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1. Introduction. Let s, denote the class of functions of the form

f(z)=2zF+ Zan+pz"“’ (peN=1{1,2,...}) (1.1)

n=1

which are analytic in the open unit disk U = {z: |z| < 1}. A function f € ,, is said to
be p-valently starlike of order « in U, if it satisfies

zf'(2) )
Re{ 2 }>(x O=ax<p; zeu). (1.2)

We denote this class by ¢} (x). A function f € s, is said to be p-valently convex of
order « in U, if it satisfies

zf"(z) )
Re{1+ (2) }>0( O=ax<p; zeu). (1.3)

The class of p-valently convex functions of order « is denoted by J, (). It follows
from (1.2) and (1.3) that

FedH, (o) = Z:: €Y, (). (1.4)
Further, a function f € s, is said to be p-valently close-to-convex of order f and type

«, if there exists a function g € ¥, (&) such that

Re {Zf’(z)
g(z)

}>B O=a,B<p; zeWU). (1.5)

It is well known (see [10]) that every p-valently close-to-convex function is p-valent
in AU.

For arbitrary fixed real numbers A and B (-1 < B < A < 1), let ?(A,B) denote the
class of functions of the form

P(z)=1+ciz+c2z%+--- (1.6)
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which are analytic in U and satisfies the condition

1+Az
1+Bz

P(z) < (zew), 1.7)
where the symbol < stands for subordination. The class (A, B) was introduced and
studied by Janowski [8].
We note that a function ¢ € ?(A,B), if and only if
1-AB - A-B
1-B2 1-RB2

Re{¢p(2)} > % (B=-1, z€W).

P(z)— (B+-1, zea),

(1.8)

For a function f € «, given by (1.1), the generalized Bernardi-Libera-Livingston
integral operator F [1] is defined by

_YEP (7
Fz)= L2 JO -1 F () dt

o 1.9
=zp+g%an+p2"*” (y>-p; z€Ww). o
It readily follows from (1.9) that
fed, =Fed,. (1.10)
Let
¢pla,c;z) = i %z””’ (c+0,-1,-2,...; z€W), (1.11)
(Y
and we define a linear operator L, (a,c) on s, by
Ly(a,c)f(z) = ppla,c;z)x f(z) (zeU), (1.12)

where (x), =T'(n+x)/I'(x) and the symbol * is the Hadamard product or convolu-
tion. Clearly, L,(a,c) maps ¥, into itself. Further, L,(a,a) is the identity operator
and

Ly(a,c) =Ly(a,b)L,(b,c)=Ly(b,c)Ly(a,b) (b,c+0,-1,-2,...). (1.13)
Thus, if a # 0,-1,-2,..., then L,(a,c) has an inverse L, (c,a). We also observe that
for f € sy,

_zf'(z) _ putp-1
Ly(p+Lp)f(2) = =50 Ly p, D f(2) =Dl f (), (1.14)

where u (u > —p) is any real number. In case of p = 1 and u € N, D¥ f(z) is the
Ruscheweyh derivative [14]. The operator L,(a,c) was introduced and studied by
Saitoh and Nunokawa [15]. This operator is a generalization of the linear operator
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L(a,c) introduced by Carlson and Shaffer [3] in their systemic investigation of certain
classes of starlike, convex, and prestarlike hypergeometric functions.

In the present paper, we give some argument properties of certain class of analytic
functions in s, involving the linear operator L,(a,c). An application of a certain
integral operator is also considered. The results obtained here, besides extending the
works of Bulboaca [2], Chichra [4], Cho et al. [5], Fukui et al. [6], Libera [9], Nunokawa
[13], and Sakaguchi [16], it yields a number of new results.

