	$7M$	$559 \cdot 19^{7M}$	$5 \cdot 19^{2M}$

We start by the usual method of factorizing in the field $Q(\sqrt{-p})$, then we use a recent result of Bilu et al. [1], about primitive divisors of a Lucas number.

We start by giving some important definitions.

DEFINITION 1.2. A Lucas pair is a pair (α, β) of algebraic integers, such that $\alpha + \beta$ and $\alpha\beta$ are nonzero coprime rational integers and α/β is not a root of unity. Given a Lucas pair (α, β) , we define the corresponding sequence of Lucas numbers by $u_n(\alpha, \beta) = (\alpha^n - \beta^n)/(\alpha - \beta)$ (where $n = 0, 1, 2, \dots$).

A prime number p is a primitive divisor of $u_n(\alpha, \beta)$ if p divides u_n , but does not divide $(\alpha - \beta)^2 u_1 u_2 \cdots u_{n-1}$.

The following result has been proved in [1].

LEMMA 1.3. For $n > 30$, the n th term of any Lucas sequence has a primitive divisor.

Also in [1], for $5 \leq n \leq 30$, all values of the pairs (α, β) have been listed for which the n th term of the Lucas sequence $u_n(\alpha, \beta)$ has no primitive divisors.

We first consider the case when $(p, x) = 1$ and prove the following theorem.

THEOREM 1.4. Equation (1.1), where n and p satisfy the conditions of Theorem 1.1, has no solution in the positive integers x when $(p, x) = 1$ except when $p = 7, 11$, or 19 .

PROOF. First suppose that n is an odd integer. Without loss of generality, we can suppose that n is an odd prime. Factorizing (1.1), we obtain

$$\left(\frac{x + p^k \sqrt{-p}}{2} \right) \cdot \left(\frac{x - p^k \sqrt{-p}}{2} \right) = y^n. \quad (1.2)$$

We can easily verify that the two numbers on the left-hand side are relatively prime integers in $Q(\sqrt{-p})$. So that

$$\frac{x + p^k \sqrt{-p}}{2} = \left(\frac{a + b\sqrt{-p}}{2} \right)^n, \quad (1.3)$$

where a and b are rational integers such that $a \equiv b \pmod{2}$ and $4y = a^2 + pb^2$, where $(a, pb) = 1$.

Let

$$\alpha = \frac{a + b\sqrt{-p}}{2}, \quad \bar{\alpha} = \frac{a - b\sqrt{-p}}{2}. \quad (1.4)$$

Then from (1.3), we get

$$\frac{\alpha^n - \bar{\alpha}^n}{\alpha - \bar{\alpha}} = \frac{p^k}{b}. \quad (1.5)$$

By equating imaginary parts in (1.3), we can easily conclude from (1.5) that

$$\frac{\alpha^n - \bar{\alpha}^n}{\alpha - \bar{\alpha}} = \begin{cases} \pm 1 & \text{if } (p, n) = 1, \\ \pm p & \text{if } n \mid p. \end{cases} \quad (1.6)$$

It can be verified that $(\alpha, \bar{\alpha})$ is a Lucas pair as defined earlier and the only positive prime divisor of the corresponding n th Lucas number

$$u_n = \frac{\alpha^n - \bar{\alpha}^n}{\alpha - \bar{\alpha}} \quad (1.7)$$

is p which is not a primitive divisor because it divides $(\alpha - \bar{\alpha})^2 = pb^2$. So the Lucas number defined in (1.7) has no primitive divisors. Using [Lemma 1.3](#) and [1, Table 2], we deduce that (1.1) has no solutions when $n > 13$. When $5 \leq n \leq 13$, again using [1, Table 2], we find all values of α for which the Lucas number $u_n(\alpha, \beta)$ has no primitive divisors. We consider each value of n separately.

When $n = 13$, then $\alpha = (1 + \sqrt{-7})/2$ which correspondingly gives $k = 0$, $a = 1$, $b = 1$, $p = 7$ and consequently, $y = (a^2 + pb^2)/4 = 2$, $x = 181$ is the only solution of the equation $x^2 + p^{2k+1} = 4y^{13}$.

When $n = 11$, there is no α for which $u_{11}(\alpha, \bar{\alpha})$ has no primitive divisors and so no solution of (1.1).

