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The theory of uniquely decipherable (UD) codes has been widely developed in connection
with automata theory, combinatorics on words, formal languages, and monoid theory.
Recently, the concepts of multiset decipherable (MSD) and set decipherable (SD) codes were
developed to handle some special problems in the transmission of information. Unique
decipherability is a vital requirement in a wide range of coding applications where distinct
sequences of code words carry different information. However, in several applications,
it is necessary or desirable to communicate a description of a sequence of events where
the information of interest is the set of possible events, including multiplicity, but where
the order of occurrences is irrelevant. Suitable codes for these communication purposes
need not possess the UD property, but the weaker MSD property. In other applications,
the information of interest may be the presence or absence of possible events. The SD
property is adequate for such codes. Lempel (1986) showed that the UD and MSD properties
coincide for two-word codes and conjectured that every three-word MSD code is a UD
code. Guzman (1995) showed that the UD, MSD, and SD properties coincide for two-word
codes and conjectured that these properties coincide for three-word codes. In an earlier
paper (2001), Blanchet-Sadri answered both conjectures positively for all three-word codes
{c1,c2,c3} satisfying |c1| = |c2] < |c3|. In this note, we answer both conjectures positively
for other special three-word codes. Our procedures are based on techniques related to
dominoes.

2000 Mathematics Subject Classification: 94A15, 05A99, 94B35.

1. Introduction. Let A be a nonempty finite set or an alphabet; A* denotes the set
of all sequences of finite length (greater than or equal to 0) of elements of A (such
sequences are called words on A). The unique sequence of length 0, denoted by ¢, is
called the empty word. A code C on A is a nonempty finite subset of A* = A*\ {€}.
The words in C are called code words. A message on C is a word in A* that is a
concatenation of code words. The sequence of these code words is a decoding or
factorization of the message. The code C is called

o uniquely decipherable, if every message on C has a unique factorization into
code words;

o multiset decipherable, if any two factorizations of the same message on C yield
the same multiset of code words;

e set decipherable, if any two factorizations of the same message on C yield the
same set of code words.

Every UD code is MSD, and every MSD code is SD. It has been shown that these rela-
tionships are proper. The code C = {0,0111110,10101,1111} on {0,1} is an example
of a proper MSD code (i.e., an MSD code that is not UD). In fact, the message

(0111110)(10101)(1111)(0) =(0)(1111)(10101)(0111110) (1.1)
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on C has two distinct factorizations into code words [3, 5]. The code
={0,010,11011,101101} (1.2)

on {0,1} is an example of a proper SD code (i.e., an SD code that is not MSD). The
message

(0)(101101)(11011)(0)(11011)(010) = (010)(11011)(101101)(101101)(0) (1.3)

on C has two distinct factorizations with distinct multisets of code words [3, 5].
Guzman presents a complete list of proper MSD and proper SD four-word codes on
{0,1} with code words of length less than or equal to 7 [3]. It is decidable whether or
not a code C is UD [1, 5, 6, 9] (resp., MSD [5]).

For two-word codes, the UD, MSD, and SD properties coincide [3, 7]. For three-word
codes, it is an open question whether or not they coincide. Lempel [7] conjectured that
every three-word MSD code is a UD code, and Guzman [3] conjectured that the UD,
MSD, and SD properties coincide for three-word codes. We answered both conjectures
positively for all three-word codes {ci,co,c3} satisfying |c1| = |c2| < |c3] [2]. In this
note, we give (in Section 1.1) a brief overview of Head’s and Weber’s domino technique
[5], and give (in Section 2) an application of this approach by proving that Lempel’s
and Guzman’s conjectures are true for some special three-word codes.

1.1. A domino technique. Let A be an alphabet and C a code on A. The set of all
prefixes of words in C will be denoted by Prefix(C). The domino graph associated with
C is the directed graph G = (V,E) where

V= {open, close, (t), (Z) ‘ u € Prefix(C) \ {e}}, (1.4)

and E = E; UE» UE3 U E4 where

{2 o (o)
(o) o
HCHIMEHDI<)
- {(EHHEMEIewee)

The domino function associated with C is the mapping d from E to {(’é) (;) lue C}
defined on

o (open, () () and open 5) (2,
e E; by ( ) Close) - (Z) and (;), close) - (,i),

( (
» Eaby ((0).(°¢)) = (0) and ((2). () = (2).
» Esby ((2).(2)) = () and (). (2)) — ().

(1.5)
E3
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The domino associated with an edge e of E is the domino d(e) = (2222» The func-
tion d induces mappings d, and d, from E to C U {€} also called domino functions.
If p=e1---e, is a path in G, the word d(e,)---d(ey) (resp., di(er) --di(em),
da(ey) - --da(em)) will be denoted by d(p) (resp., d1(p), d2(p)).

A path p in G from open to some vertex (’é), respectively, (;), is trying to find two
factorizations of the same message on C into code words beginning with distinct code
words. The decodings obtained so far are d, (p) and d» (p). The word u in A* denotes
the backlog of the first (resp., second) decoding as against the second (resp., first) one.

Guzman [4] suggested to look at the simplified domino graph and the domino func-
tion of C. The simplified domino graph of C is a subgraph of the domino graph of C.
Replace E; by Ej = {(open, (;)) |u e C}, E, by Ej = {((L‘),Close> lu e C}, VbyV’
which consists of open, close, and those vertices v in V such that there is a path from
open to close that goes through v, and E by E’ which consists of those edges e in E
such that there is a path from open to close going through e. The simplified domino
graph of C is denoted by G(C).