2. Main results. To establish our main results, we need the following lemmas.

LEMMA 2.1 [11]. Let h(z) be convex (univalent) in U and let Y (z) be analytic in U
with Re{y(z)} = 0. If ¢p(z) is analytic inU and ¢ (0) = @ (0), then

b(2)+y(2)z¢p'(z) <h(z) (zeW) (2.1)
implies
¢(z) <h(z) (zeW). (2.2)

LEMMA 2.2 [12]. Let ¢p(z) be analytic in U, ¢(0) = 1, ¢p(z) + 0 in U and suppose
that there exists a point zy € AU such that

largp(2)| < 5 (12l < |z0]),

- (2.3)
|argp(zo) | = ETI,
where n > 0. Then
zod'(z0) .
— - =ikn, (2.4)
¢ (z0) 1
where
k>1(d+l) when arg b (zo) =
=2 d en arg 20) = 2 n,
1 1 (2.5)
T
k < —§<d+ E) when arg ¢ (zo) = =5
where
P(z0)"" = xid (d>0). (2.6)

We now derive the following theorem.

THEOREM 2.3. Leta >0,-1<B<A<1, fed,, and suppose that g € si, satisfies

L,(a+1,0)g(z) - 1+Az
Ly(a,c)g(z) 1+Bz

(zew). (2.7)

If

arg{(l_/\)Lp(a,c)f(z) Ly(a+1,0)f(2) _BH

Ly(a,c)g(z) * Ly(a+1,c)g(z) 2.8)

<g(5 A=20;0<B<1;0<6=<1;zeU),
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then

‘ar {Lp(a,af(z)

e
L, (@,0)9(2) —BH <En (zea), (2.9)

where n (0 < n < 1) is the solution of the equation

2. Ansin(rr/2)(1—t(A,B)) B
st mEm {aﬂ+AHU+BHﬁnmﬁnﬁNl—ﬂABﬂ}’ﬂWBi L
n, forB=-1,
(2.10)
when
2 [A-B
t(A,B)—_’Tsm (1—AB>' (2.11)
PROOE. Let
L@@ _ g\ (g, (2.12)

Ly(a,c)g(z)

Then ¢(z) is analytic in AU with ¢ (0) = 1. On differentiating both sides of (2.12) and
using the identity

z(Ly(a,c)f(2)) =aL,(a+1,¢c)f(z)—(a—-p)Ly(a,c)f(z) (2.13)

in the resulting equation, we deduce that

Ly(a,0)f(z) Ly(a+l,o)f(z) , - Azp'(2)
(17A)Lp(a,6)g(2) +/\Ly(a+ 1,0)g(z) —h=0 B){d)(z) T Tarz) } (2.14)
where
_Ly(a+1,c)g(2)
"B = @ea() (2.15)
If we let
¥(z) = pe™OAE (2.16)
then from (2.7) followed by (1.8), it follows that
1-A cp< 1+A
1-8 P~ 14 2.17)
—t(A,B) <0 <t(A,B) forB=+-1,
when t(A,B) is given by (2.11), and
1-A
<p < oo,
2 (2.18)

-1<60<1 forB=-1.
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Let h(z) be the function which maps onto the angular domain {w : |arg{w}| < (11/2)d}
with h(0) = 1. Applying Lemma 2.1 for this h(z) with ¢(z) = A/(ar(z)), we see that
Re¢(z) > 0 in U and hence ¢p(z) # 0 in .

If there exists a point zy € AU such that conditions (2.3) are satisfied, then by
Lemma 2.2 we obtain (2.4) under restrictions (2.5) and (2.6).

At first, suppose that p(z9)'/" = id (d > 0). For the case B # —1, we obtain

Lp(a,0)f(z0) \Lp(a+1,c)f(z0) B}

arg{(l}\)Lp(a,c)g(zo) Ly(a+1,¢)g(z0)

A Zo¢'(20)}
ar(zo) ¢(20)

- ‘ o (m0/2)i
= En +arg{1 +1nkz\p—a}

=arg¢(zo) +arg{l +

(2.19)

. +tan-! Anksin(mr/2)(1-0)

T TR A Ankcos(r/2)(1- 0)
™ 3 Ansin(mr/2)(1-t(A,B))

=5 n+tan {a(1+A)/(1+B)+2\ncos(rr/2)(1—t(A,B))
T

= 55,

where 6 and t (A, B) are given by (2.10) and (2.11), respectively. Similarly, for the case
B = -1, we have

