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The aim of this paper is to establish a connecting thread through the probabilistic concepts
of pth-moment Lyapunov exponents, the integral averaging method, and Hale’s reduction
approach for delay dynamical systems. We demonstrate this connection by studying the
stability of perturbed deterministic and stochastic differential equations with fixed time
delays in the displacement and derivative functions. Conditions guaranteeing stable and
unstable solution response are derived. It is felt that the connecting thread provides a
unified framework for the stability study of delay differential equations in the deterministic
and stochastic sense.

2000 Mathematics Subject Classification: 92C20.

1. Introduction. Concepts of pth-moment Lyapunov exponent have been employed
in the study of stability behaviour of structural systems with stochastically perturbed
excitations, where governing equations for single-degree-of-freedom systems are typ-
ically of nonlinear stochastic ordinary differential equations (ODEs) of the form

X+ [280wo+V200E() ] % + wi[1+ 20y (t)]x +e03x3 =0, (1.1)

where ¢y and wg represent the damping ratio and the undamped natural frequency of
the excitations, respectively. The processes £(t) and y(t) are independent processes
which are typically stationary with zero mean values; 0y, 0] are the noise intensities
of the processes, € is a small parameter that takes values between 0 and 1, while o3
is a real constant denoting the nonlinear perturbation. The name moment Lyapunov
exponent comes from the connection of pth-moment stability, which we denote here
as J(p), and the sample stability or Lyapunov exponent of stochastic solutions which
is denoted by Trexp. The concepts have become the most attractive aspects for the
study of stability behaviour of stochastic dynamical systems. The parameter p € R of
moment exponent is a unique number and it stands for stability index of the solutions.

To define the concepts of pth-moment Lyapunov exponent, we consider the special
linearized case of (1.1), written by means of the transformation x = x1, X = x2, and
along with the assumed equilibrium conditions x;(0) = x¢, x2(0) = v, as form of a
pair of It6 ODEs, namely

dxi(t) = xodt, (1.2)

2
dxs(t) = —{ngl + (250w0 - E(;O))Q}dt — e2gpx,dW (1), (1.3)
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where W (t) is a unit Wiener process. By the multiplicative ergodic theorem of Oseledec
[7], the Lyapunov exponent and the pth-moment exponent of solutions to (1.2) and
(1.3) are defined, respectively, as

. - 1/2
Tlexp = lim ¢ l{log{ |1 (£,%0,00) |* + | x2 (£, X0, 00) |*| } (1.4)

J(p) = }{rglogE[{{ | x1 (t,x0,00) |2 + | x2(t,x0,00) |2}1/2}P]’ (1.5)

in which E [ -] stands for the expected value of the quantity within the square bracket.
In (1.5), if the exponent J(p) < 0, then by definition E[{-}?] — 0 as t — o, and thus
we can say that the solution response to (1.2) and (1.3) is pth-moment stability in the
almost-sure sense. On the contrary, that is, for 3(p) > 0, the expectation E[{-}¥] # 0
as t — oo, and thus pth-moment instability will occur in the almost-sure sense. The
values of e, and J(p) are real and deterministic in nature as long as the random
system is ergodic. By the pth-moment Lyapunov exponent of a stochastic dynamical
system, we mean that there is a pth-moment stability of the corresponding random
linear solutions of the system in the almost-sure sense. This means that, among an n
number of exponents, if the maximal Lyapunov exponent is negative (i.e., Teyp < 0),
the random system is almost-surely stable for small values of the stability index p.
However, in this situation pth-moment grows exponentially for large values of p, and
thereby indicating that pth-moment response of the system is unstable. A remarkable
observation one can infer from this, is that although at an exponential rate we may
have 1Ty, < 0, thereby resulting to stability of the solution response in the almost-sure
sense, yet for large values of p there is small probability of chance that the response
would be large. Corresponding expected values for this rare event are indeed also
large, and it is conclusive to say that pth-moment exponent of the system is unstable.
Opposite of this situation is when the Lyapunov exponent is positive (i.e., ey > 0)
and the system is almost-surely unstable.