The UD, MSD, and SD properties of a code C can be characterized in terms of its
simplified domino graph G (C) and functions d; and d»,

e C is not UD if and only if there is a path in G(C) from open to close [6].

e C isnot MSD if and only if there is a path p in G(C) from open to close such that
di(p) and d»(p) do not have the same multiset of code words [5].

e C is not SD if and only if there is a path p in G(C) from open to close such that
di(p) and d» (p) do not have the same set of code words [3].

As an example, we consider the code ¢ = {c1,c2,c3,c4} on {0,1} discussed in [5, 4]
(c1 =0,c2 =0111110,c3 = 10101, and c4 = 1111). The simplified domino graph and
function associated with this code are shown in Figure 1.1.

(:5)
(Eé)H(é‘)
OO
open (6) (i) = (¥) (c)

01111
T(?) l(?) T(é)
)

closeﬁ(0”1110)£<0“€111) (064) <0€1> (C3 (181) () (10510)

&) &)

FIGURE 1.1

Each edge e is labeled by d(e). The path

onen (€ € 10) () (01} (011111} (0111110) (oo o
P=oPe gl lo1111)'\ e J'\101) '\ e )\ € ) e ) :

is from open to close showing that C is not UD. However, every path p from open to
close is such that d;(p) and d.(p) have the same multiset of code words showing
that C is MSD.
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1.2. Preliminary lemmas. We give some preliminary lemmas that are used in
Section 2 to prove our main results.

DEFINITION 1.1 (see Lothaire [8]). A nonempty word u on an alphabet A is called
primitive, if u = v™ for some nonempty word v on A implies that n = 1.

LEMMA 1.2 (see Lothaire [8]). Let u be a nonempty word on an alphabet A. There
exist a unique primitive word v and a unique positive integer n such that u = v" (v,
denoted by \J/u, is called the root of u and n, denoted by exp(u), is called the exponent
of u). Moreover, all positive powers of u have the same root.

LEMMA 1.3 (see Lothaire [8]). Let C = {u,v} be a two-word on an alphabet A. The
UD, MSD, and SD properties are equivalent to the following properties:
(1) uv = vu.

(2) Vu = Jv.

LEMMA 1.4 (see Blanchet-Sadri [2]). Let u, x be nonempty words on an alphabet A
and let k be a positive integer. If {ux, (ux)*u} is SD, then ux + xu.

LEMMA 1.5. Letu, v, x, v be nonempty words on an alphabet A satisfying u + v.
(1) The equalities vyx = yxu = xuy cannot hold simultaneously.
(2)The equalities xvy = vyx = yxu cannot hold simultaneously.

PROOF. We prove assertion (1) (assertion (2) is proved similarly). Since yxu = xuy,
by Lemmas 1.2 and 1.3 there exist a unique primitive word w and unique positive
integers k and k’ such that y = w* and xu = w*". Put x = w’z and u = z’w!" where
w isnot a prefix of z and w is not a suffix of z’. If z,z" = €, then u = v, a contradiction.
Otherwise, z,z’ # € and the equality v yx = xuy implies that w = zz" = z’z. Lemmas
1.2 and 1.3 imply the existence of a unique primitive word w’ and unique positive
integers m and m’ satisfying z = (w’)™ and z’ = (w’)™. We get w = (w’)"™*™ a
contradiction with the fact that w is primitive. a

LEMMA 1.6. Let u, v, x, v be nonempty words on an alphabet A satisfying u + v.
If the equalities vy x = yxv = yux hold simultaneously, then u = (z'z)¥, v = (zz')¥,
x=(z'z2){z, andy = (zz')™z for some k > 0,4 >0, m =0, and words z,z' on A.

PROOF. Since vyx = yxv, by Lemmas 1.2 and 1.3 there exist a unique primitive
word w and unique positive integers k and k’ such that v = w* and yx = w¥". Put
y =w!z and x = zZw!’ where w is not a prefix of z and w is not a suffix of z'. If
z,z' = €,then u = v, a contradiction. Otherwise, z,z" + € and w = zz’, and the equality
vxv = yux implies that u = (z'z)* and the result follows. a

LEMMA 1.7 (see Blanchet-Sadri [2]). Let u, v, x be nonempty words on an alphabet
A satisfying u + v. The equalities ux = xv and vx = xu cannot hold simultaneously.

2. Some special three-word codes. We show that the UD, MSD, and SD properties
are equivalent to the special three-word codes described in Theorems 2.1, 2.2, and
2.3.

Let C = {c1,c2,c3} be a three-word SD code on alphabet A satisfying |c;| < [c2| <
|c3|. Let ¢2 and c3 be written, respectively, as c{‘u and c{‘v where ¢; is not a prefix
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of u, c; is not a prefix of v,u is not a prefix of v, k > 0, and u,v * €. For each
of our theorems, we need only to show that C is UD. It is easy to see that {c1,c2},
{c1,c3}, and {c2,c3} are two-word SD codes, and are therefore MSD and UD codes by
Lemma 1.3. When constructing G (C), we see that E| consists of the edges (open, (é))

and E; consists of the edges ((?),Close). No E3- nor E4-edge leaves (52) and no Es-
nor E4-edge leaves (Ci)

Let u; (resp., vi, w;) be the prefix of length i of ¢, (resp., co, c3). We write ¢; = u;x;.
When trying to build a path from open to close, a list of vertices gets generated. The
vertices are among (’?) (”E’) (“Q'), (uel) (Uei), and (151) where 0 < i < |c3|. The E3- or
E;-edges leaving (’2’), (”ei), (?), (uei), (;), and (ui) are easily described.

We need to check that none of the generated vertices is of the form (Cel ), (CEZ), or (CE‘)

(otherwise there would be a path from open to close). It is obvious that (Cel) is not the
end vertex of any E3-edge and (?) is not the end vertex of any E4-edge. If (?) is the

end vertex of an E4-edge of the form ((uel), (Ce‘ )) (resp., ((51), (Ce‘ )) ((ui)’ (CE‘ ) )), then
C2 = UiC1 Or c3 = uicy (resp., c; = v;C1 Or c3 = V;C1, C2 = W;iCy Or €3 = w;cy). Similarly, if
(?) is the end vertex of an E4-edge of the form ((;), (CZ)), respectively, ((;'1), (CZ)),

€ €

((ufi), (?)), then ¢3 = u;c» (resp., ¢z = Vicz,c3 = wicz). If (Cg) is the end vertex of

an Ez-edge of the form ((”el), (”fl)), respectively, ((“g), (”fl>), (("é'), (“’1:1)), then
c2 = uicy (resp., c» = vici, c2 = wicy). If (cg) is the end vertex of an E3-edge of the form

(). (7)) esp (29, (C (D) (C22). ((20.02). (02,
(wiGCZ))), then c3 = u;cy (resp., ¢z = v;c1, €3 = WiC1, €3 = UiC2, €3 = ViC2, €3 = W;C2).
We need to consider the cases ¢» = vici, c3 = w;ic1, and c3 = w;Co.

For the rest of the discussion, we can assume that u or v is a prefix of c¢; (otherwise,
it is not difficult to see that there is no path in G(C) from open to close). Since u is
not a prefix of v and |u| < |v|, u and v cannot be both prefixes of c;. In either
case, |u| < |c1|. To simplify the notation, put x| = x, and whenever |v| < |c;], put
X =Y.

First, assume that v is a prefix of c;. Here, v + € and vy # yv by Lemma 1.4. To
simplify the notation, put u;,| = w. in the case where c3 = w;c;, since i = \cf’lvl,

we have w; = ck"'v and c3 = ¥ 'vey = cfv yielding vy = yv, a contradiction. In

the case where c3 = w;c, we have i = |v| — |ul, wi = u;, c3 = uic’fu = c{‘v, and
Cc1 = Uuix; = vy. Put v = u;t where t # €. The equality uic{‘u cfuit implies that
t = u and u;x; = x;u;. But then, ¢; = u;x; = u;uy = uyu;. We then conclude that
u is a prefix of ¢y, which is a contradiction. In the case where ¢, = v;c;, we have
i=|cklul If y ¢ Prefix(C) \ {€}, we get Figure 2.1.

Otherwise, put vy = yv’ where v’ = v (v’ ¢ Prefix(C) \ {€}). If u is not a prefix

of v’, then add the edge ((’2) (;)) to Figure 2.1. Otherwise, put v’ = us where s + €.
We have v; = c¥'w, ¢, = ¢k 'wey = cu, and therefore ¢; = wx = xu = vy. We have
v = wt where t # €, and therefore wty = tyu = yus withu + w. By Lemma 1.5(1), we

get s # t. Since |s| = |t], we conclude that s ¢ Prefix(C) \ {€}. Add the edges ((‘E’), (;))
and ((Ci:lv), (qu)) to Figure 2.1.



496 F. BLANCHET-SADRI AND T. HOWELL

open ( € )
FIGURE 2.1

In the rest of the note, we assume that u is a prefix of c;. Here, x # € and ux + xu by
Lemma 1.4. In the case where ¢, = v;c;, we have v; = ¢k 'u and ¢, = c¥ 'uc, = cfu.
We conclude that ux = xu, a contradiction. In the cases where c3 = w;ic; or c3 = wicp,

if x & Prefix(C) \ {€}, we get Figure 2.2.

open ( € )
FIGURE 2.2

Otherwise, put ux = xu’ where u’ = u (1’ ¢ Prefix(C) \ {€}). If u’ is not a prefix
of v, then add the edge ((”6‘), (;)) to Figure 2.2. Otherwise, put v = u’cfz where ¢;
is not a prefix of z and q > 0. Note that if z = ¢, then ¢z = cku/cf = ¢ 'uc?*" and
SO chf’+1 = cjc3, a contradiction with the fact that C is SD. Note also that if g > k
and z = u’, then cic3 = cchkczcl, a contradiction with the fact that C is SD. It is
not difficult to see that cliz & Prefix(C) \ {€} (0 < i< k) unless z is a prefix of ¢, and
c{‘z € Prefix(C) \ {€} only if z is a prefix of u or v. Whenever z is a prefix of ¢, put
X|z| = x1 and whenever z is a prefix of u, put ¢; = c{(ch’y’ where p’ = 0 and c; is
not a prefix of y’. In the case where z is a prefix of v, put c3 = c{‘ch/z’ where @' = 0
and c; is not a prefix of z'.

The following points enable us to assume that |z| < |u| and z is a prefix of u
whenever z is a prefix of ¢; and ¢3 = w;ci:

e if |z| = |ul, then z = u = u’, a contradiction;

o if |z| > |ul, thenput z = ut = t'u’ fore some t,t" + €. Here, c; = utx; = tx;u’ =
t'u’x, implies that t = t’. We also have x = tx; = x t and ¢; = ux 1t = x1tu’ =
tu’x;. These equalities cannot hold simultaneously by Lemma 1.5(1).

If c3 = wicy and |z| = |u|, we have z = u and z is not a prefix of v. In this case, if
q<k-1,u=u',acontradiction, and if g > k—1, Cisnot SD (c;c3 = czc?_kﬂq). The
above and the following points enable us to assume that |z| < |u/|, z is a prefix of u,
and g > k—1 whenever z is a prefix of ¢; and c3 = w;c»:

o if |z| > |u/l, then put z = ut = t’u for some t,t’ # €. Here, ¢; = utx; = tx;u’ =
xi1u't" and t = t'. These equalities cannot hold simultaneously by Lemma 1.5(1);
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o if |z| < |u|, then put u = zt = t'z for some t,t" + €, and put u’ = z’’t’. In this
case, if g < k, then cku'clz = cfzcku and ¢, = ztx = txz" = xz"'t' with t = t'.
These equalities cannot hold simultaneously by Lemma 1.5(1).

Trying to build a path from open to close, add ( (Z) , (;) ) and Figure 2.3 to Figure 2.2.

k-1 ks ks ka1 ko
(CI ”) — (Clu ) . (c]u cl) . N (clu’c1 ) S (clu Cl)
€ € € €

FIGURE 2.3

The edge ((Cll:lu), (611(716“‘32)) is added in case g > k—1, or ¢ = k— 1, u is a proper
prefix of z, and z is not a prefix of v. The edge ((51“ Cl), (Ch’e“iCZ)) is added in case

k ’ k
0 <i< q-k. The edge ((clf”ec? ),(C{(” et CZ)) is added in case ¢ > k—1, u is a
proper prefix of z, and z is not a prefix of v. The edge ((Cll:lu), (qu12)) is added in
1
case g < k—1 and z is a prefix of u, or g = k—1 and z is a prefix of u or v. The edge

((Ck“’C? k) (Clz)) is added in case g > k—1 and z is a prefix of u or v. If i > 0 and

€

q-k <1ix<q,the edge ((Clu Cl) (c””"z)) is added in case z is a prefix of u. Note that
1

no E3- nor E4-edge leaves <X), and no E3- nor E4-edge leaves the vertices in Figure 2.3
other than the edges discussed above.

In the rest of the discussion, whenever u is a proper prefix of z, we put z = ur where
¥ + € and x is not a prefix of v, and whenever 1’ is a prefix of z, we put z = u'v'. It
is not difficult to see that r & Prefix(C) \ {€} (otherwise, ur = z is a prefix of ux = c;
and therefore z is a prefix of u, a contradiction). Note the following points:

e No E3-edge leaves (C{Heucz) unless g = k and u’ is a prefix of z. No E;-edge leaves

(C{He““z) other than ((C{(flucz) ( € )) in case g = k and xz € Prefix(C) \ {€}.

¢ No E3- nor E4-edges leave (C’f“ ‘1 CZ) (0<i<qg—-k-1).

eForg > kandi=q-k-1,no Ez-edge leaves (Clu Clcz) unless u' is a prefix of z, and
no E4-edge leaves (Clu Clc2> other than ((61” Clcﬁ) (XZ)) in case xz € Prefix(C) \ {€}.

qa-k
¢ No E3- nor E4-edges leave (CI” ‘1 CZ).
We now state and prove our main results.

THEOREM 2.1. Let C, u, v, and z be defined as described above. If z is a prefix of
both uw and v, then C is UD.

PROOF. Here |z| < |u|. Put u = zt and u’ = zt" where t,t" # € and t + t’. First,
assume that c3 = w;c;. Here u’ = t'z and ¢y = ztx = xzt’' = xt'z = zxt’' = txz.
By Lemma 1.5(2), the equalities ztx = txz = xzt’ cannot hold simultaneously. Now,
assume that c3 = wico. Here u =t'zand ¢y = ztx = xzt' =t'zx = zxt'. Since t'zx =
zxt' = ztx, by Lemma 1.6, t = (s's)l, t' = (ss")!, x = (s's)™s’, z = (ss’)"s for some
{>0,m=>0,n=>0,andwords s,s’ on A. The equality zt x = xzt’ implies that ss’ = s’s,
and therefore t = t’, a contradiction. |
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THEOREM 2.2. Let C, u, v, and z be defined as described above. If z is a prefix of u
but not a prefix of v, then C is UD.

PROOF. Here, |z| < |u|.Put u = zt and u’ = z’'t’, where z + z”’ and t,t’ # €. We
have xz ¢ Prefix(C) \ {€} since ¢; = xz"'t and z # z".

First, assume that ¢3 = w;c;. Here u’' = t'z and ¢; = ztx = zxt’' = txz = xzZ"'t' =
xt'z. If t = t, then zxt = xtz = xz't. By Lemma 1.6, z”’ = (s's)!, z = (ss')!, t =
(s's)™s’, x = (ss')"s for some £ >0, m =0, n > 0, and words s,s” on A. The equality
txz = xtz implies that ss’ = s’s, and therefore z = z", a contradiction. Otherwise,
since |t| < |u| and ¢; = txz, we get u = tz'"’ for some z""’. We have zx = xz"" and
z'"x = xz.Certainly z"’ # z, and by Lemma 1.7, z"’ # z”’. By Lemma 1.6, since ztx =
txz=tz"x,putz’” = (s's)!, z=(ss"), x = (s's)™s’, and t = (ss")"s for some £ > 0,
m =0, n >0, and words s,s” on A. Whenever m > 0, the equality ztx = xz"'t’ implies
that ss’ = s’s and z = z'”, a contradiction. Otherwise, x is a prefix of z’"" and we put
z'" = xy and z = yx, where y = (ss")/"1s. Here y cannot be a prefix of z”" or the
equality xz''t" = zxt’ implies that z = z""’. Trying to build a path from open to close,
the edge ((2‘), (;)) together with Figure 2.3 are added to Figure 2.2. We now discuss
the other edges added.

