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ON THE FINITE FOURIER TRANSFORMS OF FUNCTIONS
WITH INFINITE DISCONTINUITIES
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The introductory part of the paper is provided to give a brief review of the stability theo-
ry of a matrix pencil for discrete linear time-invariant singular control systems, based on
the causal relationship between Jordan’s theorem from the theory of Fourier series and
Laurent’s theorem from the calculus of residues. The main part is concerned with the
theory of the integral transforms, which has proved to be a powerful tool in the control
systems theory. On the basis of a newly defined notion of the total value of improper
integrals, throughout the main part of the paper, an attempt has been made to present the
global theory of the integral transforms, which are slightly more general with respect to
the Laplace and Fourier transforms. The paper ends with examples by which the results
of the theory are verified.
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1. Introduction. Let (x,iy) — f(x,iy) be a complex-valued function of the real in-
dependent variables x, y, and let @ be an arbitrary domain in the (x,iy) plane, where i
denotes the imaginary unit. The function (x,iy) — f(x,iy) is said to be integrable
over 9%, of bounded variation in % and so forth, with respect to one of the variables, if
its real and imaginary parts separately possess those properties for any fixed value of
the other variable in %. Accordingly, as it is well known on the basis of Jordan'’s theo-
rem, if the complex function s — f(s) of the complex variable s = x + iy is of bounded
variation with respect to iy in an arbitrary domain %; of the s-plane: %; = {s:Ims €
[vo0,Y1],Res €[xq,x1]} (0€%;), then the Fourier trigonometric series of the function

F(s) = {f(s), if Ims € [yo,1], 1)

0, otherwise,

at any point iy lying in the closed interval [iyy,iy1] of the imaginary axis, converges
to the function F(s) (see [8]),

+oo
Fliy)=vp D, @k)emaw, (1.2)
k=—o0

where, just as in the integral case, vp denotes the Cauchy principal value of an infinite
series, in fact it denotes an infinite series sum in the Cauchy sense; a € RL (R} is a
set of points of the positive real axis); and

1 (n
@ k) = —.J f(s)e @Gkmias g, (1.3)
at Jiy,
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For any iy € (iy, —ia,iyo +ia),
F(iy) = %[ lilgl fly+ie) + li%l f(iyfir/)], (1.4)
-0t n—-0+

while at the extreme points of the segment [iy, —ia,iyy + ia], at which a function
iy — f(iy) is continuous on the right and left, respectively, we have

F(iy) = %Llir(%f(iyl—ia+is)+nli_r(§1+f(iyo+ia—in)]. (1.5)

Either by the consequence of Bessel’s inequality or by the result of the Riemann-
Lebesgue theorem [7], it follows immediately that
lim @ (k) =0. (1.6)

k—+oo

On the basis of the well-known features of a conform map z —zy = e%, (see [3, 9]),
if the function s — f(s) is of period 27ri with respect to iy, in other words, if the
function z — f(z) : f(z) = f[log(z — z0)] is uniform with respect to iargz in the
z-plane, then for a = 27 and —y, = y; = m, (1.3) is transformed into

R Y )

where the symbol fé) denotes an integration over the closed contour G of integration:
G ={z:|z—z¢| =1}, in this case, in the positive mathematical direction.
On the one hand, since limy_.. @ (k) = 0 and

+ 00 -1 + 00
vp > @kek=vp > pk)et+vp > pk)esk, (1.8)
k=—0co k=—00 k=0

then both series on the right-hand side of the preceding equation have common region
of convergence R, = {s:Ims € [yo,y1],Res € [Xg,%X11]}, so that for any ¢ € [Xo,X1],
the following holds:
+ o0
vp Y @ker R = F(ctiy), (1.9)

k=—co
where, by (1.3),

e‘Ck i 1 Cc+iTr
J  flets)eMds = s— f(s)e ®ds, (1.10)

P k) = 2771 Jo—i

211

that is,

o s
o= [ L2 4,

: ) 1.11
27mi Je, (Z—Zo)kﬂ ( )

where G, = {z:|z—zg| = e‘}.
On the other hand, according to Jordan’s theorem, for any ¢ € [xy, x ], the following
holds:

+00

vp > @c(k)e* =F(c+iy), (1.12)

k=—o0
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where

(k) = Ljin flc+s)e X ds
Pt = omi ) im

T 2mi

ck rc+im
e J f(s)e”“ds (1.13)

c—itm

= @(k)ek,

so that &5 = R.