The values for the stability index p are usually determined by the solutions of
J(p) = 0, and these values are dependent upon the dimension of the random dy-
namical system. It has been shown by Baxendale [3] that the corresponding values
of p when J3(p) = 0 equal the negative of the dimension of the system. For exam-
ple a system with a dimension n, if for a solution of J(p) = 0, we have p = p; = 0,
then we can write p; = —n. At such a point, p = p1, there is an expectation that the
sign of the maximal value of the Lyapunov exponent ey, will change from negative
to positive, and thus a change in character of the corresponding probability density
function will occur as well. Traditionally, there is an obvious computational difficulty
if one wishes to determine J(p) for many arbitrary values of p. Efforts by Arnold et
al. [1, 2] and many others in the stochastic community, led to the fact that the pth-
moment Lyapunov exponent J(p) : R — R is a convex and analytic function in p in
such a way that the expression J(p)/p increases and 3(p) = {0},—p,. Thus by tak-
ing the asymptotic expansion of J(p) for p = p; near zero, and bearing in mind that
(d3/dp)(0) = Texp, J(0) = 0, we have

&3
dp?

3
I(p) = pTexp + (2) " 'p (0) +(3!)(’1)p3j—;§(0)+0(p”). (1.6)
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This asymptotic connection indeed brought about the concepts of large deviations
of linear random dynamical systems in the stability study of solution responses. The
asymptotic expansion has been employed in the literature to determine rare situations
where negative maximal Lyapunov exponent, pth-moment solution response grow
exponentially for large values of p.

Another attractive aspect of pth-moment Lyapunov exponent is its further con-
nection with the integral stochastic averaging method. It was Has'minskii [5] and
Stratonovich [9] who developed formulas for such a connection, and the formulas
were based upon the ideas of Bogoliubov and Mitropolski [6] in the context of deter-
ministic averaging method. When the integral stochastic averaging method is applied
to equations of the form (1.2) and (1.3), it produces Markovian solutions to the non-
linear systems in terms of amplitude and phase relations, which can be written either
in the sense of Stratonovich or Itd using stochastic differential rules. The rules treat
differentiation of functions mapped originally from a logarithmic polar transforma-
tion of the vector state variables, which depend on the corresponding It6 equations.
The connection between these probabilistic concepts and the stability study of de-
lay differential equations (DDEs), by means of Andronov-Hopf bifurcation and centre
manifold, is the focus of this investigation. In pursuing this, we expect to provide a
unified framework for the study of stability of DDEs with deterministic and stochastic
perturbations. First, we will use the Andronov-Hopf bifurcation and centre manifold
according to Hale [4] to reduce the infinite-dimensional character of the DDEs into
family of ODEs in the space C := C([-T,0],%?). The integral averaging of the ODEs
produces averaged equations in terms of amplitude and phase relations. From the
averaged equations, explicit expressions for the occurrence of stable and unstable
solution responses will be derived using pth-moment Lyapunov exponent.

2. Hale’s reduction approach (see [4]). Let L = L(x;(0),u) : CxR — R"™ and Af =
Af(xi(0),u,8) : Rx C — R™ denote accordingly the linear and nonlinear functional
mappings depending upon a parameter y and the state variable x;(6). The variable
xt(0) is containedin C := C([-T1,0], R"), the Banach space of all continuous functions
equipped with the usual supremum norm || - || in C and vector norm | - | in R"; x;(0) €
C represents the past history solution of a delay differential equation of the form

x(t) =L(x¢(0),1)x(0) + A f(x:(0),u,6), O0<e<1, (2.1)

whose trajectory will coincide with the solution of the future state variable x (t) € R"
through the definition x;(0) = x(t+0), -t <0 <0, t > 0, where T > 0 is a fixed time
delay. For a given initial continuously differential function ¢ (0) € C having supremum
norm ||¢p(0)|| = sup_,-9-o 1 (0)], we can say that the function x(¢(0),t,u) € R"
through ¢ (60) with initial value ¢(0) at zero is the solution to (2.1) if and only if
xt(¢(0),u) € C satisfies the variation of constants-integral equation

t
xt(¢<9>,u):m,u)qb(e)+ejoJ((t—§>,u)xo<9mf(¢<9>,u,e)da 2.2)

where the element X,(0) is n X n matrix function defined as Xp(0) =0, - T <0 <0
and Xy (0) =1, 0 =0, and I is the identity matrix. In this integral equation, J(t,u) is
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defined for t,u > 0, and it is a bounded linear operator with infinitesimal generator
A(O,u) € C described via the linear delay equation when € = 0 in (2.1), namely