First, assume that g < k. Whenever g < k, add ((C’f;l”) ( (qul )) to the graph and

whenever g = k, add (("Jf:“), (Cf_leucz)) In either case, we then also add ((Cli Cl),

(¢5.)) ©=i=a ((£).(452)) ©=i <k, ((9).(2). ((2).()). ((£)- (1)
(0<i<k), ((CltX),< +1tx)) (0<i<k),and ((C “‘), (cff' )) (0<i< k)’.
Second, assume that g > k. Add (( of! ),( ot I”CZ)), ((lefci) (Cf”/cicz)) 0<i<

€

q-k), and ((Clucl),(c.f_iz)) (q—k <i<gq). Also add (( ' ) (in )) (0<i<k),
((9- (). ((2). (D) (£ (27) 0= i<, (99, (2)) 0 = i < 10, ana
(4. (45,)) ©0=12b.

Now, assume that ¢3 = w;cy. Here u = t'zand ¢y = ztx = t'zx = zxt' = xz''t' =
t'xz". If t =t', then ztx = txz" = xz"'t and these equalities cannot hold simulta-
neously by Lemma 1.5(1). Otherwise, t = t" and t ¢ Prefix(C) \ {€}. trying to build a
path from open to close, the edge ((?), (;)) together with Figure 2.3 are added to
Figure 2.2. We now discuss the other edges added.

First, assume that g = k. Add (( o tu ), (le L”CZ» and ((Cfu’ci), (C?€i2>) (0<i=<q).

1rr

€
Second, assume that g > k. Add (( o 1”), (le_leucz)), ((lefci) (le”;cicz)) 0<i<
q-k), and ((Clucl),(clq_iz)) (g-k<i=<q). O

THEOREM 2.3. Let C, u, v, and z be defined as described above. If z is a prefix of v
but not a prefix of u, then C is UD.

PROOF. Here c3 = cku'clz = ckzcl 2’ and |cf 2’| = |cl'ul. The latter and the fact

that |u| < |c;| imply that g = q’. Note that u is not a prefix of z, u’ is a suffix of z’ in
case c3 = w;ci, and u is a suffix of z’ in case c3 = w;c,. Trying to build a path from
open to close, the edge ((Z)' (;)) together with Figure 2.3 are added to Figure 2.2. We
now discuss the other edges added (if any).
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First, assume that g < k—1. In this case, no more edges are added.
’ k—
Second, assume that g = k — 1. We have |c{ z’| = |c¥"'u| and add ((cl 61“),( lf ))
along with

€ € € €
() — (ae) — - — (e r) — (asey)
Gz crza cyzey Cc12¢q

FIGURE 2.4

In case c3 = w;c», we have c? z' = c{"lu (@ =k-1and z’ = u) and also add

((cfzfg’-i), () ©0=i<k.

Third, assume that g = k and c3 = w;c2. We have c’f’z’ = c{‘u (@' =kand z’ =u)and
|z] # |u| here. If |z|] < |[ul, then u" = zt and u = tz for some t + €. The latter together
with the equality c¥u’c¥z = c¥zcfu yield that ¢; = tzx = xzt = zxt and therefore z
is a prefix of u, a contradiction. If |z| > |u|, put z = u’cft’ =tu where t" # € and ¢;
is not a prefix of ¢t nor t’. To simplify the notation, whenever [t'| < [c1], put x|/ = x'.
From the equality cku’c¥z = ckzcku, it follows that cfu’cl't’ = /'t cku.

o If p > k, we contradict the fact that c; is not a prefix of z.

o If p <k, then |t'| < |c1| or we contradict the fact that c; is not a prefix of t’ (t’
is a prefix of ¢; here). If [t'| < |ul, put u = t'r; = v{t’ and u’ = t""v{. We then have
c1 =t'nx =rt'x =xt"v] =rixt” and r; =r{. Then t’ # t"" and we have t'rx =
rixt"” = xt"’r;, which cannot hold simultaneously by Lemma 1.5(1). If |t"| = |u|, then
t" =u and, when k—p =1, C is not SD (c;c3 = CS’). When k—p > 1, we get u = u’,
a contradiction. So we have [t'| > |u| and put t' = ur; = rju. Then ¢; = urnx’ =
riux’' =rx'u’ = x'u'r{ and r; = r{. Consequently, urx’ = r1x'u’ = x’u’ry, which
cannot hold simultaneously by Lemma 1.5(1).

o If p = k then from the equality cku’c?t’ = c't’cku it follows that u’ckt’ = t'cku.

1

Here, clearly [t'| = |ul. If [t'| < |u|,putu’ =t'r; and u = r1t’ = t"7v; where [t'| = [t"].
This then yields that ¢; = rit'x = t"v{x = xt'r; = t'xr; and t" = t”". So we have
11 =7, and rit'x = t'xr; = t'v{x. Using Lemma 1.6 and the fact that t'xr; = xt'r,
we conclude that u = u’, a contradiction. Thus [t'| > |u| and putt’ = u’cf’1 t; = tyu for
some t; and t; where t; # € and c; is not a prefix of t; nor t}. From the equality u’c’t’ =

t’cku, it follows that cfu'cl't] = ¢ t;c¥u and we continue as above, comparing p;

. . .. i+1
to k. Since c; is finite, we must reach t; = u'c}y"""t!,, = t;;;u where t/,, # € and ¢;
. ) . i+1
is not a prefix of t;1; nor t;,,, and consequently we get the equality c{‘u’cfl tiq =

i+1
c/"tl,  cku. Then we have piy1 > k, pis1 <k, or pis1 =k, and |t},,| < |ul. In all cases

we reach the same types of contradictions as previously stated.