>

o

Ly(a,c)f(zo) Ly(a+1,¢)f(z0) —B} n (2.20)

arg{(l ML @og) L@ Log()

This is a contradiction to the assumption of our theorem.
Next, suppose that ¢(zg)!/7 = —id (d > 0). For the case B # —1, applying the same
method as above, we have

Ly(a,c)f(zo0) ,Lpla+1,c)f(z0)
arg{(l_/\)L,,(a,c)g(zo) Ly(a+1,c)g(zo) _B}
s 1 Ansin(mr/2)(1-t(A,B)) (2.21)
<-—n-tan
2 a(l+A)/(1+B)+Ancos(mr/2)(1-t(A,B))
< —Eé,
2

where 6 and t (A, B) are given by (2.10) and (2.11), respectively and for the case B = —1,
we have

Lp(a,0)f(20) , \ Lp(a+1,c)f(z0) —B) < Ty
=72

2.22
Ly(a,c)g(zo) Ly(a+1,c)g(zo) ( )

arg ((1 -A)

which contradicts the assumption. Therefore we complete the proof of the theorem.
O
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REMARK 2.4. Fora=c=p, A=1,B = -1, and A = 1, Theorem 2.3 is the recent
result obtained by Nunokawa [13].

Takinga =u+p (u>-p),c=1,A=1, and B = 0 in Theorem 2.3, we have the
following corollary.

COROLLARY 2.5. If f € sl, satisfies

DH+P=Lf(z) DHP f(z)
arg{(l—?\) pp—1 u+p -8
D 9(2) Drirg(z) (2.23)
<g(5 (A=20;0<0=<1;0=<B<1;z€U)
for some g € dA,, satisfying the condition
DHPg(z) _
’W*1’<(X O<ax=<1; zew), (2.24)
then
DH+P=1£(Z) e
arg{wlg(z) < EI’] (zew), (2.25)
where n (0 < n < 1) is the solution of the equation
; Cein-1
6:r)+gtan’1 Ansin (11/2 —sin™* «) - . (2.26)
0 (u+p)(1+a)+Ancos(mm/2—sin"" «)

Letting B— A (A < 1) and g(z) = z” in Theorem 2.3, we get the following corollary.

COROLLARY 2.6. If f € s, satisfies

arg{(l_/\)Lp(a,c)f(z) Ly Lela+Lof (@) _BH
zpP zP
(2.27)
<gé (a>0;A>20;0=<B<1;0<6<1; z€W),
then
arg{L’”(a'C)f(Z),B} <y (zew), (2.28)
zP 2
where n (0 < n < 1) is the solution of the equation
S=n+ Etan‘1 {A_n} (2.29)
T a

COROLLARY 2.7. Under the hypothesis of Corollary 2.6, we have

larg (H'(2) - B} | < =0 (zew, (2.30)
2
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where the function H(z) is defined in AU by

ZLp(a,c)f(t) at

H(z) =J0 e (2.31)

and n (0 <n < 1) is the solution of (2.29).

REMARK 2.8. Taking a =c=p, A =1, and B =0 in Corollary 2.6, a = ¢ = p and
B =0 in Corollary 2.7, we get the corresponding results obtained by Cho et al. [5].

Setting A=1-(«/p) (0<x<p),B=-1,and 6 =1 in Theorem 2.3, we have the
following corollary.

COROLLARY 2.9. Leta >0, f € sy, and g € ¥ (x). If

Ly(a,c)f(z) +;\L"’(a+ 1,¢)f(z2)
Ly(a,c)g(z) Ly(a+1,c)g(z)

Re{(l—)\) }>B A=20;0<B<1;zew), (2.32)

then

R {Ln(a,c)f(z)

Lp(a’c)g(z)} >B (zew). (2.33)

REMARK 2.10. Fora =c =p =1 and « = 0, Corollary 2.9 is the result by Bulboaca
[2l.Ifweputa=c=p =1,B=0,and g(z) = zin Corollary 2.9, then we have the result
due to Chichra [4]. Further, taking a = ¢ = p, A = 1, and &« = B = 0 in Corollary 2.9, we
get the corresponding results of Libera [9] and Sakaguchi [16].