X () =L(x:(0),u)x:(0), ¢(0) =x(0), -T<0<0, (2.3)

in which for ¢(0) € C, we have D(A(0,u)) = ¢(0) € C: p(0) € C, p(0) = L =
L_(p(=T), 1) + Lo(p(0),1), 0 = 0 and A(O,u)p(0) = ¢p(0), —T < 0 < 0, where
L +(¢p(—1),u) and Lo(¢p(0),u) are n X n matrices. For a given function n(0,u) :
[-T,0] — R" of bounded variation in [—T,0], described by n(0,u) = L_+((—T),u)
when 6 = —71,0, -7 < 0 < 0 and Lo((0),u), and 6 = 0, we have the representation
L(x:(0),u)x:(0) = ff)T[dn(G,u)]xt(G). J(t,u) is a semigroup, that is, for t,g > 0, we
have J(t,u), J(t,u), J(g,u) = J(t+¢,u), and furthermore J(0,u) = I for t = 0. It maps
C into itself, namely J(t,u) : CxR — C, or equivalently carries the solution state evo-
lution of x;(¢(0),u) in C onto R™ by the relation x;(¢(0),u) = J(t,u)p(0), where
J(t, 1) (0) is the solution operator of (2.3). For ¢»(0) € D(A(0,u)), the solution op-
erator J(t,u)p(0) is differentiable and there is the differential equation

%U(t,u)d)(@)] =AW, [J () P0)] =J(t, 1) [A0,1)P(0)]. (2.4)

Then the action of J(t,u) on the function ¢(0) is described by J(t,u)¢p(0) =
P(0)eBt+0 1 < 9 <0, t >0, while the action of (A(8,u)) on ¢(6) is given by
AO,u)p(0) = p(0)B, —T < 0 <0. B e Cis an nxn constant matrix whose elements
are the eigenvalues with zero real parts of the transcendental characteristic equation

0
AA, ) = det{/\I—J [dn(s,u)]ew} =0, (2.5)

associated with (2.3). The properties of J(t,u) and the unique correspondence be-
tween J(t,u) and its generator A(0,u) ensure that the spectra sets o (J(t,u)) of
J(t,u) and o (A(O,u)) of A(O,u) € C are the point spectra of the finite type, and
they consist of those eigenvalues that satisfy (2.5). This equation A(A,u) = 0 in (2.5)
has infinite-dimensional eigenvalues, and among them we will assume that the pa-
rameter u varies near ., and there exists a finite number of eigenvalues of the form
A 1) = {A1,A2,A3,..., Ak}, k=1,2,...,n. Furthermore, we assume that these eigen-
values are exactly the point spectrum of J(t,u) and its generator A(60,u), and they
have positive real and complex conjugate parts. All other eigenvalues of A(A,u) =0
are assumed to have negative real parts.

With the above assumptions, we decompose C into the generalized eigenspace
P = P(A,u) € C and complementary subspace Q = Q(A,u) € C as C = PaQ by
all the eigenvalues of (2.5), where P is associated with the k-dimensional eigenval-
ues of A(A,u) and Q corresponds to all the remaining infinite-dimensional eigen-
values of A(A,u) = 0 with negative real parts. The subspaces P, Q are disjoint and
invariant under J(t,u) and A(O,u). This way, if for example ¢(0) € P, then a so-
lution x(¢(0),t,u) defined on [—T,0) has a backward extension on (—oo,—T1], and
indeed x;(¢(0),u) remains in P for all values of time t € (—o0, ). The decomposi-
tion C = P& Q by A(A,u) = 0 yields that the elements ¢(0) and X, (0) of the integral
equation (2.2) in C can have the unique representations ¢(0) = ¢¥(0) + $2(0) and
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Xo(0) = Xg (0) +X0Q(9) where the superscripts denote their respective projections
onto P and Q. Also, for the integral solution x; (¢ (0),u) in C, we have the representa-
tion x; (p(0), 1) = xF (p(0), 1) +x2(p(0), 1) where the projections xF (¢(0),u) and
xtQ(d)(O),u) are given by

t
xf(qb(e),u)=J(t,u>¢P<9>+ej0J((t—§>,u)xg<e>Af<¢<9>,u,e)d§, t € (—oo,00),

t
x{2(h(0), 1) =J(t,u)d)Q(Q)+5J0J((t—E),u)X(?(Q)Af(cb(Q),u,s)dE, t €[0,00),
(2.6)

and the elements in these equations are explicitly defined by

$(0) €C1P"(0) = p(0) -2 (0), $"(0)=@(0)b, b= (¥(s),¢"(0)),

p Q ; (2.7)
Xo(0) e C| Xy (0) =Xo(0)—Xy(0), Xo(0):=(0)¥(0), —-T=<6<=<0.