When $n = 7$, the values of α for which $u_7(\alpha, \bar{\alpha})$ has no primitive divisors, are $\alpha = (1 + \sqrt{-7})/2, (1 + \sqrt{-19})/2$ which give $y = 2$ as a solution of $x^2 + 7^3 = 4y^7$ ($x = 13$) and $y = 5$ as a solution of $x^2 + 19 = 4y^7$ ($x = 559$). Similarly, for $n = 5$, we get $y = 2$ as a solution of $x^2 + 7 = 4y^5$ ($x = 11$) and $y = 3$ as a solution of $x^2 + 11 = 4y^5$ ($x = 31$).

Now we will prove that there is no solution for (1.1) when n is even. It suffices to consider that $n = 4$.

Factorizing $x^2 + p^{2k+1} = 4y^4$, we get

$$(2y^2 + x) \cdot (2y^2 - x) = p^{2k+1}. \quad (1.8)$$

Since $(p, x) = (p, y) = 1$, then

$$2y^2 + x = p^{2k+1}, \quad 2y^2 - x = 1 \quad (1.9)$$

which gives $4y^2 = p^{2k+1} + 1$. This can easily be checked to have no solution with $y > 1$. \square

PROOF OF THEOREM 1.1. Suppose that $p \mid x$. Let $x = p^\lambda x_1$, $y = p^\mu y_1$, where $(x_1, p) = (y_1, p) = 1$ and $\lambda, \mu \geq 1$. Substituting in (1.1), we get

$$p^{2\lambda} \cdot x_1^2 + p^{2k+1} = 4p^{n\mu} \cdot y_1^n. \quad (1.10)$$

We have the following three cases.

CASE 1. If $2\lambda = \min(2\lambda, 2k+1, n\mu)$, then

$$x_1^2 + p^{2k-2\lambda+1} = 4p^{n\mu-2\lambda} \cdot y_1^n. \quad (1.11)$$

This equation is impossible modulo p unless $n\mu - 2\lambda = 0$, and then we get $x_1^2 + p^{2(k-\lambda)+1} = 4y_1^n$, where $(x_1, p) = (y_1, p) = 1$. According to [Theorem 1.4](#), this equation has no solution for all $n \geq 4$ except when $n = 13, 7, 5$, $k = \lambda$, and $n = 7$, $k = \lambda + 1$.

Accordingly, when $n = 13$, we have $13\mu = 2\lambda$, then $\lambda = 13M$, $\mu = 2M$ and so the solutions of (1.1) are $p = 7$, $x = 181 \cdot 7^{13M}$, $y = 2 \cdot 7^{2M}$. Similarly, considering $n = 5, 7$, we get exactly the families of solutions given in the statement of [Theorem 1.1](#).

CASE 2. If $2k+1 = \min(2\lambda, 2k+1, n\mu)$, then

$$p^{2\lambda-2k-1} \cdot x_1^2 + 1 = 4p^{n\mu-2k-1} \cdot y_1^n. \quad (1.12)$$

This equation is known to have no solution [7].

CASE 3. If $n\mu = \min(2\lambda, 2k+1, n\mu)$, then

$$p^{2\lambda-n\mu} \cdot x_1^2 + p^{2k+1-n\mu} = 4y_1^n. \quad (1.13)$$

This equation is possible only if $2\lambda - n\mu = 0$ or $2k+1 - n\mu = 0$. If $2\lambda - n\mu = 0$, we get $x_1^2 + p^{2(k-\lambda)+1} = 4y_1^n$, which is an equation of the same form as considered in [Case 1](#).

If $2k+1 - n\mu = 0$, we get $p(p^{\lambda-k-1} \cdot x_1)^2 + 1 = 4y_1^n$, which is known to have no solution [6]. This completes the proof of [Theorem 1.1](#). \square