Accordingly, as an immediate consequence of Jordan’s theorem, which is slightly
more general with respect to the well-known Dirichlet theorem on the expansion of
real periodic functions into Fourier trigonometric series [7], the following theorem
can be formulated.

THEOREM 1.1. Let the complex-valued function z — F(z) of the complex variable z
be a uniform function of bounded variation with respect toiargz in a domain %, = {z :
|z—zol € (A,B)}, where A = 0 and B < +. Then, for any z € 9%, the following holds:

+ 00
vp Y @k (z-20)" =F(2), (1.14)
k=—o
where
1 (° F(z2)
el =551 (Z_ZO)MdZ, (1.15)
where G, ={z:|z—zy| =C,C € (A,B)} and
F(z) = l[ lim F(ze') + lim (ze’i”)]. (1.16)
2 Le—0t n—-0+

If z — F(z) is a uniform regular-analytic function in the disc 0 < |z — z¢9| < R,
1 < R < +oo, then by Laurent’s theorem, with respect to which the above formulated
theorem is slightly more general, for any z : 0 < |z — z9| < R, Laurent’s expansion
vp 2 @ (k)(z — z9)¥ of the function F(z), where @ (k) = (1/2Tri)fGQ (F(2)/(z -
zo)¥)dz and G = {z: |z — 29| = C,C € (0,R)}, is unique and converges to the
value of the function F(z) at that point z. Clearly, in this case too, limy_... @ (k) = 0.
If, in addition to the above condition, the function satisfies the following condition:
lim, ., (z —z9)F(z) = 0, then from Cauchy’s calculus of residues it follows, for each
k <0, that (k) = 0 while for k > 0,

F(z) F® (zg)
@ (k) = Res BT

2720 (z - z)

(1.17)

where the symbol ! denotes factorial (0! = 1), and F®)(zg) is the kth derivative of
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the function F(z) at the point zg, that is, for each k > k., where k., is the smallest
nonnegative integer such that lim ;| (zF(z)/(z —z¢)'"*~) =0

@ k) = ZRes F(Z;M, (1.18)
1272 (z—z

considering the fact that all points of infinite discontinuity (all singularities) z, (k =
1,2,...,n) of the function F(z) are outside the region of convergence 0 < |z—z¢| <R.

Now, Laurent’s expansion, representing for |z| = 1 the discrete finite Fourier trans-
form, can be said to be analogous to the so-called Z-transform having practical ap-
plication in discrete control systems theory. Thus, for a class of discrete linear time-
invariant singular control systems, the matrix sequence ® (k) in Laurent’s expansion
of the matrix function z — z'P(z"1P—A)~1: 3%, ®(k)z¥, whenever it exists—where
n X1 matrix A and singular n X n matrix P are, in the general case, constant matrices
defined on the field of the complex numbers—is a solution for the matrix difference
equation A® (k)P = (k) (A —P); k > 0, with initial condition ®(0)P = P. This form
of Laurent’s expansion exists if and only if lim|;|—,P(zP —A)~! = 0. Following the
results presented by Lewis and Mertzios in [4, 5] (taken over from [2]), it can be eas-
ily shown that if indP = 1, more exactly if rankP = rankP?, where the matrix PP
is a Drazin inverse matrix of the singular matrix P:P=PvP-A)"! (clearly under
the condition that there exists a constant v such that the matrix (vP —A) is invert-
ible), then ®(k) = PP (PPA)*P, k = 0 and ®(k) = 0, k < 0. In addition, if detA = 0
then 3™ PRes,_ 2 (P(zP—A)"'/z) = PA™!, where z,s are singularities of the func-
tion z — P(zP - A) L. If the radius of convergence of the power series > (% ®(k)z¥ is
larger than 1, in other words, if all singularities of the function z — z 'P(z"'P-A)~!
are outside the unit circle, then the matrix pencil (z~!P —A) is asymptotic stable and,
by (1.6), limy .. ®(k) =0

In the case when either the real or imaginary part of a complex-valued function
s — F(s) is not Riemann-integrable over [—irr,irr], there is practically at least one
infinite discontinuity (singularity) of the function F(z) that lies onto the contour of
integration G = {z: |z| = 1}. This leads to a basic question: is there a theory of discrete
Fourier transform in this global case too? In other words, is there a global theorem
of discrete Fourier transform by which we can prove that an infinite Laurent’s power
series on the left-hand side of (1.14) is summable, and for which an inversion formula
is in the form of (1.15)? Clearly, it would be desirable to draw a conceptual distinction
between a summation of series in the Cauchy sense and its summability [7]. An infinite
series, which is either indefinite divergent or convergent in the Cauchy sense, and to
which its sum can be uniquely joined, one way or another, is said to be summable.