Furthermore, it is known that the restriction of the semigroup J(t,u) to the subspace
P constitutes a generalized centre manifold My, = M, (A(0,u)) € C([-7,0],R™). This
centre manifold is tangent to the subspace P at a point where P and Q are orthogonal.
On this centre manifold, long-term qualitative behaviour of the original nonlinear de-
lay equation (2.1) can be well approximated by the behaviour of the finite-dimensional
ODEs restricted to the point spectrum of J(t,u) and A(6,u), or equivalently to the
eigenvalues of A (A, u) = {A1,A2,As3,...,Ax}. The ODEs come from the variation of con-
stant integral equation x/ (¢(8),u) of the generalized eigenspace P € C.

The function ®(0) in (2.7) is a basis for P € C, and its elements are the linearly
independent solutions of (2.3) for which A(A,u) = {A1,A2,A3,...,Ax} are eigenval-
ues of (2.5). That is, for all A of A(A,u), we have ¢y (0) = e’ where we denote
®(0) =[1(0),p2(0),...,¢r(0)] € C. Also, corresponding to these finite-dimensional
eigenvalues is the k x k constant matrix B in C. This matrix B is usually the Jordan-
canonical form whose elements are the eigenvalues of A(A, u) = 0 with zero real parts,
and they can be determined by means of the definition A(9,u)®(60) = ®(0)B such
that the identity ®(0) = ®(0)e?? for —t < 8 < 0 holds. ¥(0) is the normalized ba-
sis of Y(s) = [Y1(s),P2(s),...,pi(s)] € C, Wi(s) = e at s = 0 for the general-
ized eigenspace P = P(A,u) € C corresponding to the functional delay differential
equations

u;(s) = L(up(s),w)up(s), up(s) e C=C([0,T1,R"), L(u;(s),u):CxR — R",
0
E(ui(),pui(s)= = [ [AnGsmlug(s), ug(s)=ws),

up(s)=u(-t+s), 0<s<t,tel0,0),
(2.8)
formally adjoint to (2.3) with respect to the bilinear relation

0 0
(W55, bx(0)) = (@0, b 0) - [ [ “wite=9)[dn(0,m]de(E)dE,
-1J0 2.9)

dr(0) €C, yj(s)€C, j,k=1,2,3,...,n,
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in C x C. The normalized basis ¥(s) is determined by computing ¥(s) = (¥(s),
®(0)) ¥ (s) where (¥(s),®(0)) is a k x k inner product matrix with the bilinear re-
lation in (2.9) as elements. That is, for ¢ (0) € C, yj(s) € C, we have (Y (s),0(0)) =
(pj(s),Pr(0)), j,k=1,2,...,n, which usually produces a nonsingular value after the
substitution of its elements into (2.9). That is, (¥(s),®(0)) # I. However, with the
normalized basis ¥(s) € C for P € C, we can see that the substitution of the ele-
ments (¢(s),pr(0)) of the new inner product (¥(s),®(6)) produces the identity
matrix, (¥(s),®(0)) = I. Next interest is to determine the exponential estimates of
the projected solutions xf(db(@),u) and x?(d)(@),u), and for this purpose we need
the following theorem.

THEOREM 2.1. For any real number, say U, let A(A,u) = {A € A(O,u) | A(A,u) =
0,ReA > u} be the point spectral set of the finite type and has eigenvalues satisfying
the characteristic equation (2.5). If C is decomposed into the generalized eigenspace P
and the complementary subspace Q by all the eigenvalues of A(A,u) =0asC=Pa&Q.
Then, for any ¢(0) € C with the representation ¢(0) = pF(0) + P2(0) there exist
positive constants 6 and k = k(8) such that the following inequalities hold:

1T, 1) dF (0)]| < ke |pP(0)]], t =<0,

(2.10)
[[J(t, 1) p2(0)|| < ke~ W+I||p2(0)||, t=0.

REMARK 2.2. A proof of the above theorem is given in the classical book of Hale
[4]. By means of (2.10), numerous autonomous and nonautonomous time delay per-
turbations have been estimated. Here, we exploit the insights that emerged from the
proof of these inequalities. Namely, any projected solution of equations (2.3) onto
P € C is bounded as t — —o, and unbounded when t — oo, while a solution projec-
tion onto Q € C will remain bounded for all values of t > 0. In particular, having
Pd2(0) = () — PP (0) and pF(0) = ®(0)b such that J(t,u)P(0) = &(0)eBE+0) we
have from the first inequality that || J(t,u) PP (0)] — 0, as t — —co, and while the sec-
ond inequality will yield ||J(t,u)$2(0)|| — 0, as t — . Also, by means of the first
inequality in (2.10), it can be shown that the exponential estimate for x} (¢ (6),u),
t € (—o0,) defined on P are bounded as t — —o and unbounded when t — «. The
latter is indeed the situation which produces the corresponding ODEs on the centre
manifold.