NOTE 1.5. When $n = 3$, factorizing (1.1), we get

$$\frac{x + 3^k \sqrt{-3}}{2} = \varepsilon \left(\frac{a + b\sqrt{-3}}{2} \right)^3, \quad (1.14)$$

$$\frac{x + p^k \sqrt{-p}}{2} = \left(\frac{a + b\sqrt{-p}}{2} \right)^3, \quad p \neq 3, \quad (1.15)$$

where $\varepsilon = \omega$ or ω^2 and ω is a cube root of unity. From (1.14), we easily deduce that $k = 0$ and $y = 1$ and 7 are the only solutions as proved in [3]. We treat (1.15) by the same way as before by taking $\alpha = (a + b\sqrt{-p})/2$ and $\bar{\alpha} = (a - b\sqrt{-p})/2$, so we get $(\alpha^3 - \bar{\alpha}^3)/(\alpha - \bar{\alpha}) = \pm 1$. It can be easily proved that $(\alpha, \bar{\alpha})$ is a Lucas pair as defined above. Using [1, Table 2], we find the following two values of α for which the Lucas number $u_3(\alpha, \bar{\alpha})$ has no primitive divisors:

$$\alpha = \begin{cases} \frac{m + \sqrt{\pm 4 - 3m^2}}{2}, & m > 1, \\ \frac{m + \sqrt{\pm 4 \cdot 3^k - 3m^2}}{2}, & m \not\equiv 0 \pmod{3}, \end{cases} \quad (1.16)$$

where $(k, m) \neq (1, 2)$.

The first value of α gives $b = 1$, $k = 0$ and consequently, $p = 3a^2 \pm 4$, $y = a^2 \pm 1$, and $x = a(2a^2 \pm 3)$ is the solution of (1.1) with $n = 3$. No solution is found for the second value of α since $p \neq 3$. Hence, we have the following theorem.

THEOREM 1.6. *The Diophantine equation*

$$x^2 + p^{2k+1} = 4y^3, \quad (p, x) = 1 \quad (1.17)$$

has the only solutions $k = 0$ and $y = 1$ and 7 when $p = 3$. When p is a prime greater than 3, such that $(3, h) = 1$, where h is the class number of the field $Q(\sqrt{-p})$, then it has solutions only if $p = 3a^2 \pm 4$, and then the solution is $k = 0$, $y = a^2 \pm 1$, and $x = a(2a^2 \pm 3)$.

REFERENCES

- [1] Y. Bilu, G. Hanrot, and P. M. Voutier, *Existence of primitive divisors of Lucas and Lehmer numbers*, J. reine angew. Math. **539** (2001), 75–122.
- [2] M. H. Le, *On the Diophantine equation $D_1x^2 + D_2^m = 4y^n$* , Monatsh. Math. **120** (1995), no. 2, 121–125.
- [3] W. Ljunggren, *Einige Bemerkungen über die Darstellung ganzer Zahlen durch binäre kubische Formen mit positiver Diskriminante*, Acta Math. **75** (1943), 1–21 (German).

- [4] ———, *On the Diophantine equation $x^2 + D = 4y^q$* , Monatsh. Math. **75** (1971), 136–143.
- [5] ———, *New theorems concerning the Diophantine equation $x^2 + D = 4y^q$* , Acta Arith. **21** (1972), 183–191.
- [6] M. Mignotte, *On the Diophantine equation $D_1x^2 + D_2^m = 4y^n$* , Portugal. Math. **54** (1997), no. 4, 457–460.
- [7] T. Nagell, *Des équations indéterminées $x^2 + x + 1 = y^n$ et $x^2 + x + 1 = 3y^n$* , Norsk Mat. Forenings Skr., Ser. I (1921), no. 2, 1–14.
- [8] B. Persson, *On a Diophantine equation in two unknowns*, Ark. Mat. **1** (1949), 45–57.
- [9] B. Stolt, *Die Anzahl von Lösungen gewisser diophantischer Gleichungen*, Arch. Math. **8** (1957), 393–400 (German).

S. AKHTAR ARIF: DEPARTMENT OF MATHEMATICS, GIRLS COLLEGE OF EDUCATION, P.O. BOX 22171, RIYADH 11495, SAUDI ARABIA

E-mail address: sarif5@hotmail.com

AMAL S. AL-ALI: DEPARTMENT OF MATHEMATICS, GIRLS COLLEGE OF EDUCATION, P.O. BOX 56778, RIYADH 11564, SAUDI ARABIA

E-mail address: amal1422h@yahoo.com

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	March 1, 2009
First Round of Reviews	June 1, 2009
Publication Date	September 1, 2009

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru