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We use noncommutative differential forms (which were first introduced by Connes) to
construct a noncommutative version of the complex of Cenkl and Porter Q* * (X) for a
simplicial set X. The algebra Q**(X) is a differential graded algebra with a filtration
Q*4(X) c Q%41 (X), such that Q*4(X) is a Qg-module, where Qy = Q1 = Z and Qg4 =
Z7[1/2,...,1/q] for q > 1. Then we use noncommutative versions of the Poincaré lemma and
Stokes’ theorem to prove the noncommutative tame de Rham theorem: if X is a simplicial
set of finite type, then for each g > 1 and any Q4-module M, integration of forms induces a
natural isomorphism of Qg-modules I: HY(Q*49(X),M) — Hi(X;M) for all i = 0. Next, we
introduce a complex of noncommutative tame de Rham currents Q x(X) and we prove
the noncommutative tame de Rham theorem for homology: if X is a simplicial set of finite
type, then for each g > 1 and any Qz-module M, there is a natural isomorphism of Qg4-
modules I': H;(X;M) — Hi(Qx q(X),M) for all i = 0.

2000 Mathematics Subject Classification: 55N35.

1. Introduction. Sullivan [22] used the de Rham complex OQ* (X, Q) for a simplicial
space X of Whitney [23], to construct a free algebra model M (X) of Q* such that the
rational homotopy of X could be computed. In an effort to use the idea of a “model” to
compute homotopy group Miller [18] and Cartan [2] constructed a filtration #{* (X, Z)
of the de Rham complex of polynomial forms #*(X,Q) such that the cohomology
Hi(s4*4(X;Z)) is isomorphic to the singular cohomology H!(X;Z) for i < q. It turned
out that a free model for «¢* could not be constructed.

Cenkl and Porter [6, 7] constructed the so-called tame de Rham complex of poly-
nomial forms T*(X,Z) with filtration T*4(X) c T*4*!(X), depending on the degree
of the polynomials and the forms, such that T*4(X) is a Q4-module (Qy = Q; =
Z and Qg = 7[1/2,...,1/q] for g > 1). They proved that there exists an isomorphism
I:HY(T*9(X; Qq)) — Hi(X; Q) which is induced by integration of forms for all g = 1
and for all i. They also constructed a free model TM (X) for T(X,Z) which computes
most of the torsion in the homotopy groups of X. However, the Steenrod operations
cannot be introduced on TM (X) (with proper localization).

The proof of Cenkl and Porter of the de Rham theorem for T*(X,Z) was done for
a finite simplicial complex. This was later extended for a simplicial set by Boullay et
al. [1]. They also dualized the situation and proved a homology version of the tame
de Rham theorem [20]. Several attempts were made to build free models for spaces
with Z,-coefficients (see [10, 13, 19]).
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Trying to construct a model for a space (along the lines of Sullivan, etc.) that would
have cohomology operations, Karoubi [11] proposed enlarging the de Rham complex
of commutative forms by considering noncommutative algebras (along the lines of
Connes). Karoubi defined a noncommutative de Rham complex Q(X) and proved the
noncommutative de Rham theorem for a simplicial space X. A slightly more general
version of the noncommutative de Rham theorem was proved by Cenkl in [4, 6]. Both
proofs are functorial and in principle are based on the idea of Cartan. Some Steenrod
operations are induced.

In this paper, we present another proof of the noncommutative de Rham theorem
for a simplicial set of finite type. This proof is in the spirit of the classical de Rham
theorem, that is, using integration. The possibility of such a proof (over a ring contain-
ing Q) was suggested by Karoubi in [12]. However, we give a stronger result by defining
anoncommutative tame de Rham complex Q** (X) (a noncommutative version of the
de Rham complex of Cenkl and Porter).

THEOREM 1.1. Let X be a simplicial set of finite type. Then for each q > 1 and any
Qq-module M, there is a natural isomorphism of Q,-modules

H (Q*4(X),M) — H'(X;M) Vi=O0. (1.1)
The isomorphism is induced by integration.

Motivated by the work of Scheerer et al. [20], we also introduce a complex of non-
commutative tame currents Q » (X) (dual of noncommutative tame forms) and prove
the noncommutative tame de Rham theorem for homology.

THEOREM 1.2. Let X be a simplicial set of finite type. Then for each q > 1 and any
Qq-module M, there is a natural isomorphism of Q,-modules

H;(X;M) — H;(Q44(X),M) Vi=0. (1.2)
The isomorphism is induced by integration.

Finally, we introduce a noncommutative version of the complex of tame currents
presented in [20] and compare it with the complex Q4 . (X).

2. Simplicial objects. In this section, we present a brief introduction to the concept
of simplicial objects as well as some examples. For more details see [15, 16, 17].

A simplicial set X is a graded set indexed on the nonnegative integers together
with the face operators d; : Xy — Xy—1 and the degeneracy operators s; : Xy — Xi+1,
0 < i < k, which satisfy the following identities:

(i) diderl = djdi ifi< j,

(ii) sis;=sjsifi<j,

(iii) diSj = Sj_ldl' ifi < j,

@iv) dij = identity = dj+15j,

(V) diSj = dei—l if i > j+ 1.
The elements of Xj are called k-simplices. Let X and Y be two simplicial sets. A sim-
plicial map f : X — Y is a map of graded sets of degree zero which commutes with
the face and degeneracy operators.
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If X and Y are two simplicial sets, the Cartesian product X XY is the simplicial set
with (X XY)r = Xk XYy and

di(x,y) = (dix,d;y), si(x,y)=(six,81v), VXE€Xy, vEY, 0<i<k. (2.1)

EXAMPLE 2.1. Let V be any partially ordered set. Let Xj be the set of all finite
sequences (xg,...,Xk), with xg < - - - < x, Xo,...,Xx € V. Define d; : Xy — Xy-1 and
Si i Xk = Xks1, Osisk,by

di(xo,...,xk) = (X(),...,Xi_1,)A(i,xi”,...,xk) (Ol'l'lit Xi),

(2.2)
si(xo0,...,Xk) = (X0,...,Xi-1,X{,Xi,Xit1,..-,Xk) (double x;).

Then X = {X}} is a simplicial set.

EXAMPLE 2.2. Let A denote the category whose objects are all finite sequences
of integers A(n) = {0,1,...,n} and the morphisms are all the increasing functions
f:Am) - A(m) (for all 0 <i < j <n,wehave f(i) < f(j)).

Define the morphisms 6; : A(n—1) - A(n) and 0;: A(n+1) - A(n),for0 <i <
n, by

) J if j <1, . J if j <1,
6i(j)=14", e oi(j) =1, . (2.3)
j+1 ifj=>i, j-1 ifj>i.

Then every f € Hom(A(n),A(m)) can be written as the product of finitely many §’s
and o’s.

A simplicial object in a category % is a contravariant functor F : A — €. A simplicial
set X can be identified with a simplicial object X in the category of sets Set, F : A —
Set, X = F(A,) = X (see [15, page 233] or [17, page 4]).

A simplicial A-module is a simplicial object in the category of A-modules Mod. If
M and N are simplicial A-modules, then the tensor product M ® N is a simplicial
A-module. The face and degeneracy operators d; and s; on (M ® N)y = My ® Ny are
given by

dixey)=dixed;y, si(x®y)=sx®s;y, VxeXy, yeY, 0<i<k. (2.4)

A simplicial graded algebra A* = @,-04™ is a family of graded algebras i =
®n=0y, k =0,1,2,..., over a commutative ring A which is a simplicial set and the
face and degeneracy operators d; and s; are morphisms of graded algebras.

EXAMPLE 2.3. Let A, = {(ao,...,an) € R*1 |0<a; <1, >a;=1} be the standard
n-simplex (Figure 2.1). The maps 6;: A,—1 — A, and o0;: Ay — Ay are defined by
Si(x0y..0yXn-1) = (x0y-4,Xi-1,0,Xi, ..., Xn-1),

(2.5)
0 (X0, -y Xns1) = (X0, ey Xio1, Xi + Xis1, X420y Xns1)-

Let %, be the collection of the polynomials f : A, — R with Z-coefficients and let
P = {Py}n=0. Then P is a simplicial set. The face and degeneracy maps are the maps
0; Py — Py_1 and s; : Py, — Py defined, for each f € P, by

0i(f) = fodi si(f) = fooy, (2.6)
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X1 X2

Aq

X0

FIGURE 2.1. The standard simplexes A; and A».

X2

X0
Yo X0

FIGURE 2.2. The 2-simplexes A».

(0; and s; are the pullbacks of §; and o). Multiplication of polynomials induces an
algebra structure on ?. Then % is a simplicial algebra.

EXAMPLE 2.4. Instead of the standard n-simplex A, as in Example 2.3, we consider
Ay, to be the subset of the boundary of I"*! (the standard (n + 1)-cube in R"*!) given
by

{(xo,...,xn)E[R"”:Osxisl, l_[xi=0}, (2.7)
i

that is, A, is identified with the backfaces of I"*! (Figure 2.2).
Define the maps §;:A,_1 —» Ay and 0y : Ay i1 — Ay by

51‘(X0|---1Xn—1) = (XOi"'lxi—lil,xi’xi+1!"'!xn—1)!
(2.8
0 (X0, -y Xne1) = (X0, 00, Xin1,Xi " Xi41, X142, -+, Xns1)

(see [5, 7]). A k-face F of A, is determined for two disjoint sets A = {a,az,...,dx+1}
and B = {b1,by,...,by_r} suchthat 0 <a; <a» < -+ <ars1 <n,0=<by <by <
oo <bpp=n, AuB={0,1,...,n},0 <x; <1, [[;eaxi =0,and x; = 1 for all j € B.
Sometimes we use the notation F = F(A, B). Figure 2.3 shows the 1-face F (A, B) of the
2-simplex A, for A = {1,2} and B = {0}.
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X2

F(AB)y ———————

X0 X1

FIGURE 2.3. A 1-face of Ap.

Let 9, be the collection of the polynomials f : A,, — R with Z-coefficients and let
T = {Tntns0.- Then J is a simplicial algebra. The face and degeneracy maps are the
maps 0; : P, — P, and s; : Py, — P41 defined, for each f € P, by

0i(f) = f ooy, si(f) = fooi, (2.9)

(0; and s; are the pullbacks of §; and o).

EXAMPLE 2.5. Let $, be the ideal generated by the polynomial H?:O xi. Then ?,, can
be identified with the quotient J,, = Z[xq,...,Xn]/$n. Let T = {T,, } n>0. Multiplication
on Z[xy,...,Xn] induces structure of Z-algebra on 7,,. Then J is a simplicial algebra.

Let X be a simplicial set and let C,, (X) be the free group on X,,. Denote by Cy (X)
the chain complex (Cy, (X),d) with the boundary operator 3 = > ,(—1)'d;. Elements
of C,,(X) are called n-chains in X. If X is a simplicial set and G is an abelian group,
then the homology of X with coefficients in G is defined by

H.(X;G) = H(C4(X) ®G). (2.10)

Denote by C*(X) the complex (C"(X), ) of cochains in X with coefficients in G where
C"(X;G) =Hom(C, (X),G) and the coboundary operator ¢ is the dual of 0. The coho-
mology of X with coefficients in G is defined by

H*(X;G) = H(C*(X),G). (2.11)

3. The complex of Cenkl-Porter. Cenkl and Porter [7] first proved the de Rham
theorem for the complex of cubical differential forms for a space of finite type using
integration. Later Boullay, Kiefer, Majewski, Stelzer, Scheerer, Unsold, and Vogt [1] in-
troduced the complex of Cenkl and Porter or the de Rham complex of tame differential
forms and proved the de Rham theorem for a simplicial set following Cartan’s ideas.

In this section, we present the complex of Cenkl and Porter which is the complex
of compatible differential forms on the backfaces of the standard cube and state the
tame de Rham theorem.
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Let A, € R™*1 denote the standard simplex (Example 2.4). A basic form of weight
q on A, in the coordinates xg, x1,...,Xy is a differential form

b

aj aj b
X X AXky A v+ AX,

Xi, "dxk,, 3.1)

p

where {iy,...,i;} and {ky,...,k,} are disjoint subsets of {0,1,...,n}, the a’s and b’s are
nonnegative integers, and g = max{a,...,aj,b1+1,...,b,+1}.LetQq = Z[1/2,...,1/q]
be the smallest subring of the rationals such that Q4 contains 1/p if 0 < p < g for
q > 1, and Qy = Q; = Z. Denote by TP4(A,) the module of Q4-linear combinations
of basic p-forms of weight less than or equal to q. The wedge product A extends to a
map

Al Tyl:l:‘l] (Z) ® Ty;:Z’qZ (Z) . TVIZIJFPZJIIJFQZ (Z) (32)

and the usual differential d extends to a morphism of Z-modules d : T/%(z) —
TZ*19(7). We also have the inclusion map T.?Z — TF***(Z). Then for every n > 0,
T** = {TP9(Ay) }n=0 is a simplicial differential graded algebra (DGA) with filtration.

For the proofs of the next two results we refer to [1, 7].

PROPOSITION 3.1. If'A, is a p-simplex contained in Ay, and w € TP (Ay), then

w € Qq. (3.3)
Ap
Let X = {X,,} be a simplicial set and let T(X) = Mor(T**,X) (morphisms of simpli-
cial sets). The Stokes’ theorem implies that for any g > 0, integration of tame forms
induces a map of cochain complexes I : T*4(X) — C*(X;Qg4). Then we have the fol-
lowing theorem.

THEOREM 3.2 (the tame de Rham theorem). Let X be a simplicial set of finite type.
Then for each q = 1 and any Qgq-module M there is a natural isomorphism of Q-
modules

HY(T*9(X),M) — HY(X;M) Viz=O0. (3.4)
The isomorphism is induced by integration.

4. Noncommutative differential forms. In this section, we present the complex of
noncommutative differential forms or the noncommutative de Rham complex, which
is a generalization of the standard de Rham complex on a manifold M, but the algebra
of smooth functions on M is replaced by an arbitrary associative algebra with unit.
Noncommutative forms were introduced by Connes [8, 9]. Karoubi [11] used noncom-
mutative forms to define the noncommutative de Rham complex Q(X) and proved a
noncommutative version of the de Rham theorem for a simplicial space X [12]. Here
we present the basic properties of the noncommutative de Rham complex of an alge-
bra s over a commutative ring A.

Let & be an algebra over a commutative ring A (with unit). Let y : 4 ® 4 — o denote
the multiplication operation on o (all rings are considered to be commutative and
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unitary, and all algebras are with unit). The differential forms of degree n are the
elements of the tensor product of A-algebras

TN(A) =ARNARA -+ ®pHA. (4.1)

-~
n+1times

The algebra T* () = ®,-0T" () is a A-algebra with the multiplication - : 7" () ®
TM(A) — Jt™M(A) defined by the formula

(ap®a1®---®ay) - (bop®b1®---®by) =ap®a;®---®(an-by)®b1® - by,.
4.2)

The differential operator D : T (A) — T+ () is defined by the formula

D(ap@a1®---®ay) =1®ap®a1®---®ay
n
+> (-1apea1®---®a;_1®1®a; --an 4.3)
j=1

+(-D"gpea1® - ®@ap®1.

THEOREM 4.1. If w € T"(A) and 0 € T™(A), then
(1) D?(w) =0;
(2) D(w-0) =D(w) -0+ (—-1)"w -D(0O) (Leibniz identity).

Then J*(s) is a DGA and the cohomology of the complex (J*(s),D) is trivial.
Suppose that & is an augmented A-algebra with an augmentation A : s{ — A (morphism
of rings) such that A(1) = 1. Consider the map of modules 1) : " () — T 1 (A)
defined by

wn(ap®---®ay) =A(ap)(a1®---®ay). (4.4)

THEOREM 4.2. Let sl be an augmented A-algebra with an augmentation A : 5§ — A

such that A(1) = 1. The map 1 : () — T () is a contracting homotopy,

Diy+1)D =1. (4.5)

Define Q%(s) = o and Q! (s4) = kerpu, the A-module Q! (s) is an s{-bimodule. The
noncommutative differential forms of degree n are the elements of the tensor product
of si-modules

Q" (st) = Q1 () ©4 Q' (1) @y - - - ®4 Q' (). (4.6)

n times

The product of differential forms is defined by juxtaposition of tensor products. Then
the direct sum

Q*(sd) = P Q" (A) 4.7)

n=0

is a graded algebra. The differential d : Q°(s1) — Q' (s4) is defined by the formula

da)=1®a—-axl. (4.8)
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Thus we have the isomorphism of A-modules & ® s¢/A — Q! (s4) such that a® b —
adb. Then Q" (4) can be identified with the tensor product of A-modules

ASA/N@AIN® - - - sA/A. (4.9)

v
n times

A noncommutative differential form of degree n can be written as a linear combination
of terms of the form apdaida; - --da, and the morphism d extends to forms of
degree n of Q" () by the formula

d(apda, - --day) =daoda; - - -day = ldagda, - - - day. (4.10)

THEOREM 4.3. If w € Q" (A) and 0 € Q™ (), then
(1) d*(w) =0;
2) d(w-0)=d(w) -0+ (—1)"w -d(0) (Leibniz identity).

REMARK 4.4. The DGA Q* («A) is called the differential enveloping of s, and it is the
solution of a universal problem: for a DGA %* and an algebra morphism f : &4 — %9,
there exists a unique morphism of DGA’s f* : Q* («) — %* which agrees with f at
degree 0. The complex (Q*(+A),d) is known as the universal differential calculus of s
or as the noncommutative de Rham complex of 4.

There is an inclusion of DGA’s sending Q* () to 7 *(«). On the other hand, for any
n > 0 there is a projection operator J : T" () — Q" (sd) defined by J(ap®a;®---®
ay) = apday - - -day.

A noncommutative differential form w is said to be closed if dw = 0. We say that
w € Q" () is exact if there exists n € Q" 1(s4) such that w = dn. The fact that the
complex (Q*(#A),d) has trivial cohomology is known as the noncommutative Poincaré
lemma.

LEMMA 4.5. Let i be an augmented A-algebra, then every closed form w € Q* (A)
is exact.

PROOF. As in Theorem 4.2, let A : § — A be a A-linear form with A(1) = 1. We
prove that there exists a homotopy contraction j) : Q"(sd) — Q" 1(sd). To define
Ja we express elements of Q" (s1) as elements of 9! (s4) using inclusion, next we
apply 15, and then we apply the projection J. Thus for w = agda; - - -da,, we get
A(w) = Alag)ardas - - -day, — Alapar)das - - - day. First we show that 1) is well de-
fined. Obviously it is enough to prove that 1) : Q' (s4) — QO(s) is well defined. Let
w = apda; € Q' (d), a € A, and a] = a; +a-1 € 4. Then jr(aoda)) = Alag)a; —
Alapay) -1 =2A(ag)ar —A(apar) -1 = ja(apda,). Now for w = apda, - - - dan € Q" (A),
we have

dj(w) + ad(w) = Alag)darday - - -day, — A(apa,)dldas - - - day
+A(l)agdada; - - -day —A(1-ag)da; - - -day 4.11)

=w.

But dw = 0. Therefore dja(w) = w. O
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If 4 = {dAn}ns0 is a simplicial algebra, then Q* (o) = {Q* (Ay) }ns0 is a simplicial
DGA. Next we define the face and degeneracy operators for Q* ().

Let o = {s}; }n=0 be a simplicial graded algebra. For each n consider the simplicial
tensor algebra

T* (sln) = P atn”, (4.12)
p=0

where the face and degeneracy operators 0; : sy’ — o7, and s; : sln” — s, are
defined by

3i(a0®a1 [ -®a,,) = aia()@aial@- . ®aiap,
(4.13)
si(@ap®@a1®---®a,) =siap®s;a1® - - - @Sidp.

PROPOSITION 4.6. Let sl = {d}},-0 be a simplicial algebra. If D is the differential
on J*(dy,), then T* () is a simplicial DGA.

Observe that the restriction of 9; to Q' (sd,,) applied to adb € Q! (sd,,) is
di(adb) =0i(a®b—-abel)=0;(a)®0;(b)—0;(ab)®1

4.14
— (@) ©3; (b))~ 3@ (D) @1 € shp_1 @l 4.14)
If py-1 denotes multiplication on A, _1, then
Un-1(0i(adb)) = pn-1(0i(a) ® 0;(b) —0;(a)0;(b) ® 1)
(4.15)

=0;(a)-0i(b)—0;(a)o;(b)-1=0.

Therefore adb € ker p,_; = Q! (sd,_1). In particular, if we take elements of the form
da € Q' (dA,_1), then we get

di(da)=0;(1®a—a®l)=1®0;a-0;a®1 =d(0;a). (4.16)
Then extend 0; to QF (s4) by setting
di(apda - - -day) = d;(ao)d(diar) - - - d(diap) € QF (shn-1). (4.17)
Similarly s; can be extended to QF (s1). Then we have the following proposition.

PROPOSITION 4.7. If A = {dAn}n=0 is a simplicial graded algebra, then Q* () =
{Q* () }nso is a simplicial DGA.

A noncommutative version of the de Rham theorem was proved by Karoubi in
[12]. Karoubi considered s, to be the quotient A-algebra A[xo,X1,...,Xn]/(X0+Xx1 +
<o+ x, —1). Let Q*(s,) be the algebra of noncommutative forms on «, and let
A = {Antn=0. The algebra Q*(s,) is the noncommutative algebra generated by the
symbols x; and dx;,0 < i < n and the following relations:

n n
in =1, dei =0, XiXj = XjXj. (4.18)
i=0 i=0

Then we have the following theorem.
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THEOREM 4.8 (the noncommutative de Rham theorem). LetX be a simplicial set and
let Q* (X) = Mor(X,Q*(A)). Then there exists a natural isomorphism of A-modules

HY(Q"(x)) = HY(X;A) Vi=0. (4.19)

A slightly more general version of Theorem 4.8 was proved by Cenkl in [3, 4].

5. The noncommutative complex of Cenkl-Porter. In [12], Karoubi conjectured
that the noncommutative de Rham theorem could be proved using integration of non-
commutative differential forms assuming that A is a ring containing the ring of the
rational numbers Q. We present a solution of a more general problem by considering a
noncommutative version of the tame de Rham complex of Cenkl-Porter. This complex
is constructed by defining a filtration on Q* (9), the algebra of noncommutative differ-
ential forms on J = ®,,-09,,, where J,, are the polynomials restricted to n-simplex A,
(see Example 2.4). Then we prove some basic properties of that complex. In particular
we prove the noncommutative tame Poincaré lemma.

REMARK 5.1. Propositions 4.6 and 4.7 imply that Q*(9) is a simplicial DGA.

We establish some conventions of notation. Let Z, be the set of nonnegative inte-
gers. Let Z**! be the set of multi-indexes o = (g, &1,..., %) With &; € Z,, and let
|| = >; ;. For x = (X0,X1,...,Xn) € Ay and & = (Xg, X1,...,Xn), € = (£0,&1,...,En) €
71, let

«
X% = x00xx S,

(5.1)
dx® =dx’dxi' - - -dxér = (dxo)® (dx1)™ -+ - (dxn) ™.
If A= {ai,az,...,ap} C{0,1,...,n}, we write
x§ = xa xas? - xa”,
(T=xa)% = (1=x4,) " (1= x0,) %2 - - - (1= X, ), (5.2)

& Eas &
dxi = dxa, dxay’ -+ - dxa,’ .

Let Q,,(Z) be the algebra of all Z-linear combinations of basic tame noncommutative
differential forms

w=x%dxfx®dx - x%dx, & €2, i=1,2,...,7, (5.3)

with 0 < x; <1 and []}_(x; = 0. These are the compatible noncommutative differen-
tial forms on the backfaces of the cube I"*! (see Example 2.4). If >; |&;| = p we say
that w is a p-form (note that O-forms are polynomials).

Let [Jwllj = > (xij + ;). The weight of w is defined by [|w] = max{[lw]|l;:j =
0,1,...,n}.

Let QL% (Z) be the set of all the p-forms of Q,(Z) of weight ||w]| < g and let
Q™ (2) = {0 (D)} p.g=o0-

REMARK 5.2. For all n, p, and gq, Q¥ (Z) is a finitely generated free Z-module.
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PROPOSITION 5.3. Foreveryn =0, Q. (Z) =
algebra with filtration.

{QR(2)} p.g=0 is a differential graded

PROOF. We have to prove that - and d on Q*(
(1) QZ]MI (Z) ®Q£’L2,‘Z2 (Z) . Qle*VZy‘thQZ (Z),
@) ohi@ L o™ @),

3) Opi@) - A ().

) induce maps - and d such that

PROOF OF (1). Let

W=W;-Ws- Wy €QMN(Z), w;=x%dx%, i=1,2,...,7,
(5.4)
n=m-na-----ns €O (@), nj=xPidx<, j=1,2,..s
Thenw'r’:wl'wZ'""wY'nl'nZ""'nS:wl'wZ'"' wy wr+1 ..w1,+5
where Wy j =n;(l[wyrjllk = lInjllx for all j and k);
r+s r+Ss
lew-nlle = 2 [Jeou], = ZleHk+ > el
=1 1=1 l=r+1
r Ky (55)
= > el + 2 Il <
1=1 1=1
therefore
llew - nll < [leor] |+ [[ml]. (5.6)
On the other hand, we have >; |&;| + > ;1&;| = p1 + p2. Therefore,
- nll QR P217e2 (7). (5.7)

PROOF OF (2). Let 0 = w;-wz- -+ - w, € QP4 (Z) with w; = x%dx € QL (2),
i=1,2,...,7v. Then
dw =d(x%) -dx® +x% -d(dx) = d(x*) - dx*Fi. (5.8)
Note that
d(x%i) = d(xgio . -xﬁ‘")
n
&
= 3G d ()
j=0
_ ixé’ho "‘U 1 ( i xk lde %i,j- k) Ceexpin (59
j=0 k=1
n n
:zz kldxx k...xfl(i"
Then [|d(x%i)[l; = [Ix%i|l; for j = 0,1,...,n, therefore [|[d(x%/)| = [Ix%i|. Hence
ld(x®)dxti| = [[x%idx®]; and [[dw]| = [[w]. On the other hand, x%i is a 0-form,

therefore d(x®) is a 1-form and dw is a (p + 1)-form, then dw € QL (7).
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PROOF OF (3). The proof is obvious. O

Now we show that Q**(Z) = {Q5""(Z)} =0 is a simplicial algebra (n denotes the
simplicial index). If p > 0 and g > 1 are fixed we consider a form w € Q7%(Z) as an
element of Q7 (J,,) for all n. But Q*(7) is a simplicial algebra so we may restrict the
face and degeneracy operators 0; : QP (T ) — QP (T ,41) and §; : QP (Ty) — QP (Tp41)
to Q' (Z). Then we must verify that imd; ¢ Q% (7) and ims; ¢ Q! (z) forall p > 0,
q = 1. Suppose that

w=x%dxs1x*2dx® - x%rdxr. (5.10)
Then
0i () = 0;(x*1)0; (dx*1)d; (x*2) i (dx*2) - - - 0y (x*) 0; (dx ), (5.11)

where 0;(x%/) = (0;x0)%0 - - - (0;x,,) %" and 0; (dx%) = (d0ixg)&0 - - - (d0ixy)Ein.
If £j; = 0, for some j, then (d0;(x;))%i = (d1)%i = 0. Then d;w = 0 and ||9;w]| < [|w]l.
If €j; = 0 for all j, it is enough to consider one block,

w = x%dx¢ = x5° - - xndxy’ - - -dxir with o,6, €74, i=0,1,...,n.  (5.12)
Then
di(w) = (3ix0) ™ - - (313n) " (33dx0) - - - (3ydxcn) "
=x00 - x X T e doe - dax 0T de G139
Then we have
oIk, forO0<k<1i,
[10i()]|; =1 lwllgs1, forO<i<k<mn, (5.14)
0, forO<i<k=n.
Therefore, |0;(w) |l < |w]l. Then
9i(w) € QM (2). (5.15)

Note thatif ||w]||x < |[w]l;, for all k # i, then we have a sharp inequality [|0; ()] < [[e]].
Similarly, for w = x®dx® x®dx® - - - x* dx®, we have

si(w) = s;(x*)s;(dx)s; (x*2) oy (dx®2) - -« 51 (x% )5 (dx?r), (5.16)
where
$i(x%9) = (si20) 0 - -+ (sixn) V™, si(dx) = (dsixg) T - - - (dsixn) . (5.17)
Then
si(w) = (5ix0) ™ - (5ix0) ™ (5:dx0) % - - - (sidxcn)™
= x(‘)"ﬂ .. 'X;xfil (x; 'xi+1)aixf(4:£1 .. -x;%f
s’ - d(xixia) Tl - dl (5.18)
IR R TRee)

e e
cdx(? - (dxixien +Xidxier) Tdx; e dx
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Thus s;(w) is given by the expression

£
31 o K1 K G g Kp+1
Z ( ’>x0 T X X XX T Xng
S\ (5.19)

€0 DAL DU BTN €iv] en
sdxg - eedxg X XX dXG Y e dX

Note that [|s;(w)|lx = &; + & —j+j = ||lwll; for k=1, i+ 1, and ||s;(w)|lx = g1 +
&x-1 = |lw]lg-1 for k > i+ 1. Then

lewllg,  for k <1,
lIsi()||, =1 llwlli,  fork=1, i+]1, (5.20)
lewllg-1, fork>i+1.

Therefore, ||s;(w)|l < [lw]| and s;(w) € QL (Z).

From the definition and Proposition 4.7 it follows that ¢; and s; are morphisms of
DGA'’s. Then we have the following proposition.

PROPOSITION 5.4. The algebra Q** (Z) = {Qu* (Z)}n=o is a simplicial DGA.

Now consider 0 < x; <1 for j=0,1,...,n with Hjxj = 0. Define
QP1(Ay) = QR(Z) ®2Qy, (5.21)

where Q; =7[1/2,...,1/q], for g > 1, and Qg = Q; = Z.
Let Aﬁ, 0 < k < n, be the k-skeleton of A,, and let

Q7(An,AK) = {w € QP9 (Ay) ] =0} (5.22)

Let Q”'q(A’;L) be the set of all Q4-linear combinations of forms which are nonzero on
exactly one k-face of Ak.

PROPOSITION 5.5. The sequence
QPA(A,, Ak-T) LIS oypa(ak Ak-1) . (5.23)

is an exact sequence of Qq-modules for allp =0, q = 1.