An answer to the former questions will be given in what follows.

2. Main results

2.1. The total value of an improper integral. It may be assumed, without loss of
generality, that a uniform analytic function z — f(z) has only one isolated singularity
at the point zg lying onto an arbitrary contour of integration I'. Then, the total value vt
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of an improper integral of f(z) over I is defined to be the sum of the Cauchy principal
value vp and the Jordan singular value vs

th f(z)dz=vpj f(z)dz+vsjf(z)dz. (2.1)
r r r

On the other hand, the Jordan singular value vs is defined to be equal to the limiting
values, as € — 07, of the integrals of function f(z) along both arc parts of a circular
path of integration y. by which the singularity of f(z) at the point z, is surrounded:

PO
Vs Lf(z)dz = Slir(% J;S f(z)dz+ 2.2)

0
21iRes f(z),
zZ=2(

where the points P and Q are the intersection points of the circular contour y, and
the integration contour I'. By the calculus of residues (cf. [9, Equation (2) of Subsection
3.6.4, page 233]), if the singularity of f(z) at the point z, is a simple pole, then

0

vst(z)dz = —O(iB:eZ%f(z) + 2riResf(2), (2.3)
zZ=2(

where « is the limit, as the points P and Q, along the path of integration I', tends to
the point zg, of the angle of tangents to I' at those points. In the general case, if a
uniform analytic function z — f(z) has, onto and inside an arbitrary closed contour
of integration I, only isolated singularities z.s (k = 0,1,2,...,mand Kk =m+ 1,m+
2,...,m + n, respectively, the number of isolated singularities of the function must
be finite, because in the opposite case there exists a point of accumulation which is
not an isolated singularity) then by Cauchy’s fundamental theorem on residues and
by (2.1) and (2.2), it follows immediately that

m+n

0
th f(z)dz =2mi (2.4)
r

2.2. The finite Fourier transform. If in a domain % of s-plane—defined at the
beginning of the introductory part of this paper, but now with the changeable upper
limit: Ims € [yy, Y ]—the complex-valued function s — F(s) of the complex variable
s is a uniform analytic function having an infinite discontinuity (singularity) at the
point sy = 0, then it follows immediately from (2.4) that

es[F(s)ew (=],
1 @] ) S=Sk
— vtj F(s)ewr=9ds =

T

ST (2.5)

= =
M= 1M

es[F(s)e®(r=9],
§=S,

K
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where w is a complex parameter, and the contour of integration I' consists of the
imaginary axis segment [iyy,iy] and an arbitrary Jordan’s curve y (y € %;) connect-
ing the points iy and iy, while s,s (k = 1,2,...,n) are isolated points of infinite
discontinuity of F(s) within I'. Therefore, the following holds:

n
i wiy _ w(iy-s)
fy(w,iy)e E()B:ejﬁ[F(s)e 1,

1 4 ;
—,th F(s)e¥=9ds = (2.6)
211 Jiy,

n

1 iy _ w(iy—s)
Sy(w,iy)ev” é&%E[F(s)e ],

where fy (w,iy) = (1/21i) [[”° F(s)e~*¥ds.

Let, further, the segment Res € [x¢,x:] of lines, which are parallel to the real axis
and are distant iy and iy, from it, be a set of points of finite discontinuity of F(s).
Then, the function s — F(s) can be defined on the domain Res € [x,x;] of s-plane,
as follows:

L P
where f(s) is a function such that, for Res € [x,x1] and Ims > y,
f(s) =glirgl+F[Re5+i(y—s)], (2.8)
and, for Ims < yo,
f(s) :33%1F[Re5+i(yo+n)]- (2.9)

In the half-plane for Res < xg, F(s) = F(Rexy + iIms), while for Res > x;, F(s) =
F(Rex; +ilms).