Fourth, assume that g > k and c3 = w;c,. Since Icful = cf’z’, it follows that c»
is a suffix of ¢ z" and we put ¢3 = cku'c?z = ckzc? 2/ = ckzscku where |s| = |97
Clearly, |z| # |u| here. If |z| < |u|, put u" = zt and u = tz for some t + €.
The latter together with the equality cku'ciz = ckzscku yield that ¢; = tzx =

xzt = zxt, which contradicts the fact that z is not a prefix of u. If |z| > |ul,
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putz =u'cl't’ = tu where t’ # € and ¢, is not a prefix of ¢ nor t’. To simplify the nota-

tion, whenever |t'| < |c1], put x|| = x'. From the equality cku’cz = ckzscku, it fol-

lows that cjfu’cl't’ = cl't’scku. Add ((le?“), (C]fflmz)), ((C’f"rcqik), (CEZ) ), Figure 2.4,

€ €
k

and ((Clirci),(cf”;cicz>) (0 < i < q— k) along with ((clfulc?;kilcz),(Ci{”’:?”’» and
Figure 2.5:

(clfu’c?u’) S <c’1‘u’c?u’c1) e s (clfu’c‘;lu’cffl) : (c’fu'c‘fu'cf)
€ € € €

FIGURE 2.5

o If p > gq, then we contradict the fact that ¢, is not a prefix of z.

o If p < g, then |t’| < |c| or we contradict the fact that ¢, is not a prefix of t’ (t" is a
prefix of ¢; here). If [t'| > |ul, put t’ = ur) =r{u. Thenc; =unx’ =rjux’' =rx'u =
x'u'r{ and |, = 7{. So ur x’ = rix'u’ = x’u’r;, which cannot hold simultaneously
by Lemma 1.5(1). If |t'| = |u|, then t’ = u and it follows from the equality cfu'cu =
cluscku that ¢ Pu'cl = usck. Here if k—p > 1, we get u = u’, a contradiction. If
k—p <1 then C is not SD (cic3 = cac? *eoc? ™ ey) I [t] < |ul, put u = t'ry =

1

rit’ and u’ = t""r{. We then have ¢; = t'r1x = r{t'x = xt""v{ = t'xv{ = r{xt". In
case k > p, from the equality c?u’c’t’ = c"t'scku, it follows that ¢ 7t = t’scy *.
Consequently, we also have ¢; = r1xt” and r; = 7. Then t’ # t” and t'r1x =1 xt” =
xt""ry, which cannot hold simultaneously by Lemma 1.5(1). So we have p > k, 11 # 74,
and xz = ¢t ¢ Prefix(C) \ {e}. Note that ¢’ = 0 here or we have ; = 7]. Also,

xt’ ¢ Prefix(C) \ {€} or we get t’ = t”’, which leads to a contradiction by Lemma 1.6.

Add

Koyr 4,7 P—1

((cluclucl >,(l€,>) (0 < i < k) along with
€ Clt

((c{‘u’c?u’c{) (c{‘u’c?u’c{cﬁ) O<i<p_k
, . <

€

(2.1)

and ((cfu’c‘l:kﬂQ)’ (c{‘u’c?z’c{"%d))_

o If p = g, from the equality cfu'cl't’ = c/'t'scku, it follows that u'cft’ = t'scku.
Clearly, |t'| # |ul, and if |t'] < |ul,then put u’ =t'r; and u = t’ = t"v{ where |t'| =
[t"|. We then have 1 t'x = t"v{x = xt'rv; =t'xr; and t’ = t”. Consequently, 7| * 7|
and we get 7t'x = t'x¥; = t'7{x. Using Lemma 1.6 and the fact that xt'r; = t'x7,
we reach a contradiction with the fact that u # u’. So we have [t’'| > |u| and put
t' =u'cl't] = tiu, where t] # € and c; is not a prefix of t; nor t;. From the equality
w'cit’ = t'scku, it follows that cfu'cl't; = c't;scku and we continue as above,
comparing p; with g. Since c3 is finite, we must reach the equality ¢; = u'cfi+1 tig =
ti,,u where t;,, # € and c; is not a prefix of t;,; nor t;,,, and consequently we get
the equality cifu/c]™'t;, | = c[™*'t!, scku. Then one of the following must occur:

(1) pis1 > q, thus yielding the same type of contradiction as above;

(2) pis1 <qand |t | > |ul, thus yielding the same types of contradiction as above;
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(3) pi+1 <q, It;,1| <lul,and pi+1 < k, thus yielding the same type of contradiction
as above;
4) pis1 <q, It;,1| <|ul, and p;+1 = k, in which case we add

’ 1 i -J
((cku (cfu)eepitt )( J.E, )) (0=<j=<k),
€ lti+1

((cfu' <c?u'>”2c{) (c{‘u' <u>)) (0= <pin—k)

€
i+1 gq-k-1 i+2 k-
((c’fu’(cfu’)l ct cz>) ((c{‘u’(cfu’) ck 1u))
y y
€ €

(5) pi+1 =qand |t],,| < |ul, thusyielding the same types of contradiction as above.