PROOF. Letw € QP49(A,, A’;L‘l) with g > 1. Then the form w is a linear combination
w = > ; w;, where each w; is nonzero on exactly one face of Aﬁ. Let F be such a face.
Then

w|cg =0 if G is any k-face of A,’; different from F. (5.24)

We write F = F (A, B) (using the notation of Example 2.4) where A and B are two disjoint
sets A = {a;,a,...,ar+1} and B = {by,by,...,by,_} such that 0 < a; <a, < --- <
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a1 =N, 0<by<by<---<byr=<n AuB={0,1,....n},0<x; <1, forallie A,
[lTicaxi=0,and x; =1 for all j € B.
We have w]| Ak-1 = 0. Therefore w is a linear combination of forms of the type

Fra)dxst - S (x)dx®s, (5.25)

where f7(x) = x% (1 -x4)% x5 (1 —xp)P2 fj(x) (fj(x) is a polynomial in x). For F we
may assume that | 82| = 0. Thus f7(x) = x3' (1 —XA)“‘nglfj(x). Note that if |;| =0
for i = 1,2 (and for all j), then &;; # O for some t.

On F we have f7(x) = x4" (1 -x4)%f(xa).

Let G = G(A',B’") be another k-face of A’;l. If A= A’, then there exists i € B with
x; =0, then f/(x) =0 and wl|g = 0.

If A+ A’ then there exists i € A such that x; = 1. Then either f7(x) =0 or dxf“ =0
for some t, in both cases we have w|g = 0.

Let ¢(x) = xp, then ¢ € Q%1 (A,). Define wy = ¢ - w. Note that there exists i € A
such that [[wkllj =1 < ||wkll; = g for all j € B. Therefore wy € QF1(Ay). Moreover,

WilFaB = Plrap) - Wlrap =1-w = w. (5.26)
If F(A’,B’) is another k-face of A’;L, then we have
Wilra gy = Plrarp) - Wlrw ey = Pleap)-0=0. (5.27)

If F(E,H) is a (k—1)-face of AX, then there exists at least one i € A such that i ¢ E.
Then x; is either 0 or 1 on F(E,H). Therefore w|r ) = 0 and then wil|rE,m = 0. We
deduce that wy € QP9(A,,AX"1) and Wy = . O

PROPOSITION 5.6. The sequence
QP (An) v restrictions Qpa (aAn) .0 (5.28)

is an exact sequence of Qg-modules for allp =0, q = 1.

PROOF. For k =0, the sequence
QP (An) — QPI(AY) — 0 (5.29)

is exact, thus any element a € Q4 can be pulled back to the form w(xy,...,x,) = a,
that is, it is a constant Q,4-polynomial.
Assume by induction that

QPa(A,) — QP9 (dAK-1) — 0 (5.30)
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is exact. Consider the following commutative diagram:

0 0

QP (A, A1) s Qpa(ak, Ak-T) ——>

i i2

r2

QPa(A,) ————— QPA(AK) ——= 0 (5.31)
p1 p2
Pa(al 1) == QPa(ak ) ——0
0.

The left column is exact by induction hypothesis (and by the definition of QP4 (AX,
A’;[l )). The right column is exact by definition. The first row is exact by Proposition 5.5.
We show that the second row is exact. Let w € QP4(AK).

CASE 1. If w € kerp», then there exists w’ € QP9(AK, Ak~1) with i»(w’) = w. But
the first row is exact, then there exists w” € vaq(An,A’;[l) such that w” =1 (w").
Hence w =i (11 (w’)) =12 (i;(w")) and w € im7>,.

CASE 2. If p>(w) # 0, then there exists w’ € QP4(A,,) such that p;(w’) = p2(w).
Then

po(w—12(w")) = p1(w)p2(r2(w”))
=pr(w’) —p2(r2(w’)) (5.32)
=0,

thus w’ -1 (w")kerp,, then w’ — 1 (w”) € imr, (by Case 1), then w € im7».
Finally for k = n —1, we have A~! = 9A,,. Thus the sequence

QP9 (Ay) — QP9(3A,) — 0 (5.33)

is exact. O

Now we prove that, for any g > 0 the complex Q*4(A,) has trivial cohomology. If
A:J — Zis any linear form with A(1) = 1. For each p > 0, let 5 : Q”(J) — QP~1(T) be
the map defined at w = fOdf!---df? € QP (J) by

@) =A(fO)fraf? - dff =A(fOf)af? .- -dfr. (5.34)

Then j, is a contracting homotopy (Lemma 4.5). Consider QF1(A,,) as a submodule
of QP (J,) and j, restricted to QP1(A,). Suppose that

W =x%dx - x%dx = fOdfl---dfr. (5.35)
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Note that [[ja(w)ll; < llwll; for all j. Therefore |[ja(w)] < lw] < q and j\(w) €
Qr-LaA,). Thus ja:QP1(A,) —-QP~14(A,) is a contracting homotopy (by Lemma 4.5).

If w e QP1(A,) and dw = 0 we say that w is closed. We say that w is exact if there
exists n € QP~L4(A,) such that w = dn. Then we have the following lemma.

LEMMA 5.7 (the noncommutative tame Poihcaré lemma). If w € QP49(A,,) is a closed
form, then w is exact.

6. Integration of noncommutative tame forms. In this section, we introduce in-
tegration of noncommutative tame forms, prove the tame noncommutative Stokes’
theorem, and use this result to define a morphism of Q4-modules I : Q*49(A,,) —
C*(Ayn;Qq) which plays an important role in the proof of the de Rham theorem. The
definition of the integral of noncommutative tame forms is motivated by the ideas
presented in [12].

Let Q**(A,) denote the algebra of noncommutative tame differential forms in the
variables xo, x1,...,Xn.

Let T**(A;) be the algebra of differential forms of Cenkl-Porter with Q,-coefficients
on the standard cube I"*! ¢ R"*!. Define F : QP9(A,) — TP(A,) as follows: if w €
Q% (A,) or w = dx; € QM1 (A,) then F(w) = w; if w = fOdf!---dfP € QP9(Ay)
for p > 1, then F(fodf'---dfP) = fOdf ' A--- AdfP. Then F: QP9(A,) — TPA(Ay)
defines a morphism of Q,-modules.

Note that for all p > 0, we have

F(fodf'---df?) = F(fO)F(df') n--- AF(AfP). (6.1)

In particular, if w € QP91 (A,) and n € QY292 (A,,) then

F(w-n) =F(w)AF(n). (6.2)

In other words F is a morphism of algebras. To prove this identity it is enough to
consider w = fOdfl, n = g%dg' € Q' (). Then

F(w-n) =F(f'df'-g%dg")
=F(f'd(f'g°)dg" - f°f'dg’dg")
=f0d(f'g°) ndg' - f°f'dg’dg’
=f0df1g0/\dg1+f0fldg0/\dglff0fldg0/\dgl
= 9504 f' Adg
=F(w)AF(n).

(6.3)

Similarly, the following propositions can be proved by direct computations.
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PROPOSITION 6.1. The diagram

QPa(A,) —2> Qra(a,)

Fp \L \LF’«Hl (64)

TPa(A,) —Ls TPA(A,)
commutes for all p = 0.

PROPOSITION 6.2. Let w = fOdf!---dfP € QP9(A,). If p > n then F(w) = 0. If
0 < p <n and 4, denotes the permutation group of the set {1,2,...,p}, then

of . of

aXJT(l) axJT(p)

F(w) = > > sgntf0

0<j1<---<jp<n TEY

dxj A---NdXj,. (6.5)

PROPOSITION 6.3. Suppose that w = X dx? - - - x% dxe € QT (Ay) and 0 < p <
n, then
(1) if > &ij = 2 for some j, then F(w) = 0;
(2) if0<iy <" <ip<nandt €9, suchthatt(l) <---<T(p)and > &irj <1
for all j, then

F(w) =sgnmx™ - --x%dxi 4 A ANdXiy, - (6.6)
REMARK 6.4. Proposition 6.5 implies that F is a simplicial map.
From Proposition 3.1, we obtain the following result.