Hence, for the estimation of the nonlinear variation of constant integral solutions
xF(p(0), 1), x?(d)(e),u) in (2.6) and (2.7) we have from the second inequality the
following:

1T, 1) 20|

X&(0) = {Xo0(0) = X2 (0) | Xo(0) := ®(0)¥(0)},

t
x?(¢(e>,u)—ejomt—5),u)X8<9>Af(¢<e>,u,s)d&H, ¢ € [0,00),

$2(0) = p(0) - " (0),
(2.11)
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where the left-hand side of this equation exponentially converges to zero as t — oo,
namely

[Tt 1) p2(0)|| = [T (£, ) {Pp(0) — P (O)}|| = [|T(t, 1) P (0) —®(0) e b||
=||J(t,1)®(0)eB' b —d(0)eBtb|| — 0, (2.12)
t— oo, JO,u)=1I, b:=(¥(s),¢"(0)).

In a similar way, the first inequality produces fo(q&(@),u) | - 0ast— —oo. As first-
order approximation, one can accept these convergencies, and then describe the long-
term behaviour of the original delay differential equations (2.1) with the corresponding
set of ODEs for xf(qb(@),u), —-T<60<0,te[0,c0) on the generalized centre manifold
M, eC.

Therefore, on the centre manifold M, € C, we have the corresponding solution of
(2.1) as

M, = xF(p(0),u) €C, xP(Pp(0),1) =@ (0)z(t) +x2(p(0), 1),

i (2.13)
z(t) = (¥(s5),$"(0)), z(t) € R,
Since we know that the exponential estimate for x?(cﬁ(@),u) in the complementary
subspace Q is zero, then the change of variables xf(d)(@),u) =®(0)z(t),-T<0=<0,
and their differentiation with respect to time t produces

B(0)2(t) = xF (p(0),1)

d ! (2.14)
_ E{J(t,u)qbl’(@) +sJ J((t—g),u)xg(Q)Af(d)(g),u’E)dg},
0

where the substitution of XZ(0) := ®(0)¥(0) into this equation gives the k-dimen-
sional ODEs

2(t) =Bz+Y(O) AL (D(0)z(t),1,€), z(t) eRK te[-T,0), (2.15)

and B is a k x k matrix. We now illustrate these ideas by two examples with fixed time
delays.

3. An illustrative example I. The specific single-degree-of-freedom dynamical sys-
tem considered is represented by the second-order DDEs of the form

x1(t) = x2,

3.1
X (t) = 7(1)(2))(17250w0X27uw8{X1(t7T1)+51X2(t7T2)}781/20'05@))62, (3-1)

in C:= C([-7,0],R2), where T» < T < T;. All the parameters contained in these equa-
tions are real and u is the selected bifurcation parameter, which is set to vary by €f
in the neighborhood of some critical value u., namely u = u. + €fi. T1, T2 are the re-
spective time delays in the restoring and damping forces. Equations of the form (3.1)
have been encountered in the active controlling of structural systems with earthquake
excitations [8], where the parameter u often stand for the gain of the delayed forces.
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We study the stability of (3.1) by examining the eigenvalues of the transcendental
characteristic equation

A ) =A%+ (280 + HwS1e 2 2) oA + w3 (1 + p)e AT =0, (3.2)

which is associated with the linearized part when oy = 0. Along with the linear DDEs
in (3.1), we consider their corresponding adjoint form

(L) = wiuz + wipuz (t+11), £ =-t,

A R (3.3)
U (t) = —u1 +200woU2 + C()(Z)H51u2(t+T2),
in C:=C([0,7],R?2) with respect to the bilinear relation
(W;($), Pk (0)) = wi(0)pi(0) — udrwi{w;(0) P (—T1)}
O rdy;(C+12)
_pswd | (APAEET) d
Ho1wq J—Tz ( dC >d)k(§) C (34)

0
+ung Y (C+T1)pr(0)dC, jk=1,2,
-

where ¢ (0) € C and yj(s) € C. Solutions to the linear DDEs are identical. However,
the only difference is that each set of solutions is described in a separate space. That
is, solutions of (3.1) are contained in C, while those of (3.3) are contained in the adjoint
space C.

