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ON THE IRREGULARITY OF THE DISTRIBUTION
OF THE SUMS OF PAIRS OF ODD PRIMES
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Let P> (n) denote the number of ways of writing n as a sum of two odd primes. We support
a conjecture of Hardy and Littlewood concerning P> (1) by showing that it holds in a certain
“average” sense. Thereby showing the irregularity of P»(n).
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1. Introduction. Let P>(n) be the number of ways of writing n as a sum of two
odd primes. Goldbach conjectured that P,(n) > 1 for all even positive integers n;
Landau [2] proved an average result for even n > 2
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Hardy and Littlewood [1] conjectured that, asymptotically, for even n > 2,
p-1 n
P~ T (E21) 2 12
> (1) 11;11 r—2)ogn (1.2)
p=2
where
1

c=2 (1 - 7) 1.3
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Thus, rather than P>(n) increasing monotonically with »n (as one might guess at
first glance), their conjecture implies that the value of P, (n) depends heavily on the
small primes dividing n. So, for instance, if n is the product of the first k primes, then
the above formula suggests that

n

P>(n) ~ C'——1loglogn (1.4)
logcn
for some absolute constant C’ > 0.
Whereas, if n is twice a prime then
n
Py(n) ~C———. (1.5)
log*n

Although we have no idea how one might prove (1.2), we attach, in this note, the
question of proving that the behavior of P, (1) depends heavily on its small prime fac-
tors, as suggested by (1.2). In particular, we show that (1.2) holds in a certain “average”
sense, as follows.


http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com

378 GEORGE GIORDANO

THEOREM 1.1. For fixed even integers 2 <a <m, and as x — o

1 5 P(n) I (P_*l) (1.6)

x/m Cmn/logzn pliam) p-2
n=a(modm) p>2
where
Cn=T1(1- 5=557) (1.7)
m = T (p_12) :
plm (p-1)
p>2

Taking the example m = 6, the theorem tells us that “on average,” P>(n) ~
2Cmn/log2 n if 6 divides n, but P> (n) ~ Cmn/log2 n if 6 does not divide n. In other
words, if 3 divides n then we have proved, “on average,” that P, (n) is twice as large
as if 3 does not divide n, which captures the spirit of our earlier deduction from (1.2).

The sum in the theorem is estimated by making use of the Prime Number Theorem
for arithmetic progressions in the form

> A= ﬁ +0(x) asx — oo, (1.8)

n=a(modm)

where A (n) is the von Mangoldt’s function. By using (1.8) and using partial summation,
we have

2

> pA(p) = +o(x?). (1.9)

e 24 (m) "

Also we note that

[ (1‘E> [ (1‘%> =11 (I‘E)ng(ll—zm) 1 <1_%>

pim p plm

pln21 plm
s 7% " p>2 7%
) b1 (1.10)
“T1(1=5) TT(5=2):
plm plm
p>2 pla
p>2
2\ _ (p=2)/p )
Hp\m(l 1/117)23_,[“( P> ,1,_7[,1(((?7—1)/}’))2
p>2 p>2
_r11PP-2)
- };[1 (p—1)2 (1.11)
p>2
‘ﬂ( (r- 1)2) Cm-
p>2

We also need the following lemma.
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LEMMA 1.2. Given integers1 <a <m,

#{i,l<i<m:(im)=(a-im)=1}=m]] 1_3)1—[(1_%). (1.12)
pim plm
pta pla

2. Proofs

PROOF OF LEMMA 1.2. By the Chinese Remainder Theorem, we see that

(iym)=(a-i,m) =1 (2.1)

if and only if
(i,p) =(a—-1i,p) =1 forevery prime p | m (2.2)

if and only if
i#0ora(modp) forevery prime p | m. (2.3)

Thus if p! divides m (but p'*! does not) then the number of ip, i < i, < p!, such that
i, #0 or a(modp) is p(1-2/p) if p ta, and p'(1-1/p) if p | a.

Knowing the number of possibilities (mod p!) for each p dividing m, we apply the
Chinese Remainder Theorem to find that the number of solutions (modm) is the
product. This gives the desired formula, and the lemma is proved. a

PROOF OF THEOREM 1.1. Define von Mangoldt’s function

A(n) = logp, if n=p%isaprime power, 2.4)
0, otherwise.
Let
Ar(n)= > Ap)A),
p+ga=n
(2.5)
Y(x)= > Ax(n), Yelxima)= > Axn).
n=x n=x

n=a(modm)

Just as in the proof of the Prime Number Theorem, where it is easier to prove that

> Am) ~x (2.6)
n=sx
rather than
DI 2.7
. log x
primep<x

and then show that these statements are equivalent, herein we will prove that

: - P_—1>X_2
Yo (x;m,a) ~Cm [ ] <p72 S (2.8)
pl(a,m)

p>2
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and then note that this is equivalent to our theorem (which may similarly be deduced
through partial summation). So

Ygma) = > A(p)A@)

p+q<x
p+q=a(modm)

=2 2 A 2 AW@

i=0  p=X q<x-p (2.9)
p=i(modm) q=a—i(modm)
m
= > Z Ap)Y (x—p;m,a—i)+o0(x),

i=0
(i,m):(la—i,m) 1p= l(modm)

we now incorporate (1.8) into (2.9) and we establish

Y2(m,a) = 2. 2. A(v){ +o(x)}+o(x). (2.10)
(i,m)=(a—i,m)=1 p=<x (15( m)
p=i(modm)
We expand (2.10)
Alp)x
BLocma) = S SoOAPE_ S pAprre) 3
(i;m)=(a—im)=1 p=x p(m p=x p=x
p=i(modm) p=i(modm) p=i(modm)
(2.11)

By incorporating (1.8) and (1.9) into (2.11), we have

2
Y, (x;m,a) = (m+o(xz)>( HZ' )711
' ' 2.12)
x2 )
2¢(m)2( mzlm) 11) +olx).
From the lemma we see that (2.12) now becomes
) o x? 1 2 1 5
¥, (x;m,a) = T Hpm(l—l/lﬂ)Zmz}:L(l p)}:[n(l p)+o(x )
pta pla
. (2.13)
x? 11 2\L 7 (1o 1) 4o (a2
" 2m(1/) Ty (1= 17p)? 2 211 (1 p)zpﬁm<1 p) ol
fa’i“z 4

Using (1.10) we see that (2.11) becomes

Yo (x;m,a) = x2 m [ < p) I (p—:l) +o(x?). (2.14)

pim
p>2 pla
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Now incorporate (1.11) into (2.14) we now establish

x? p-1 )
Yo(xsma)=—Cn [] (5 ) +o(x?). (2.15)
2m -2
pl(a,m)
p>2

Using the definition of left-hand side of (2.15), we have

2 _
> ( > A(P)/\(q))=2mem [1 (p—_;)+o(x2). (2.16)

n=x +q=n
n=a(modm) = p\;a;zn)

Rearranging the inner sum of the left-hand side and applying partial sum, we get

2 _

> (ng(n)logZ(n)> - X cn [ (p—l) +0(x?), (2.17)
= 2 2m p-2

_ n< pla,m)

n=a(modm) p>2

from which we can now establish the theorem using another partial summation. O
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