Further, we will consider a bilinear map z = e2iactan(=is) — (] 4+ 5)/(1 —s), which is
proved as follows. On the one hand,

e2tarctan(=is) — cog[2arctan(—is)] +isin[2arctan(—is)]
=[1+itan[2arctan(—is)]]cos[[2arctan(—is)]]

, (2.10)

= [1+itan[arctan(—is)]] cos®[arctan(—is)]

= (1+s)?cos?®[arctan(—is)].
And on the other, cos?[arctan(—is)] = 1 —sin’[arctan(—is)]; more exactly,

cos? [arctan(—is)][1 +tan? [arctan(—is)]] = cos? [arctan(—is)] (1 -s%) = 1. (2.11)
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From the preceding equalities, it follows that e2farctan(=is) — (1 4 §)2/(1 — s2) =
(1+s)/(1—-s5). Resuming: considering the well-known properties of a bilinear map
z = e2larctan(=is) — (1 4 ¢)/(1—ys), for every w,

+ico O Ze—w((z—l)/(erl))
th e Wds=vt| ————dz
_ioo G (z+1)? 2.12)
O e ((—w)k/kl) (1-2/(z+1))* '
= 2VtJ =0 dz =0,
G (z+1)2
where G is a unit circle in the z-plane. Accordingly,
iy (iso)i iy 0i
th Y(Fio)iyg ew”y’”dg _ VtJrly (5%0] eW(iy’S)dS _ %[ew(iy—iyo) _ 1]’ (2.13)
g 9

where f;y (Fi®)iXo qenotes an integration over the expanded imaginary axis part con-
necting the points iy, and iy, via infinity.

Let F(s) = icei@i¥=9 for s € %;, where ¢ and a are real constants, a being positive.
Then, according to (2.13), if the function s — F(s) defined by (2.7)—which can be said,
in this acute case, to be continuous—satisfies the condition

+ioo
th F(s)ew>=94s =0, (2.14)

—ico

it follows, for w € Ry, Ry = {w :Imw > —a}, that

iy(ii(;oﬁyo N . o
vtj (w+ia)E(s)eV ™9 ds = ic[eWHi@iy=iy0) _q1], (2.15)
9

that is,

lim vt (w+ia)F(s)e* Y =9ds = —F(iy). (2.16)

iy (Fic)iyg
[w]—+o0 J

9

In the limit, as a — 0%, the region R, is reduced to ®,, = {w :Imw > 0}.

By (2.16), which is independent of the form of the function s — F(s), if an arbitrary
uniform analytic function s — F(s) has isolated points of infinite discontinuity within
the domain %, and if the following condition is satisfied

m+n

w(iy-s)
i | KZO Res[F(s)e ]
th - F(s)ew'r9ds =2mi{ " (2.17)

—ioo m+n )
> Res[F(s)ew 9],

S=5Sk
k=m+1
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where s,s (k =0,1,...,m) are points of infinite discontinuity of F(s) onto the imag-
inary axis, while s,s (k =m+1,m+2,...,m +n) are points of infinite discontinuity
of F(s) in either part of the domain %; in which Res < 0 or Res > 0, then, because of
the existence of the function residues on the right-hand side of the preceding equa-
tion, in this general case, the region ®,, of the integral convergence,

iy )
lim th (w+ia)F(s)eV ™ ds = — 11%(1 F(iy —ig), (2.18)
£— +

[w]—+o0 15%0)

is Ry = {w :Imw > 0}.

Clearly, if there are no points of the infinite discontinuity of F(s) either in the part
of the domain %, in which Res < 0 or Res > 0, then the sums of residues on the right-
hand side of condition (2.17) both vanish; and in that case, condition (2.17) is reduced
to condition (2.14), while the region ®,, of the preceding integral convergence, is just
as in the case of the integral convergence (2.16), that is, ®#,, = {w :Imw > —a}, and
in the limit, as a — 0%, Ry = {w :Imw > 0}.

Since the foundation stone of the whole theory is the preceding result, it would
be desirable to say a few words about the conditions under which it holds. Namely,
condition (2.17) is transformed by a bilinear map into

m+n
1\ ew((1-2)/(1+2))
> Res| P (25 e
O /71y ew(1-2)/(1+2) ozl \z+1 (z+1)
t F(2) dz =2mi
VJ z+1 (z+1)2 “ m m+n

G _ w((1-2)/(1+2))

S pes[r(2)e !

. z=z z+1 (z+1)2
=m+1
(2.19)

where G is a unit circle in the z-plane. Considering the fact that the residue at the point
z=—-10f F((z—1)/(z+1)) (which is a continuous function over the arc parts passing
through the points z = e2i@c@ny and z = —1, as well as the points z = e?iarctanyo
and z = —1, of the unit circle and circles centered at the line Rez = —1, respectively)
depends only upon the behavior of the function s — F(s) in a neighborhood of a set
of points at infinity, on the one hand,

_(z—1)\ ew((1-2)/(1+2))
Res | F =0; 2.20
zis[ <z+1) (z+1)2 ] ( )

and on the other hand, it is easily shown by an application of Cauchy-Goursat’s integral
theorem that in those circumstances, condition (2.19) is an immediate consequence
of (2.4).