PROPOSITION 6.5. Letp >0, q = 1.Ifw € Q) (2) and if G is a p-face of Ay, then
JGF(w) € Q. (6.7)

If w=QP9A,) and 0 : Ay, — Ay, is a p-simplex, we define the integral of w on o
by
J w=J F(w)=J o*F(w). (6.8)
o o Ap

If o =>;0i®a;cCp(An;Qq), then the integral of w on o is defined by

L w = Zai w. (6.9)

i

PROPOSITION 6.6 (noncommutative Stokes’ theorem). Let o be a p-chain on A,
and let w € QP9(A,,). Then

f dw = w. (6.10)
o oo

PROOF. Let w € QP4(Ay) and let 0 : A, — Ay, be a p-simplex. By Proposition 6.1
and by the classical Stokes’ theorem, we get

de:LF(dw):Ld(F(w)) :JBUF(w):Jan. (6.11D)



684 LUIS FERNANDO MEJIAS

Let (C*(Ap;Qq),6) denote the standard complex of cochains on A, with coefficients
in Qg. Let

1:0%9(A,) — C*(Ap; Q) (6.12)

be the morphism of Q;-modules defined as follows: given o € Cp,(An;Qq) and w €
QPI(Ay),

I, (w)(0) =J w. (6.13)

The Stokes theorem implies that I is a map of cochain complexes. We also have that
the diagram

0; i
QP(Ag-1) < QP(Ay) ——> QP (A1)

I\L Il I\L (6.14)
3, Iy

cr (An—l;Qq) ~ cr (An;Qq) — cr (An+1;Qq)

commutes for 0 < i < n. Then I is a simplicial map.

PROPOSITION 6.7. The diagram
0 ——> OP4(Ak,8AK) ——= QP4 (Ag) ——= QP(3Ak-1) —> 0
I\L I\L I\L (6.15)
0 —— CP(Ag,305;Q,) —— CP (Ak;Qq) —— C? (3Ak;Qq) —> 0

commutes for all p = 0, q = 1. (The i’s and v’s denote the inclusions and restrictions,
respectively.)

PROOF. Let o €Cp(Ak;Qy) and w € QP1(Ag,0Ak), then v (w) =7 (i(w)). Therefore,

(i) (@) = | ifw) - Lmk w* L,mmk) ©

(6.16)
:J w =1i(I(w)) (o).
9—(oNdAL)
On the other hand, we have
I(r(w))(o):I(U)(T(w)):J V(w):J wlaa,
7 7 (6.17)
- JamaAkw - Jr(a)w :I(T(O'))((U). o

7. The noncommutative tame de Rham theorem for cohomology. In this section,
we introduce the noncommutative de Rham complex of Cenkl and Porter for a sim-
plicial set of finite type X. Then we use the noncommutative versions of the Poincaré
lemma and the Stokes’ theorem to prove the noncommutative tame de Rham theorem.
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Let X be a simplicial complex of finite type. Let X;, be the collection of nondegen-
erated n-simplices in X. A noncommutative differential form of type (p,q) on X is a
simplicial map w : X;, - QP1(A,) (in other words, w is a map such that for G € X,
and any face F of G, w(F) is the restriction of w(G) to F). The collection of all such
forms is denoted by QP9 (X).

For a p-chain o = >;0y®a; € Cp(X;Qy), 0i:Ap — X and w € QP1(X), we define

Jaw:zi:aiJAnwlgi, (7.1)

so we may define the map I : QP1(X) — CP(X;Qq) by

(@) = w. (7.2)
Then
51y () (@) = I (@) (30°) = LAW ©lso. (73)
On the other hand,
Ipri(dw) (o) =I,(dw)(0) = N dwly. (7.4)

Thus integration induces a map of cochain complexes. Then we have the following
theorem.

THEOREM 7.1. Let X be a simplicial set of finite type. Then for q > 1 the map
I:HY(Q"(X)) — H'(X;Qy), (7.5)

induced by integration, is an isomorphism of Qq-modules for all i = 0.

PROOF. Induction on the skeleta of X. For k = 0 the statement is true because

Qg ifi=0,
0, ifi>0,

Qg ifi=0,

(7.6)
0, ifi>0.

a0 -| e, -|

Suppose that the statement is true on the £-skeleton, Xy of X for £ < k.
From Proposition 6.7 it follows that the diagram

00— Q%9 ( Xy, Xgo1) — Q¥1(Xy) — Q*9(Xp_1) —=0

[T

0 —— C*(Xk, Xk-1;Qq) —— C*(X);Qq) —— C*(Xk-1;Qq) ——=0

is commutative. Then the following diagram commutes:
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- HEL(Q (X))~ Q9 (X Xi1)) — HE(Q5(X,)) —> Q9 (X)) —> =
| : | !
c o HTN (X 15Qq) —— HU(Xp, Xi-15Qq) —> HY(Xp;Qq) — H' (Xp-1;Qq) —> -+

(7.8)

The rows are exact, an t is an isomorphism by assumption. We prove that  is an
isomorphism. Let {Ag j: j € J} be the set of k-simplices of Xi. Then

Q9 ( Xy, X-1) = D Q9 (A j,0Ak,5),
J

C* (X, Xk-13Qq) = €D C* (A, 04k,5Qq)
j

(7.9)

are isomorphisms of Q4-modules. Then it is enough to prove that integration induces
an isomorphism

I:HY Q% (Ak,0Ak)) — HY(C* (Ak,0Ak;Qy))- (7.10)
Consider the following commutative diagram (Proposition 6.7):

0 — Q%4(Ag, 0Ak) — Q*4(Ay) —— Q¥1(0A) —= 0

R

0 — C*(Ak,081;,Qq) — C*(A);Qq) — C*(0A;Qq) — 0.
The first row is exact by Proposition 5.6.

o HITL(QR(00y)) —> HE(Q0 (A, 8A1)) —> HH Q44 (Ag)) —= HH(Q*4(3A)) —> -

L\L Kl I\L ll
o —= H71(0A1;Qq) 2 H' (A, 001;Qq) 2 Hi(A;Qq) —= HU(0Ak;Qq) — ==+
(7.12)

Therefore I is an isomorphism by lemma five (“so named because of the five-term
exact sequence involved in its formulation,” Spanier [21, page 185]). |

In the following examples, we consider X to be the circle S! and we verify the iso-
morphism H* (Q*9(X)) = H*(X;Qy) (for g = 1,2) by computing directly H{(Q*4(X)).

EXAMPLE 7.2. In this example, we consider the complex of noncommutative tame
differential forms of weight < 1 on the circle Q*2(S!), where Q*2(S!) denotes the
complex of noncommutative differential forms of weight < 2 on the circle. In this
case the ground ring is Q, = Z[1/2].



THE DE RHAM THEOREM FOR THE NONCOMMUTATIVE COMPLEX ... 687

(] e

20
/\ $1

4
0 Vo
eo Vo
X1 )
o
X0

FIGURE 7.1. Differential forms on S!.

Consider the triangulation of S! with 0-simplexes vy, V1, V>, and 1-simplexes ey, e;,
e, oriented as indicated in Figure 7.1. We can consider each 1-simplex e; is the image
of a continuous injective function ¢; : A; — St. Let p; = ¢y~ 1:e; — A1, i=0,1,2.Recall
that the 1-simplex A; is considered to be the union of the two backfaces of the 2-cube
I? in R?, as in Example 2.4.