Last, assume that ¢ = k and ¢3 = wic;. In this case, add ((le;l”),<clft”c2)>,

((4‘“"3?7’(), (Cllfz)), and Figure 2.4. Also, add the edges ((C{(’é'c‘i), (C{CMIEC%CZ)) 0=i<

(2.2)

€

q-—k).
If |z < |u| putu’ =zt'=t'zand u = z"t"” where |t'| = |t"|,z+ 2Z",and t',t"" + €.
Thenwe have c; = xzt’' =xt'z=2z"t"x =t""xz.Here,if t' = t"" we have the equalities

Z't'x = t'xz = xzt', which cannot hold by Lemma 1.5(1). So t" # t”” and we add
((CQH”CZ), ( € )) whenever g = k and ((le”,quk%Q), ( € )) whenever g > k. Note that

€ Xz 16 Xz
here g’ = 0 nor we contradict the fact that t" = t".

If |z| = |u| then z=u" and C is not SD (cic3 = C2c?_kczcl).

If |z| > |[u| put z = u’cft’ = tu’ where c; is not a prefix of t or t’, and t’ + €
. “k 1 o .
(otherwise, cic3 = cicku’clu’cl = cocl ™ cocl ™). To simplify the notation, whenever

It'| < |c1l, put x| = x'. Then we have c3 = cku'clz = ckzcl z' = c¥zscy, where |s| =

-1 . k-1 Korod oy
lc! u| and it follows that cfu'cl't’ = c/'t’sc;. Here, we add ((Cl 6”52), (Cluflu )) if
ko7 d-k-1 ko4,

q=k,and ((CI” 1 CZ), (“1“;1“ )) if g > k. In either case, also add Figure 2.5.

o If p > gq, then we contradict the fact that c; is not a prefix of z.

o If p < g, then [t'| < |c1| or we contradict the fact that c¢; is not a prefix of
t’(t" is a prefix of cihere). Clearly, |t’'| # |u| or we contradict the fact that u + u'.
If [t'] > |ul,putt’ =ur, =rju’ and ¢; = urix’' =rju'x’ =rx'u =xru =ux'r|.
Then ux’'v| = x’rju’ = r{u’x’, which cannot hold simultaneously by Lemma 1.5(1).
If [t'] <|ul,putu=t'r =rt" and u’ = rt’ = t"v] where |t'| = [t'”]. Then we
have ¢; = t'r1x = xr{t' = t'xy] = nxt’ = xt"v{ = r{'t""x and r, = r;". Here, if
t" =t", then r; +7{ and we have t'r;x = 11 xt" = xt'r{, which cannot hold simultane-
ously by Lemma 1.5(2). So we assume that t" = t”’; and if ; = 7{, then the equalities
t'xr) = xrit’ = xt"’r; together with Lemma 1.6 and the fact that x7t" = xt’ yield
a contradiction with the fact that u # u’. Also, if t" = t’”” then xt’' = t'x = xt” and
t" =t"”, a contradiction. So we have t" = t", t' # t""', v, = r{, and xz = cf“t’. Here,
note that g’ < g—p —1 or we contradict the fact thatt’ # t”’. Thus |z'| = Ic?fq’ul > ul,
11 is a prefix of z’, and u’ cannot be a prefix of z’.
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In the case where g = k, we add

k-1 kyyr 9,7 A1
Cy uc € Cfu ciu €- .,
() (<)), (). (5)) 0siem

a-

In the case where k and k, add ((ﬁu €1 k7162> ( € ;
q>kandp <k a (%)) with (2.3). The edge

€ €
((Ci‘zcli)’ (c{‘zc{q)) (2.4)

isaddedincase 0 <i<q —k,ori=q —k and u is a prefix of z’.
k-1
In the case where g > k and p = k, in addition to (2.1) and ((C u C?E CZ),

(le”":?”rcf fu )) add (( f”’Cq"/Cf i) ( )) (0 < i< k). Also, (2.4) is added in case
O<i<q —-kori=q — kandulsapreﬁxofz ’
In all cases, also add ((C t,),( i1y )) (0 <i<k)and (( ),(Clk;l”» (0<i<k)

as well as ((f), (“Ex)), ((”;‘),(f)), and ((CI?"),@H”")) (0 <i<k-1).In the
case where [t"'| > |x|, put t'"” = xs and t’ = sx = xs’. It follows from the equality
t'xr{ = xt"'r{ that t” = s’x and consequently, s = s’. Add ((CIIHE“X>, (le?x)) along

with ((17%), (4,)) (0 <i<k).

o If p = g, then it follows from clu c1 t' = cl t'sc; thatu'c t’ =t'scy. Here, if |t']| =
|[ul, then t’ = u’ and C is not SD (c1c3 = czc1 kczcl kczcl). If [t'] < |u| then putu’ =
t'ry =7rt’ and u = t"r{, where [t'| = |t""]. So we have ¢; = xt'r = x1it’' =t"r{x =
rixt'. If t' =t", then r; # | and we get t'r;x = r{xt’ = xt'r;, which cannot hold si-
multaneously by Lemma 1.5(2). So we assume that t’ = t”, and if 1, = 7| then t""#;x =
rixt’ = xt'ry, which cannot hold by Lemma 1.5(1). Thus t" = t”, 1, # #{, and xz =

xu'clt’ = c‘“lt ¢ prefix(C) \ {€}. Note that here q" = 0 or we contradict the fact that
11 # 1;.Whenq = k, we add ((C “C2> (Ck“’le”’CIf 1“)) as well as ((le”’df”"]f u ) (Xi))

koo k r 4= ko4, k-1

and ((clu e ) ( )) When q > k, add (2.1) and ((Clu a HCZ), (Clu ara “)) along
with (et ) () ana (D) (L)) 00 00 >l put ¢ -
u’cfltl = t;u’, where c¢; is not a prefix of t; nor t], and t; # € (otherwise, c;c3 =

crcku (e )2ePt = (c2c%)2cocP' ). From the equality u’c?t’ = t'scy, it follows that