We assume that A;p = v(p) =iw(p), v(u) > 0, w(u) # 0 are solutions to (3.2)
satisfying v(uc.) = 0, w(ue) # 0, Re{dA(A,u)/du} += 0 at Hopf bifurcation and all
other solutions of A(A,u) = 0 correspond to eigenvalues with negative real parts.
When we put A; = iw into (3.2) and set the resulting real and imaginary parts to zero,
we obtain

w? — pw3 (81 sinwTz + w1 coswTy)w— w3 =0,
(3.5)
(280 + Hwod1 COS WT2) Wow — wWiusinwT; = 0.

These are the explicit expressions for the determination of boundaries of stable and
unstable solutions in the phase plane, say (u; d¢). By the implicit function theorem, we
take the derivative of A(A,u) = 0 with respect to u. Then the substitution of A; = iw
into the resulting equations yields the expression for {dA(A, ) /du}a=iw, u=p., Whose
real part Re{dA(A,u)/du}r=iw,u=p, 1S @ nONZero quantity.

We decompose C by all the eigenvalues of A(A,u) =0 as C = P® Q, where the eigen-
values A1, = v(u) £iw(p) are associated with the two-dimensional subspace P and the
infinite-dimensional complementary subspace Q is associated with all the remaining
eigenvalues of A(A,u) = 0. For A; = iw(u), we have the exponential solutions ®(60) =
[Pp1(0),2(0)], p1(0) = [coswO,sinwO]T, and ¢»(0) = [—sinw6,coswO]T, which
form a basis for P € C as well as for all the solutions to (3.1). That is, for some con-
stant vector b, we have the required initial function ¢(6) = ®(0)b € C. Furthermore,
we have B = [[0,w]T,[-w,0]7] and it can be shown that ®(0) = ®(0)eB?, -7 < 0 < 0.
T stands for transpose. The basis for Q is determined by means of the basis function
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®(0) for P € C and the exponential solutions ¥ (s) = [@1(s),p2(s)] € C, which is the
basis for the subspace P e C of the adjoint equation (3.3). Again for A; = iw (u), we
have the elements ;(s) = [cosws,—sinws]T, s (s) = [sinws,cosws]T,0<s < T.
The elements of ®(0) € C, and ¥ (s) € C form the inner product matrix (¥ (s),®(0)),
namely (¥(s),®(0)) = [[(@1(5),$1(0)), (W2(s),P1(ONIT, [(P1(s),P2(0)), (W2 (s),
$2(0))17]. When we make the substitution of the elements of (¥ (s),®(60)) into (3.4),
it produces the nonsingular matrix (¥,®)nsg = [[W11, Y2117, [—Wi2, Y2217 ] where

2 2 :
P11 = (1-w§TipcoswTy) — 51 WHU(COSWT2 — WT2SINWT2), Wor = Y11,

(3.6)
Y12 = 61 WU (WT2COS T2 +SINWT2) — WFTIUSINWT], WYa1 = —Pr2.

With this nonsingular matrix, we know that the basis ¥ (s) € ¢ for P can be normalized
to anew basis ¥ (s) = [(1(s), P2 (s)] € C, where its elements 7 (s) = [ (11 (s), P21 (s) 17,
P2 (s) = [P12(5),Pa2(s)]" are obtained by evaluating ¥ (s) = (¥, ®);;5,Y (s). Namely,

11 (s) = (@3, + W) (Wazcosws + w2 sinws),
Pr2(s) = (w3, +W%2)71((IJ22 sinws — 12 cos ws),
Po1(s) = — (@2, +¥2) (W1 cosws + Yy sinws),

W22(5) = = (Wi +wh) " (War sinws — Yy cos ws).

(3.7)

Then the substitution of the new elements (¢/;(s), $x(60)), j,k = 1,2 of the inner prod-
uct matrix (¥(s),®(0)) into (3.4) yields the identity matrix (¥,®)iq = I. Consequently
on the subspaces P,Q € C, we have the characterizations:

P={$(0) eCIp(0) =" (0)+d2(0), $¥(0) =d(0)b, b:= (Y(s), $p"(0))},
(3.8)
Q={¢p(0) €C, $p%(0) = d(0) - " (0), (¥(s), $()) =0}.