THEOREM 2.11. If f € A, satisfies

arg{]“”(%p)f(z)—ﬁ}‘<g6 (0<B<1;0<6=<1;z€eU), (2.34)

then

Ziy-1
arg{(y+p)f0 tY 1L, (a,c) f(t)dt

™
pororee —BH <5n O<y+p;zeu), (2.35)

where n (0 < n < 1) is the solution of the equation

5= n+2tan1{ n } (2.36)
m y+p

PROOF. Consider the function ¢ (z) defined in AU by

(y+p) g " Lp(a,c)f(H)dt
ZY+p -

Then ¢(z) is analytic in U with ¢(0) = 1. Differentiating both sides of (2.37) and
simplifying, we get

B+(1-B)P(z). (2.37)

LV (a! C)f(Z)
zp B

32(1_3){¢(2)+z¢'(z))§_ (2.38)

y+p

Now, by using Lemma 2.1 and a similar method in the proof of Theorem 2.3, we get
(2.35). O
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Takinga=p+1,c=p,B=p/p,and 6 =1 in Theorem 2.11, we have the following
corollary.

COROLLARY 2.12. If f € s, satisfies

Re{fp(_zl)}>p (0=p<p;zew), (2.39)
then
arg{ y+p) fozzf/:lf/(t)dt p} ’ <Tn zew, (2.40)
where n (0 < n < 1) is the solution of the equation
n+ Etan’l{ n } "y (2.41)
T y+p

THEOREM 2.13. If f € ¢, satisfies

arg{Lv(aH,C)f(Z) _a—v—y}

<g6 (a>0;p+y>0;0<6<1; zen),
(2.42)

Lp(a,c)f(z)

then

ZYLP (a,c)f(z) s
arg{fozty_llp(a,c)f(t)dt}' <5n (zew, (2.43)

where n (0 < n < 1) is the solution of (2.36).

PROOF. Our proof of Theorem 2.13 is much akin to that of Theorem 2.3. Indeed,
in place of (2.37), we define the function ¢(z) by
zVLp(a,c) f(z)

(y+p)Jo tV1Ly(a,c) f(t)dt

P(z) = (zew), (2.44)

and apply Lemma 2.1 (with ¢/(z) = 1/(y +p)) as before. We choose to skip the details
involved. U
Setting a = ¢ = p and § = 1 in Theorem 2.13, we obtain the following corollary.

COROLLARY 2.14. If f € s, satisfies

zf'(2) _
Re{ 2 }>—y (y+p>0; zew), (2.45)
then
_2f@ |.m
arg{ﬁft’/lf(t)dtH <5n (zew, (2.46)

where n (0 < n < 1) is the solution of (2.41).
Replacing f(z) by zf'(z)/p in Corollary 2.14, we deduce the following corollary.
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COROLLARY 2.15. If f € ¢, satisfies

Re{1+zjséz))}>—y (y+p>0; zea), (2.47)
then
2f'(z) g
'arg{ﬂz)(y/zmgty-lfmdt} <" eV (249

where n (0 < n < 1) is the solution of (2.41).
By setting y = 0 in Corollary 2.15, we have the following corollary.

COROLLARY 2.16. If f € 5, (0), then

zf'(z)
o 2|

where n (0 < n < 1) is the solution of the equation:

< gn (zew), (2.49)

n+£tan’1{ﬂ} - 1. (2.50)
0 p

Similarly, we have the following theorem.
THEOREM 2.17. If f € s, satisfies

‘ arg{L,g(a+ 1,0)f(z)

T
L (@) f(2) _BH<§6 (a>0;0=B<1;0<6<1;z€ewU), (2.51)

then
Ly(a,c)f(z) T
arg{zp} <§r] (zew), (2.52)
where n (0 < n < 1) is the solution of the equation
2o )
0= - tan d-pal (2.53)

THEOREM 2.18. Let f € i, and suppose that

B<AsB+p(17_B) (a>0; -1<B<A<1). (2.54)
If
L Lya+1,0f(2) | (Lpa+1,0)f(2) }'
arg{(l VL @os TN L@ogz) P