clu’cfltl = cfl t;sc; and we continue as above, comparing p; to gq. Since c3 is finite,
we must reach t; = u'c ”ltl+1 = t;j;1u’ where ¢; is not a prefix of t;;; or t;,,, and
t.,, # € (otherwise, cic3 = clclu (et )2l = (e *) 20,1t and conse-
quently we get the equality cju c’g”ltHl = cl”ltHlsc] Then one of the following
occurs:
(1) pi+1 > q, in which case we reach the same type of contradiction as above;
(2) pi+1 <qand|t; ;| = |ul,in which case we reach the same type of contradictions
as above;
(3) pi+1 < q and |t; | < |ul, in which case we put u = t;,, ¥i.2 = ¥{;,t;/, and
w =v{,t;,, =t/ ri,,where|t, | =[t]},|. Asabove,wehavet; , 1t/ , tHl *
), Vieo # er, and xz = c/"'"'t), | & prefix(C) \ {e}. Also, @' < q—pii1 —

|z'| = Ic1 ul > |ul, ris2 is a prefix of z’, and u’ cannot be a prefix of z'.
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ko 7 (oy,7yit+2 oJ
cfu'(cfu)ttee €.
Add(( ! 15 1>’<cPi”ﬁt'
1 i+1

pir1 < k. Whenever g > k and pi;1 = k, add
((c{‘u’(cfu’)i+lcfklcz> (c’fu’(cfu’)”%’f%))

)) (0 < j <pir1) whenever g =k, or g > k, and

€ €

koor( 4, \i+2 j Kar (A4, \i+2 | j
ciu'(cfu') "Cef\ [efu'(cfu') e S
<< c )( . , (0=j<pini—k),

(2.5)

and ((Cf“’“?”')”ch”rj) ( y )) (0 < j < k). In all cases, we also include

AP
€ Cilin _
CJt’ 5 C‘]]+1t/

141 i+l>> © Sj <k, <(C{t€;+1>’ (C] :HZ)) 0=j=k), ((til), <”1’+62X)),
((”*2"), <t§i1))’ and ((C‘u’ﬁgzx), (C‘{HZHZ")) (0 < j <k-1), In the case where

€
€ € . 7 L 7 .
q > k, add ((c{‘zc{)’ (4{26{62)) whenever 0 < j <q' —k,or j=q —k and u is
a prefix of z'. In the case where [t/,| > |x|, put t;, = xSis1, tiq = Si1X =
k-1, ko
xs!,,,and t/,, = s/, x where s;; = s/, ,. Add ((cl :”2"), (C”‘;z")) along with
clriiox € . .
(( i ),<Ciﬂsi+l)) (0=<j=<k);
(4) pis1 =qand |t],,| = |ul, in which case we reach the same type of contradiction
as above;
(5) pi+1 =q and |t],,| < |ul, in which case, when g = k, we add

(((c{‘u’)”lc{‘1uCz>’((c’fu’)i+3C{<lu)), (((C{‘u')i+3),< G )), (2.6)
€ € € 1lin

and (((c{‘u’)mclfflu),( ¢ )) Whenever g > k, we add

€ Xtii
ckw () e e\ (e (ctu) ekt
€ ’ € ’
’ ’ i 2 j ’ ’ i 2 j
cku (ctu) el (cku (cfu) " clen 0<j<q—k) 2.7)
6 ’ € b —_ b -

ek (ctu) 2 ik € cku ()2 ei ™ e, €
€ \ektl,)) € \xtl, ) )

a

ACKNOWLEDGMENTS. This material is based upon work supported by the National
Science Foundation (NSF) under Grant No. CCR-9700228. We thank the referees of a
preliminary version of this note for their very valuable comments and suggestions.

REFERENCES

[1I] A. Apostolico and R. Giancarlo, Pattern matching machine implementation of a fast test
for unique decipherability, Inform. Process. Lett. 18 (1984), no. 3, 155-158.



504 F. BLANCHET-SADRI AND T. HOWELL

[2]  F. Blanchet-Sadri, On unique, multiset, and set decipherability of three-word codes, 1IEEE
Trans. Inform. Theory 47 (2001), no. 5, 1745-1757.

[3] F.Guzman, A complete list of small proper MSD and SD codes, in preparation.

[4] , Decipherability of codes, J. Pure Appl. Algebra 141 (1999), no. 1, 13-35.

[5] T.Head and A. Weber, Deciding multiset decipherability, IEEE Trans. Inform. Theory 41
(1995), no. 1, 291-297.

[6] A.Hoffmann, A test on unique decipherability, MFCS 84, Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 1984, pp. 50-63.

[71 A. Lempel, On multiset decipherable codes, IEEE Trans. Inform. Theory 32 (1986), no. 5,
714-716.

[8] M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and Its Applications,
vol. 17, Addison-Wesley, 1983.

[9] M. Rodeh, A fast test for unique decipherability based on suffix trees, IEEE Trans. Inform.
Theory 28 (1982), 648-651.

F. BLANCHET-SADRI AND T. HOWELL: DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY
OF NORTH CAROLINA, P.O. Box 26170, GREENSBORO, NC 27402-6170, USA



Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

‘ Manuscript Due March 1, 2009

‘ First Round of Reviews | June 1, 2009

‘ Publication Date September 1, 2009

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied
Mathematics and Computing, Institute of Geosciences and
Exact Sciences, State University of Sdo Paulo at Rio Claro,
Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP,
Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State
University, Vorob’evy Gory, Moscow 119992, Russia;
loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers-4pt
	Guest Editors