A form n € Q%2(S!) is a map such that n(e;) = n; € Q%2(A;) = Q%%(7) ® Qo,
satisfying
no(¢o(vo)) =i (P1(vo)),
ni(b1(v1)) = n2(2(v1)), (7.13)
n2(¢2(v2)) = no(Po(v2)).
Note that xox1 = Y01 = z0z1 = 0, therefore we have
no(xo0,x1) = ko +aoxo + a1 xi +axxé +aszxs,
M (¥0,31) = ki +boyo+b1y1 +b2yg + b3yt (7.14)
n2(z0,21) = ka +cozo +c121 +Coz3 + 322,
with ki,a;,bj,cj € Q; fori=0,1,2 and j = 0,1,2,3, such that
ko+ao+ap =ky+by+ b3,
ki+bo+Dbr =ky+cy+c3, (7.15)
ko +co+cr =ko+ar+as.
If n is closed then dn; = 0 for i = 0,1,2, then a; = b; = ¢; = 0. Then (7.15) implies

ko = ki = k» = 0 and n is constant. Then H°(Q*2(S1)) = Q».
Now let w € Q12(S1). Then w(e;) = w; € Q12 (A;). We have

wo(Xo,Xl) =dao dX() +a; Xm +as Xy dXo +as dX()Xo +asXx1 dx1 +as dxlxl,
w1(y0,Y1) = bodyo+brdyy +b2yodyo+bsdyoyo+bsy1dy +bsdyiy1, (7.16)
w2 (Zo,Zl) = Co dZo +C le +C22p dZo +C3 dZ()Zo +C42q le +Cs lezl.
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Then

dwo = a»dxi —azdx3 +asdx? —asdx?,

dom = bzdyg—bg dy§+b4dyf—b5dy12, (7.17)

dws = cpdzd —c3dzi +csdzs —csdzs.
If w is closed we have a; = ai;1, bi = bi+1, and ¢; = ¢i;1, for i = 2,4. Then we have

dimker(d: QM2 (St) — Q22(S1)) =12.
Note that the linear system (7.15) is equivalent to
ko—ki=b1+b3—aop—az,
ki —ko2 = c1+c3—Dboby, (7.18)

0=a0—6t1+a2—a3+bo—l’)1+b2—b3+C0—C1+C2—C3.

Then dimim(d : Q%2(S1) — Q12(S1)) = 11 and H (Q*2(S1)) = Q.
Now let 6 € Q22(S1), then 6 is a map such that 8(e;) = 8; € Q>2(A,), that is,
00(x0,X1) = apdx3 +a, dx?,
01(y0,31) = body§ +b1dyy, (7.19)

02(z0,21) = codzd +c1dzs.

Any such form 6 is closed. We also have that 6 is exact, in fact & = dw where w €
022(S1) is given by (note that 2 is invertible in Q»)

(U()(Xo,X]) = %Xod)(o - %dX()Xo + %Xl dx; — % dx; dX],
b b b b

@1(¥0.1) = 3 ¥0dyo— 5 dyoyo+ 5 yidyr =~ dyiyi, (7.20)
S0

c c c
w2 (z9,21) = —2zodzo— ?Odzozo + iz dz - ?1 dz,dz;.

2 2

Then H?(Q*2(S1)) = 0. Finally, H (Q*2(S')) = 0 for i > 2 because QP2(S!) = 0 for
p > 2.

We conclude this section with the presentation of a more general version of the
noncommutative tame de Rham theorem (Theorem 7.1). Let M be a Q;-module and
letw=neacQPi(X)®M,and o = 0®b € C,(X;Qq) ® M. Then the integral of w
on o is defined by

J w=I(n)(9)-a®b=Ln-a®b. (7.21)

Thus integration defines a morphism of modules Q;-modules I : QP1(X) @M — CP (X;
M). Finally, we apply Kiinneth’s theorem and Theorem 7.1 to obtain the noncommu-
tative tame de Rham theorem for cohomology.
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THEOREM 7.3. Let X be a simplicial set of finite type. Then for q = 1 and any Qq-
module M there is a natural isomorphism of Qg-modules

HY (Q™1(X),M) — H'(X;M) (7.22)

for all i = 0. The isomorphism is induced by integration.

Let f: My — M, be a morphism of Q4-modules. Then for each p = 0, f induces two
morphisms of Q,-modules f* : H{(QP4(X),M;) — H{(QP4(X),M,) and f* : H (X;M;)
— H*(X;M>). The word “natural” in Theorem 7.3 means that if f: M; — M, is a mor-
phism of Q4-modules then the diagram

Hi(QPa(X), M) —— Hi(X;M>)
f*l lf* (7.23)

Hi(QP4(X), M) ——= Hi(X; M)

commutes for all p > 0,1 > 0.

The existence of an isomorphism H*(Q* (X)) — H!(X;A), for any commutative ring
with a unit A, can be obtained following Cartan’s ideas. Such a proof is found in [3, 4].
Cenkl’s (1998) noncommutative de Rham theorem is a generalization of a result of
Karoubi proved in [12]. In that same paper Karoubi conjectured the noncommuta-
tive de Rham theorem using integration being A a commutative ring containing the
rationals.

8. The dual noncommutative complex of Cenkl-Porter. In[20], Scheerer et al. pre-
sented a dual version of the tame de Rham theorem. They introduced the chain com-
plex of tame de Rham currents and proved the tame de Rham theorem for homology.
In this section, we study the dual of the complex of noncommutative tame forms
Q4 «(X) on a simplicial set of finite type X. We use the facts that X is a simpli-
cial set of finite type and that Q)7 is a finitely generated free Z-module for p > 0,
q = 0, n > 0, and some classical results to prove some basic properties of the complex
Q4+ (X). Then we prove that for g = 1 there exists an isomorphism of Q,-modules
Hi(X;Qq) = Hi(Qy4(X)) for all i = 0.

Let QP4(A,) = Qb1 e, Qg be the collection of noncommutative tame p-forms of
weight < g on the n-simplex A,,. Define

Qp.q(An) := Hom (QP1(A,),Qg). (8.1)

Elements of Q, ;(Ay) are called noncommutative tame de Rham currents.
Consider the maps

Qp,q (An) i’ Qp—l,q (An): Qp,q (An—l) i’ Qp,q (An)1 8.2)

Qpa (A1) = Qpq(An),
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where 0 = d, 8% = §;, and s' = §; denote the dual of the maps

QP(A,) -+ QP14(A,) (the differential),
QP1(Ay) i gpa (An_1) (the face operators), (8.3)
Qra(Ay) i Qpa (Ays1) (the degeneracy operators).
Next we use the dual of the contracting homotopy ja : QP*14(A,) — QP9(A,) (see
Lemma 5.7) to prove the Poincaré lemma for noncommutative de Rham currents.

LEMMA 8.1. Foreveryq=>1,

Qq, fori=0,
Hi(Qq(An)) = {o 1 fori> 0 (8.4)

PROOF. The map jj : QP*L9(A,) — QP4(A,) is a contracting homotopy, that is,
dja+Jjad = 1 (see the proof of Lemma 5.7). Now consider the dual of jaja : Qpq(An) —
Qpi1,4(An). For all w € Qp 4(Ay) and for any form w € QF4(A,), we have

dja(w) () +jad(w) (w) = (w) (Jadw) + (w) (djrw)

8.5
= (w)(d(w)+dn(w)) =w(w), (8:5)

in other words, 0j + ja0 = 1. Therefore, if 0(w) = 0 there exists v € Q,+1,4(A,) such
that 0v = w. Namely, v = j(w). O

Using Proposition 5.6 and [14, Theorem II1.6.3] we deduce the following proposition.

PROPOSITION 8.2. The sequence
0 — Qpq(0AK) — Qpq(Ak) — Qpq(Ak,04k) — 0 (8.6)

is an exact sequence of Qg-modules for allp =0 and q = 1.