(2.55)
<g(5 (A=20;0<B<1;0<6=<1;zeU),
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for some g € s, satisfying

Ly(a+1,c)g(z) 1+Az

L,(a,0)g(z)  1+Bz (zew, (2.56)
then
Ly(a+1,0)f(2) g
v {W‘B} <5 (e, (2.57)

where n (0 < n < 1) is the solution of the equation

Ansin(m/2)(1-t(A,B))

= -1 B
P {(v(1+B)+a(A—B))/(1+B)+2\ncos(Tr/2)(1—t(A,B))}' for B+ -1,
m, for B=-1,
(2.58)
when
_ 2 a(A-B)
t(A,B)—Trsm <p(1—B2)—aB(A—B))' (2.59)
PROOF. Let
L, (@,0)9(2) =B+(1-Bp(z), 7r(z)= L@ogz (2.60)
we have
Iplatl,o)f(z) (Lp(a+1,c)f(z))'_ o { ?\zcl)(z)}
(= Ly(a,c)g(z) i (Ly(a+1,0)g(2)) B=01-H ¢(Z)+ar(z)+p_a :
(2.61)

The remaining part of the proof of Theorem 2.18 is similar to that of Theorem 2.3. So
we omit the details. O

Puta=c=p,A=1,A=«/p, and B = 0 in Theorem 2.18, we have the following
corollary.

COROLLARY 2.19. If f € ¢, satisfies

(zf'(2)
s L5 o]

<%5 (0<B<p;0<5<1;zeU), (2.62)

for some g € dA, satisfying the condition

‘ zg'(z)

9(2) —p.<¢x O<ux=sp; zewu), (2.63)
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then

zf'(z)
w5

where n (0 < n < 1) is the solution of the equation

<gn (zew), (2.64)

o2 nsin (/2 —sin™! (x/p))
6—n+ntan {p+o<+ncos(7r/2—sin1(0(/p))}' (2.65)
LEMMA 2.20. Let
_ 3 _
(X_§+y+p+a‘g” (0<(a-1)/a<&<ux<1) (2.66)
and the function G(z) be defined by
_YHP (7
G(z)= g JO trlgtydt (geddy) (2.67)
fory> (a&+(p+1-a)§—p)/(1-8).If g € A, satisfies
Ly(a+1,c)g(z) B
‘ —Lp(a,c)g(z) 1‘ <x (zeaw), (2.68)
then
Ly(a+1,0)G(2)
PROOF. Defining the function w(z) by
Ly(a+1,0)G(2) B
—Lp(a,c)G(z) =1+&w(z), (2.70)
we see that w(z) is analytic in U with w(0) = 0. Now, using the identities
z(Ly(a,c)G(2)) =al,(a+1,c)G(z) — (a-p)Ly(a,c)G(2), (2.71)
2(Lp(a,0)G(2)) = (y +p)Lp(a,c)g(2) -~ yLy(a,c)G(2) (2.72)
in (2.70), we get
Ly(a,c)G(z) B Yy+p 2.73)

Lp(a,0)g(z) y+p+akw(z)’

Making use of the logarithmic differentiation of both sides of (2.73) and using identity
(2.71) for both g(z) and f(z) in the resulting equation, we deduce that

Ly(a+1,c)g(z) -
Ly(a,c)g(z)

zw'(z)
y+tp+agw(z) |’

1‘=§Mua+ (2.74)
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We assume that there exists a point zg € U such that max|;|<|z, lw(2)| = |lw(zo)| = 1.
Then by Jack’s lemma [7], we have zow’'(z¢) = kw (z9) (k = 1). Let w(zg) = e'?, and
apply this result to w(z) at zo € U, we get

k

Ly(a+1,¢)g(zo)
y+p+a&et?

L, (@,0)g(z0) _1‘ _g‘“

(2.75)

£ (y+p+k)2+2a&(y+p+k)cosO+(a&)? 1z
B (Yy+p)2+2a&(y+p)cosO+(af)?