Then on P the transformation x! (¢ (0),u) = ®(0)z(t), z(t) = (¥(s),$(0)), z(t) €
R2 will give rise to the following relationships: xi(£) = z1(t), x2(t) = z2(t), 6 = 0,
X1(t—T)=2z1COSWT+ 2z SInwT, Z2(t—T) = —z;SinwT +2zpcoswWT, O = —T.
Therefore, with the above characterizations, specifically the bases ®(0) € C, ¥ (s) €
C so that (¥,®)iq = I, the matrix B = [[0,w]7,[—w,0]7] and the coefficients of the
matrix ¥(0) of the normalized basis ¥ (s) for P € C of the adjoint equation (3.3), we
have the equivalent stochastic ODEs on the centre manifold M, € C ([-T,0],%2%)

21(t) = —wzs — e{q’;lg(O){ﬂw%(zl CoOsWT +zzsinwTy) + e V200E(t) 2o}
— 11 (0) i w3 (z2 cOs T2 — 21 sinw'rz)},
(3.9)
Zo(t) = wzy —E{JJZZ(O){ﬁwS(zl CcoswTy +zzsinwTy) + £ 200E(t) 2o}

— P21 (0)iw w3 (22 COSWT2 — 23 Sianz)}.
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The polar coordinate transformation z; = asin®, z, = —acos0, ® = wt + @ writes
(3.9) in terms of amplitude a and phase @ relations. Then the method according to
Has'minskii [5] and Stratonovich [9] produces the uncoupled averaged equations

1 - 1 _ _
da = —Eas{w(z)u(Km +81K112) — Zoﬁ(qjﬂ(O) +q/§2(0))}dt

5 w2
el M%adm(t),
— 72
ao = _%f{w(z)ﬂ(Kus +61K114) fdt +€'/° M%d‘%(t),

Ki11 = P12(0) cos w Ty + P22 (0) sinw Ty, K112 = 11 (0) sinw Tz — (P21 (0) cos w T,
K113 = ¥22(0) cosw T — P12(0) sinwTy, K114 = P11(0) cos w T2 + P21 (0) sinw Ty.
(3.10)

We set p =loglal to get dp(t) = (1/a)da, whose direct integration yields with prob-
ability one (w.p.1) the Lyapunov exponent

Tlexp 1= —(%)g{wﬁﬂ(m“ +81K112) — (%)ag(q}ﬁ(O) +¢p§2(0))}. (3.11)

Thus, the solution response is asymptotically stable w.p.1, if for ey, = 0, we have
w3fi(k111 + 61K112) > (1/4) 08 ((2,(0) + (U3,(0)), otherwise unstable when this in-
equality fails.

In order to obtain the pth-moment exponent J(p) for the amplitude equations
(3.10), we set up an It6 equation for a” as follows:

1 . 1 _ _
d(a”) = *EPE{UJ(Z)H(IQH +01K112) — Z(T(?P(sz(o) +3,(0)) }ardt

(3.12)
- 9
Ll Mo—oappdwl (1).

From which and taking the expectation of both sides of (3.12) leads to J(p) :=
—(1/2)pelwifi(kin +81K112) — (1/4) 06 p (Y5, (0) + P13, (0))}. Putting I(p) = {0}—p,
produces two values of the stability index p, and thus we can say that the solution
response is pth stable if and only if the inequality 0 < p; < 4w5f1(K111 +01K112)/
0§ (P3,(0) +P3,(0)) holds.

3.1. Anillustrative example II. The reduction of the infinite-dimensional character
of DDEs to ODEs is further demonstrated by considering the nonlinear delay equation
x1(t) = x2,
Xo(t) = —wi{(1 - p)x1 +px; (t—T)} =280 wox2 (3.13)
— w3 {B3ux3 (t—T) +03x3},
which is precisely the classical Duffing equation when u = 0. The parameters B3, 03

in these equations denote the coefficients of the nonlinearity. The linearized part of
(3.13)

X1(t) =x2,  Xo(t) = —wi{(1-p)x1 +uxi(t—T)} —280wox2, (3.14)



MOMENT LYAPUNOV EXPONENT OF DELAY DIFFERENTIAL EQUATIONS 349

in C:= C([-T,0],R?) has the adjoint form

(1) = w3{(1—wuz +pua (E+71)},  wa(f) = —uy +280woua, (3.15)

in C:= C([0,T],%R2) and the bilinear relation

0
(00, 1(0) = W OPu(0) +wip | @i(T+OB(©AL, jk=12. (3.1
Furthermore, (3.14) has the characteristic equation
A 1) := A2 + 280 woA + w3 { (1 —p) + pe 7} = 0, (3.17)

which may have eigenvalues of the form A;» = +iw () for u = p. > 0, and while all
the remaining ones can be assumed to have negative real parts. Substituting A; = iw
into (3.17), we get the expressions for stability characterization w? — w3{(1 — ) +
pcoswT} =0 and 26pwow — w%u sinwT.