To sum up, if F(s) is a uniform analytic function inside 9%, the region ®,, = {w :
Imw > 0} is that of the integral convergence

i(y=x0)
lim th (w+ia)F(iy —s)e’Vds = — 11131 F(iy —ie). (2.21)
£— +

[w]—+oo 0



ON THE FINITE FOURIER TRANSFORMS OF FUNCTIONS ... 309

By the second Jordan’s lemma from the calculus of residues, since the integral
function w ~ vt fé(y ) (iy — s)es"ds is a regular-analytic function in the whole
w-plane, it follows, for any ¢ > 0 (more exactly ¢ > 0, as pointed out indirectly by
Mitrinovic¢’s result in [6, page 22]), that

1 ic+w iy ) 1
— lim J [th F(s)e‘swds}emydw == m F(iy —ie). (2.22)
211 w=+ Jic_q ivo 2
Similarly, we can prove that, for any ¢ <0 (¢ <0),
1 ic+w iv] )
—— lim J th F(s)e*%ds [e¥VYdw = = hm F(iy +1in). (2.23)
211 0=+ Jic_q iy 27

Without loss of generality, if the function s — F(s), which is a uniform analytic
function in the whole s-plane, has no points of infinite discontinuity in the segment
[iyo,iy], with exception of the point sg = 0, at which it has a simple pole as singularity,
from (2.6) we obtain

1 iy ;
—,vpj F(s)e¥r=9ds
2771 ivo
n 1 (2.24)
_ : wiy _ w(iy-s)] _ = w(iy—s)
Sy(w,iy)e é}g;f[ﬂs)e ] - 5Res[F(s)e I

Following the result of one of Baskin’s general theorems [1], we obtain, for every w
such that sF(s)e % = O(|s|~!) for Res < 0, (as pointed out by Mitrinovi¢, see either
[8, page 102] or [6, page 22])

1 —sw
i ij F(s)e*Vds

= hm fywiy) - Z Res F(s)e‘sw]——Res[F(s)e W]

(2.25)
e
m+n 1
= > Res [F(s)e™ W]+~ Res[F(s) —swy,
K= n+1 2s
that is,
m+n
; ) —sw
ygg?wfy(w,ly) = KZO &eSE[F(S)e 1, (2.26)
Yot oo =

where ss (k =n+1,n+2,...,n+m) are points of infinite discontinuity of F(s) in
the half-plane Res < 0. According to (2.26), it follows for Imw = 0 that if all points of
infinite discontinuity of F(s) are in the half-plane Res < ¢, where c is such that

Ye = {515 —iyy = rel@@ad/e) g _jy = petarctan(y/c) "y <10, c]}, (2.27)
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and F(s) = O(|s|™1) for Res = ¢, then for Rev > ¢

0 m+n

lim > BeSS[F(s)e’S“’]ewvdw
—0° K

0 — 400 —w

0
= lim L}hm fye (w, Ly)} e"dw
oo

Yok (2.28)
1 C+ico
=— lim I va F(s)e®Y 9 dsdw
2771 w—+o
1 C+ico F(S)
= omi Liw g5 &S =FO

On the other hand, it is also well known on the basis of Jordan’s theorem, mentioned
at the beginning of this paper, more exactly of the Fourier integral theorem, that the
Fourier integral of the complex function s — F(s) (defined by (1.1) in such a way that
now f(s) is of bounded variation with respect to iy in a domain %; of the s-plane
with the changeable upper limit Ims € [y, y]) converges for each iC € [iyy,iy] to
the function #(i€) defined by an equation similar to (1.4) (see [8]):

F(iC) = ij P(—is,iy)e e i(iy=iQ)s ¢

J_

1 o
i/ﬁvpﬁm P(s,iy)erse-ilsgsg,

(2.29)

1
Vemi iyo 2m Y0

On account of the uniform convergence of the power series of the exponential func-
tion and properties of a bilinear map, (2.30) is transformed into

f Yelr=9Cg¢ = f(lS e Wy=i9% g, (2.30)

(L, iy)et =

(L,iy) = p(C,iy)e?c = > @(k,iy)Ck, (2.31)
k=0

where, for zo = 1 and z(iy) = (1 +iy)/(1 —iy) as well as z(iy) € G, G is an upper
semicircle of the unit circle G,

1 (i-»0)
ok iy) = FWI skf(iy -s)ds

) (2.32)

5 220 (z 1)k fz(iy),z]