Since the right side of (2.75) is decreasing for 0 < 0 < 2w and y > {a&+(p+1-a)§ -
p}/(1-§), we obtain

Lp(atl,0)g(z0) || _Ely+p+1+af) (2.76)
Ly(a,c)g(zo) y+p+ag
which contradicts our hypothesis and hence we get
1 ’L,,,(aJrl,c)G(z) ‘
wz)|=z|—F/—F—F—-1| <1 (z€eW). 2.77
W@ =217 @oce (zew 2.77)
This completes the proof of Lemma 2.20. a

REMARK 2.21. We note that for a =c = p = 1, Lemma 2.20 yields the correspond-
ing result obtained by Fukui et al. [6].

THEOREM 2.22. Let « be as given in (2.66) and y* > max{(a&’+(p+1-a)& —
p)/(1-8), a&—p}. If f € A, satisfies

arg{M_B}

s . ]
L,(a,0)9(z) <=6 (0=B<1;0<6<1;zeNU), (2.78)

2

for some f € s, satisfying condition (2.68), then

arg{Lp(a+ 1,c)F(z) _B}

TT
Ly(a,c)G(z) <—-n (zew), (2.79)

2

where the function F(z) and G(z) are defined for y* by (1.9) and (2.67), respectively
andn (0 < n < 1) is the solution of the equation

2 nsin (/2 —sin"' (ag/(y* +p))) }
O=n+tan {y* +p+ag+ncos(m/2—sin' (a&/(y*+p))) ) (280
PROOF. Consider the function ¢ (z) defined in AU by
Lytar1,0)E@) g, _g)g(z). (2.81)

Ly(a,c)G(z)
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Then ¢ (z) is analytic in U with ¢(0) = 1. Taking logarithmic differentiation on both

sides of (2.81) and using identity (2.71) in the resulting equation, we get

z(Lp(a+1,0)F(2)) Ly(a+1,0)G(z)

p—a+a—+(1—B) Zd),(Z)

Ly(a+1,c)F(z) Ly(a,c)G(z) B+(1-B)p(2)

From the definition of F(z), we have
(Y*+p)Lp(a,0)f(z)=a(Ly(a+ 1,c)F(z2)) +y*Ly(a+1,c)F(2).
Again, from (2.71) and (2.72), it follows that
(y*+p)Lpla+1,c)g(z) =zL,(a+1,0)G(2)+(p+y*—a)L,(a,c)G(2).
Thus, by using (2.83) and (2.84) followed by (2.82), we obtain

Ly(a+1,c)f(z)
Ly(a,c)g(z)

z¢'(2) }

-B= (IB){qb(zH e S —

where v (z) =L,(a+1,c)G(z)/Ly(a,c)G(z). By using Lemma 2.20, we have
r(z)<1+&z (zew),

where & is given by (2.66). Letting

ar(z)+y*+p—a=pe™??

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

and using the techniques of Theorem 2.3, the remaining part of the proof of Theorem

2.22 follows.

REMARK 2.23. We easily find the following:

ea—1 2a-1
a-p, if . <&< PR
2(a-p)-1 oy 2a-1
2 ’ le_ 2a ’
at+(p+l1-a)¢—-p . 2a-1
1-¢ , if a <&<1.

Taking a = ¢ = p in Theorem 2.22, we get the following corollary.

COROLLARY 2.24. Let

g

+m (p-1)/p<E<a<l),

x=¢

|

(2.88)

(2.89)
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where y* > max{(pE>+E-p)/(1-8),p(E-1)}. If f € d, satisfies

arg{zg(,g)_BH<%5 (0<B<p;0<5=1;z€U (2.90)

for some g € A, satisfying the condition

then

zg'(z)
9(2)

zF'(z)
arg{ G2 B}

p‘ <px (zeuU), (2.91)

< % (zea), (2.92)

where n (0 < n < 1) is the solution of the equation

2 -1
= +—
0=n = tan {

nsin (/2 —sin”' (p&/(y* +p))) } (2.93)

Y*+p(1+&) +ncos(m/2-sin! (p&/(y*+p)))
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