Next for the eigenvalues of A; » = =iw (u), we define the bases of P € C and PeCof
the linear delay equations (3.14), (3.15), and (3.16), namely ®(0) = [¢1(0),¢$2(0)] € C,
$1(0) = [coswO,sinw]T, ¢p2(0) = [-sinwO,coswO]T, and Y (s) = [Y1(s),P2(s)] €
C, W1(s) =[cosws,—sinws]T, w»(s) = [sinws,cosws]?. The computation of the in-
ner product matrix (¥(s),®(0)) = (y;(s),Pr(0)), j,k = 1,2, yields (¥,®)nsg = [[P11,
Warl?, [-@r2,Ww2217] where @11 = 2o = 1 + W3UT COSWT, Y12 = W3UTsinwT, and
Wo1 = —Y12. We define the new basis ¥ (s) € € for P by computing ¥ (s) = (¥, ®),5,Y (s),
which yields

R AT AT A ] B

F11(5) = (W +wh) " (Paecosws + Yz sinws),

F12(5) = (W + i)~ (Waesinws — o cos ws), (3.18)

F21(s) = — (w3 + @)~ (w21 cos s + iy sinws),

F22(5) = — (Wi + ) ™ (W21 sinws — @1 cos ws).
Again the substitution of the elements (;(s),$x(0)), j, k = 1,2, of the new inner
product (¥(s),®(0)) into (3.16) produces the 2 x 2 identity matrix (¥,®)iq = I. Since

the elements ¢(0), Xy(0) are in C, we have the corresponding projections onto the
subspaces P,Q € C as follows:

P={p(0)eC, $"(0) = p(0) - H2(0) | $F(0) =& (O)D,
(3.19)
b=(¥(5),9(0)), X[ (0):=2(0)¥(0)}

and

Q=¢0)eC, $20)=P(0)-p"(0) | (Y(s),92%(0)) =0. (3.20)
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Consequently, the change of variable x7(8) = ®(0)z(t), z(t) € R?, z(t) = (¥(s),
¢* (0)) produces the set of nonlinear ODEs on the centre manifold M, € C([-T,0],R?)

Z1(t) = —wzo + eW2(0) {Bguc(zl COSWT + 22 sinw‘r)3 + (ngf

+wifi(z; — (21 cos T + 22 sian))},

s (3.21)

Zx(t) = wz; +e¢22(0){[33uc (z1coswT +2 sinw'r)3 + 0323
+wiii(z; - (z1 cos T + 22 sinw'r))},

where 12(0) = — (@i + @i,) @iz and §P22(0) = (@3, + Y3,) " 'yi1. Writing the ODEs
(3.21) into amplitude and phase relations at the expense of the transformation z; =
asin®, z, = —acos®, ® = wt + @, and then applying the integral averaging method
leads to the uncoupled averaged equations

_ ca .
a(t) = —§{3Q311a2 +4qi1 i},
. £ _
@(t) = —§{3P311a2 +4puif},

az11 = B3te {@12(0) cos T + P22 (0) sinw T} + o312(0),

(3.22)
din1 = W3{P12(0) (1 -coswT) — P2 (0) sinwT},
p311 = B3Hc{W22(0) coswT — P12(0) sinw T} + 03(22(0),
p111 = W3 {P22(0)(1—coswT) - P12(0) sincwT}.
By the relationship a = ag + p, we have the variational equation
. £ _
p(1) = —(§ ) (9asa} +4amlp, (3.23)
where for p(t) = 0 yields the scalar equation
£ .
glao,u) == —<g) {9ajasi +4a11 0} =0, (3.24)

where a is the steady state value determined by setting a(t) = @ (t) = 0. Thus, it can
be shown that the solution responses of the nonlinear delay equations (3.13) show
the subcritical stability for 9gq311 < —44111 and 4g111 > 0, and supercritical stability
when 9g311 > 44111 and 44111 > 0.

4. Conclusion. An attempt to establish a unified framework for the study of sta-
bility of second-order differential equations with multiple and distinct time delays
in the displacement and derivative functions, plus a derivative process of the damp-
ing coefficient, has been made. Andronov-Hopf bifurcation, centre manifold theorem,
the integral stochastic averaging method, and pth-moment Lyapunov exponents have
been employed in the development of the framework. Sufficient conditions for stabil-
ity in the deterministic and stochastic sense have been presented. It is felt that this
framework will uncover a wealth of phenomena of stochastic dynamical systems with
delays since the investigations are conducted in the appropriate infinite-dimensional
space C([—-T,0],R2) without the assumption of small delay.
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