\/7lk' (Z+1)k+2 dz.
For any real c,
®[(C+ic),iy] = > @(kiy) (L +ic),
P (2.33)

+ o0
Fliy —iC)e ¢ = va P(s+ic,iy)erTieits gy,

1
J2m



ON THE FINITE FOURIER TRANSFORMS OF FUNCTIONS ... 311

that is,

P(w,iy) = \/_l f(s)e’ ds,
(2.34)

F(i0) =

1 . ictw ) ijd
im w,iy)e w.
2\/Z’IT w“*""‘[icfw ¢( _',V)

Similarly, if the integral hmyo oo f 70

Ry, R ={w:a<Imw < b, 0 IS [a bl}, then, for any w € R, the following holds:

f(s)e ¥Sds converges absolutely in the region

b(w) = vpj F(s)e-wsds,
(2.35)

1 y ic+w ijd
m w)e w.
2\/21T W=+ Jic—w ¢w)

To sum up again, as yet another immediate consequence of Jordan’s theorem, more
exactly of the integral Fourier theorem, the preceding two systems of the integral
equations which, respectively, define the finite Laplace transform and the so-called
bilateral Laplace transform reducing for ¢ = 0 to the Fourier transform, have been
just obtained. In addition, the one-sided Laplace transform is defined by (2.28). On
the other hand, the equation, obtained by summation of (2.22) and (2.23) for ¢ = 0,
generalizes the Fourier integral theorem. Therefore, previously redefining the well-
known Dirichlet’s condition as follows: a periodic complex-valued function s — F(s)
of the complex variable s and of period 27ri with respect to iy, which is a sectionally
analytic function with respect to iy, in the sense that it has only a finite number k of
a set of points Ims = yy of finite discontinuity in the linear domain % = {s :Ims €
[—, 1]} of the s-plane, can be said to satisfy the global Dirichlet’s condition in %;; we
are able to establish the fact that (2.21) proves indirectly the global Dirichlet theorem.

F(iC) =

THEOREM 2.1. Let the complex-valued function iy — F(iy) of the real variable y
be a periodic function, of period 21ti on the imaginary axis. Then, if it satisfies the
global Dirichlet condition in the linear domain %, : % = {iy : iy € [—im,imt]}, for any
iy € 9, and iy + iyy, where iyys are points of the infinite discontinuity of F(iy) in
9, the following holds:

+ 00
vt > @(k)e* =F(iy), (2.36)
k=—oo
where
_ L i —ks
k) = i VtJ_inF(s)e ds, (2.37)

and, for iy + =it as well as for iy = +irm,

F(iy) = %Lli%lF(ieris)+’}£I(1)1+F(iy7in)],
1 (2.38)
F(iy) = §[hmF( 1T +1i€) + hm F(l'rr—m)]

respectively.



312 BRANKO SARIC

The total value vt of the infinite series on the left-hand side of (2.36), can be said
to be defined in the more general sense with respect to the Cauchy principal value
vp. In other words, an infinite series, which in the general case indefinitely diverges
in the Cauchy sense, is summable and has a defined sum. Clearly, in this case, on the
one hand, the result of the Riemann-Lebesgue theorem limy_ .. @ (k) = 0, which is
also a consequence of Bessel’s inequality, does not hold, moreover it is possible that
limg .+ @ (k) = +c0, and on the other hand, for any ¢ € [xy,x ], the following holds:

+ 00
vt > @c(k)e =F(c+iy), (2.39)
k=—oo
where, by (2.53),
_ L i —ks
(k) = 27Tl_vtj_mF(c+s)e ds. (2.40)

Accordingly, just as at the beginning of the paper, the following theorem can be
formulated, as an immediate consequence of the preceding theorem.

THEOREM 2.2. Let the complex-valued function z — E(z) be a uniform function
satisfying the global Dirichlet condition inside a domain %, of the z-plane, %, = {z :
|z —2z9| € (A,B)}, where A = 0 and B < +, in other words, let F(z) be a uniform
sectionally analytic function with respect to iarg z inside %,. Then, for any z such that
z€Ge, Ge=1{z:|z—20l =C,C € (A,B)} and z + zx, where zys are points belonging
to G. at which F(z) has the infinite discontinuity, of course whenever they exist, the
following holds:

vt Y @k)(z—-20) = F(2), (2.41)
k=—o0
where
L.
(k) = %Tl’inL; L)k“dz,
¢ (z-20) (2.42)

. 1 L . )
F(z)==| lim F(ze*) + lim F(ze™"" ]
( ) 2 |:s—04r ( ) n—-0+t ( )

Clearly, the result of the preceding theorem can be said to generalize that of
Laurent’s theorem, as well as the result of Theorem 1.1.

2.3. The proof of the global Dirichlet theorem

2.3.1. Analysis of an idea of the theorem’s proof. Without loss of generality, we
may assume that the complex-valued function g(w,iy), where the complex vari-
able iy is independent with respect to the complex variable w, has infinitely but
countable many simple real poles a,,a,... with the points of accumulations at in-
finity. In that emphasized case, there exists an infinite sequence of circular contours
of integration Q,,, centered at the origin and of radius #, € (0, +o), such that onto
their boundaries there are no singularities of the function g(w,iy). Hence, by the
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fundamental Cauchy theorem on residues, the sequence of the partial sums can be
formed as

z . 1 (© .
k;Ak(Ly) =5 Lzyng(w,ly)dw, (2.43)

where Ay (iy) = Resy—q, g(w,iy).

On the one hand, on the basis of the second Jordan lemma—[8, Theorem 2,
Subsection 3.1.4, Chapter 3, page 52]—if for every w € C! there exists a unique lim-
iting value limy, |- o[wg(w,iy)] = —(1/2) f(iy), then the sequence of the partial
sums 2’,3:1 Ay (iy) converges, in other words, there exists a sum of the infinite func-
tional series > ;) Ay (iy) in the Cauchy sense:

n +00
. . . . 1.,
lim T Aw(iy) =vp D Ar(iy) = = Res gw,iy) = -5 f (i), (2.44)
k=1 k=1 The
since
1 @]
Res g(w,iy) =—-— lim J gw,iy)dw
|w|=+00 2701 rn—+ Qi (2.45)

. . 1.,
=— lim [wg(w,iy)]==f(iy).
|w|—+o00 2
However, on the other hand, by the same Jordan lemma, if lim} |-+ [wg(w,iy)]
does not exist for every w € C!, already there exist only partial limiting values:

lim [wg(w,iy)]= (2.46)

|w|—+00

{f(iy), Imw > 0,

0, Imw <0,

then instead of the limiting value of the sequence of the partial sums > ;_; Ax(iy)
(the Cauchy principal value vp of the infinite series), which does not exist in this acute
case, there exists a total value vt of the infinite sum of the residues of the function
g(w,iy) that is equal to the limiting sum of the integral values:

IS 1 ° , " ,
A = g [ ] gwidws | gwivdw]. @47

where the integral paths QY = {w : w(0) = rne'%; 6 € [6(rn), m—56(1,)]} and QF =
{w:w(0) =rnpet?;0 e [-m+6(rn),—6(rn) ]}, are arc of the circular path of integra-
tion Q,, in the upper Imw > 0 and lower Imw < 0 half-plane, respectively; and an
arbitrary angular function 6 (v,), which is of sufficiently small real positive values for
any positive values of 7, satisfies the condition, lim,, .. 6 (¥) = 0. In other words,
although in this emphasized case there exists no sum of the infinite functional series
> i2 Ak (i) in the Cauchy sense, this infinite functional series is summable, that is,

+ 00

VU AK(iY) = = Res g(w,i) =~ f(iy), (2.48)
k=1 W=+
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since

, | a . ” )
‘wffgmg(w,ly) = fﬁrggngw Hgyn gw,iy)dw + Lﬁn g(w,ly)dW]

1

= Ef(iy).

PROOF. The proof of Theorem 2.1 is almost the very same as that of the ordinary
Dirichlet theorem via the calculus of residues, which can be found in many textbooks
(the interested reader should consult [8, pages 91-95]), of course in addition to the
above mentioned differences. In what follows, without loss of rigorousness, a very
brief account will be given of the proof. The procedure is as follows: let the complex-
valued function iy — F(iy) of the real variable y satisfies the condition of the theo-
rem. Then, the complex-valued function of the complex variables w and iy,

(2.49)

. 1 v -
gw,iy) = WVtLinF(S)ew“y ds, (2.50)

(where iy is a point from the interval (—irr,irr) at which F(iy) has no infinite dis-
continuity) is an analytic function with respect to w, whose infinite discontinuities
(singularities) wy are zeros of the function 1 — e?™% w, = +k (k belongs to the
set of integers 7). In those circumstances, since for Imw > 0 and iy € (—im,im) :
limyy 40 (1/(1 = e2™%)) = 1 and limy|-. ;0 (e¥ @I /(1 - 2TW)) = 0, as well as
lim| |-+ (1/(1 —e~2T)) = 0, it follows immediately from results (2.21) and (2.48)
that

il ekiy iy X 1
ks go_ Lo o
Vtk;oo S thlmF(s)e ds = 5 511%1 F(iy —ig). (2.51)
Similarly, for the complex-valued function
_ p2miw i )
h(w,iy) = WV'[J;)’ F(s)ew>=94s, (2.52)
the following holds:

ro Hkiy in 1
vt _VtJ F(s)e ®ds == lim F(iy +in). (2.53)
o 2T iy 2 n—-0+ O

2.4. Examples. As an illustration of the use of result of Theorem 2.1, in the first
instance it will be shown that the discrete Fourier transform of a real constant function
is the periodic Dirac delta function, of the period 2mri with respect to iy, defined
on the closed interval (—irr,imr) of the imaginary axis in such a way that 6(iy) =
lim;,— o 0, (1Y), Where

) n . 1 . 1
5"“3’)_E[h<1y+ﬁ>_h<1y_ﬁ>]’ (2.54)
and h(iy) denotes Heaviside’s unit function. Namely, since for any k € Z

i
VtJ CS(s)eMds =1, (2.55)
=177
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then, for any iy € [—im,irr] and iy + 0, the following holds:
vt > ek =o. (2.56)
k=—oo

In the second instance, the preceding result is proven again, but now in a different
way. Namely, since

2!
for k <0,
0,
1 ©z+1 1 1,
Z—WithG z—lzkHdZ_* <|_1, for k =0, (2.57)
01
<| for k > 0,
-2,

where G is the unit circle in the z-plane, then for any z, |z| = 1 and z # 1, the following
holds:

+ 00 P +00 P
2 *iyk_i_l:_ﬂ _2vt iyk_lz_ﬂ 2.
Vth:]e 1-cosy’ v kz:]e 1-cosy’ (2.58)
that is,
vtfcos( K)+s =0 thsin( k=1 Sy (2.59)
= YRITS = = Y = 2 T cosy '
compare it with [10, page 54].
Moreover, for any z, |[z| > 1 and |z| < 1,
+ 00 1 + 00 =
-k _ k _
Vkaz =7 szz —2 (2.60)
=1 k=1
respectively, since
o 2, fork<O,
1 z+1 1
dz = = 2.61
i Jo. =1 Zk41 z 1, fork=0, (2.61)
0, fork >0,
where G, = {z:|z]| =c,c € (1,+)}, that is,
Lo . 0, for k <0,
zZ+
z-_- =1_ = 2.62
ZWiIGaz—lzkH z 1, for k=0, (2.62)
-2, fork>0,

where G, ={z:|z|=a,a € (0,1)}.
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Finally, in the case of the complex-valued function z — z(1 —z) 2, since

ky
for k <0,
g e s R Y T 269
omi Y ) (1-2)2 zk T R= T, :
0’
<| for k > 0,

where G is the unit circle in the z-plane, for any z, |z| = 1 and z =+ 1, the following
holds:

2vt +Zm ke*k = —1;, (2.64)
Pl —cosy
that is, for any z, |[z| > 1 and |z| < 1,
= z
vp > kz k= ERIE z kzk = ac 2)2, (2.65)

k=1

respectively.

3. Conclusion. Taking into consideration the fact that the obtained results are the-
oretical news, we can say that they open up certain possibilities for expansion of
the control systems theory. Thus, from the viewpoint of the results, derived in the
Subsection 2.2 of this paper for instance, and having in mind the fact that causality
related to the area of an expansion of function into Fourier trigonometric series is
the theory of the discrete Fourier transform, as well as the theory of the finite and
infinite Laplace transform, as it has been shown in this subsection, it is obvious which
possibilities are being opened up in the area of control system stability.

On the other hand, disregarding the fact that the results of the paper are, in a certain
sense, the theoretical news, some of them have been predictable. So, it is well known
that the alternative numerical series > %, (—1)* has the defined sum, more exactly it
is summable and its sum is, by definition, equal to 1/2, just as it has been assumed yet
by Euler and Leibniz. Making use of this assumption, they obtained absolutely exact
results. There is nothing to be left than to prove exactly the validity of this assumption,
as it has been made by result (2.56), that is, (2.59). As for result (2.64), we can say that
it is causality related to result (2.56). Namely, since Z,fl ksin(kt) = 0 for t = /2,
that is, >}, (2k +1)(=1)% = 0, it follows that > ;5 2k(-1)k = = S5 (=1)k = —1/2.
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