Let X be a simplicial set of finite type. Let X} denote the k-skeleton of X. Let C, (X)
be the complex of unreduced chains of X (as an abelian group) and let

C(X;Qy) = C(X) 87 Q. 8.7)

The noncommutative tame de Rham currents of type (p,q) (of first kind) on X are
the elements of

Qp,q(X) :=Hom (Q74(X),Qq). (8.8)

For g = 1 define I': C,, (X;Qq) — Qp,4(X) as follows: given o = > pop®ap € Cp(X;Qq)
and w € QP4(X) then

I(U)(a)):f w=>ay| w. (8.9)
o ¢

Ty
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Let {Ag,j:j € J} be the set of simplexes of Xi. Because X is of finite type, we have

Qg (Xk, Xk-1) = Hom (Q*9(Xy, Xk-1),Qq) = @Q*,q(ﬁk,j,aAk,j). (8.10)
J

Then as a consequence of Proposition 8.2, we have the following result.
PROPOSITION 8.3. The sequence
0 — Quq(Xk-1) — Qi g (Xi) — Qi g (Xp, Xi-1) — 0 (8.11)
is an exact sequence of Q-modules for all g = 1.

If X is a simplicial set of finite type, then there exists a natural isomorphism of
Qg-modules (by [16, Theorem V.4.1])

Cp (Xi;Qq) = Hom (Hom (Cp (Xk),Qq),Qq) = Hom (C? (Xi;Qq), Qq) (8.12)

forall k>0, p >0.Let I:Cp(Ak;Qy) — Qp.4(Ax) be dual to the morphism I : QP+ (Ay)
— CP(Ak;Qq). Then Proposition 6.7 implies the following result.

PROPOSITION 8.4. The diagram

0 — Cu (081 Qq) — > Ca (A Q) — = Cp (A, 0Ak;Qq) — 0
il fl fl (8.13)
0 > Qg (001) —= Qg (Ak) — > Qg (A.0A) —> 0
commutes for allq > 1, p > 0 (1 and p denote inclusion and projection, respectively).
9. The noncommutative tame de Rham theorem for homology. In this section,
we prove that the dual map I induces an isomorphism of Q4-modules between the

homology of a simplicial set of finite type and the homology of the complex of non-
commutative tame de Rham currents.

THEOREM 9.1. Let X be a simplicial set of finite type. Then for q > 1, the map
I:Hi(X;Qq) — Hi(Qu4(X)), 9.1)
induced by integration, is an isomorphism of Qg-modules for all i = 0.
PROOF. Induction on the skeleta of X. For k = 0, the statement is true because

Qq, ifi=0,
0, ifi>0,

b .f ) = 0’
Hi(Qq(X)) = 1(@“ ot 9.2)

Hi(X;QQ):i 0, ifi>0

Suppose that the proposition is true for the £-skeleta Xy, for £ < k. Consider the
following commutative diagram:
0—— Cp (kal;Qq) I Cp (Xk;Qq) I Cp (stkal;Qq) —0

T

0——Qpgq (kal) — Qpy (Xk) —= Oy (xkan—l) — 0.
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The first row is exact. The second row is exact by Proposition 8.3. Then we have the
following commutative diagram, where the rows are exact

s Hy (X 13Qq) — Hi(XiiQq) —> Hy (X, Xk 13Qq) —> Hioy (X 13Qq) —>= -+

| | | |
e Hy(Qug (X 1)) —> Hi(Qu,q(X0)) —2 Hy Qg (i, Xk 1)) —> Hi( Qg (Xe 1)) —> -

(9.4)

The t’s are isomorphisms by induction hypothesis. We prove that k is an isomor-
phism. Let {Ay j: j € J} be the k-simplices of Xj. Then the morphisms of Q;-modules

Qg (Xie, Xi-1) = D Qu g (A, 7,00k, 7),
J

9.5)
Ci (Xi, Xk-13Qq) = P Ci (Akyy,0Ak,;Qq)
J
are isomorphism of Q,-modules.
Then it is enough to prove that integration induces an isomorphism
I:Hi(Ak,00k;Qq) — Hi(Qxq, (Ak,0Ak)). (9.6)

By Proposition 8.4 the diagram

0 —> Cx (001;,Qy) ——> Cy (Ak; Qy) —— Co (At,0A13Qy) —> 0
fl il il 9.7)
0 ——> Qg (00K) — = Qg (A) — = Qu g (Ak,34r) —— 0

commutes. Then we have the following commutative diagram, with exact rows

5 5
o —> Hi(0A;Qq) — Hi(Ak;Qq) —— Hi(Ak,0Ak;Qq) — Hi1(0Ak;Qq) —> -+

I\L Kl I‘l ll (98)
s Hi(Qu g (081)) —> Hi(Quq(Ak)) —> Hi (D (Ak,0AL)) —= Hi(Queg (9AL)) — -+

Then we apply five lemma and conclude that I is an isomorphism. a

Finally, we apply Kiinneth’s theorem and obtain the noncommutative tame de Rham
theorem for homology.

THEOREM 9.2. Let X be a simplicial set of finite type. Then for any q > 1 and any
Qq-module M, there is a natural isomorphism of Qg-modules

Hi(X;M) — H;i(Qy,q(X),M) (9.9)

for all i > 0. The isomorphism is induced by integration.
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The word “natural” in the previous theorem means that for any Q,-modules M; and
M, and for any morphism of Q4-modules f : M; — My, then the diagram

Hi (G M) —= H;(Qpq(X),M))
f*i lf* (9.10)
Hi(X;Mz) — Hi(Qpq(X),My)

commutes for all p = 0, i = 0, where f, : H;(X; M) — Hi(X;M>) and f\ : Hi(Qp 4(X),
M) - Hi(Qp,4(X), M) are the morphisms of Q;-modules induced by f.

10. Cofiltered chain complexes and noncommutative tame de Rham currents.
Our study of noncommutative de Rham currents and the noncommutative tame de
Rham theorem for homology was originally inspired by the investigations of Scheerer
et al. in [20], but our approach differs from theirs. In this section, we introduce the
complex of noncommutative tame de Rham currents of second kind on a simplicial
set X, T x(X) which is a noncommutative version of the tame de Rham currents of
Scheere et al. Then we show that, for all g = 0 there exists an isomorphism of Qg-
modules Qy . (X) = Ty« (X).

For the complex F(X), such that for all n,

{O, for p > 0,
Fun(X)pg = (10.1)
Ch(X)®Qy, forp=0.

Note that F, (X)0,4-1© Qg = Cn(X) ® Q-1 ® Qg = Cy (X) ® Q4. Then we can consider
the respective identities as restrictions maps pq : Fn(X)o,q — Fn(X)o,q-1. Therefore,
F(X) is a cofiltered chain complex.

Consider Q, 4(Ay) := Homz(QP1(A,),Qq) and define the restriction maps py :
Qp.a(An) = Qpg-1(An) ® Qq as the dual of the inclusions i, (QPAa-L(A,) — QPA(A,)
(Proposition 5.3). Then Q° , = @p,nzo(uqzlﬂr,,qmml)) is a cosimplicial cofiltered
chain complex. It is also a coalgebra; the coproduct is obtained by dualizing the mul-
tiplication of noncommutative differential forms

QPLAL(A,) @ QP22 (A,) L5 QPIFP2@1+a2 (A, (10.2)
u is a noncommutative graded bilinear map of simplicial groups such that for all

O<a1<q1,0<a2<q>

QPLAL(A,) ® QP22 (Ay) _r QPitpP2.aitaz (A )

i®il li (10.3)

QP (Ay) ® QP2:492 (Ay) L QPitP2ai+az(Ay).

Recall thatif V = {V,;,Q4} and W = {W,;,Q,} are two cofiltered chain complexes
then the tensor product

(VeW), = _lim (Vg @W,;,®Qy) (10.4)
a1+4q2=4

is a cofiltered chain complex.
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Consider the cofiltered chain complex J (X) of noncommutative tame de Rham cur-
rents of second kind on X, where J, ;(X) is defined as the quotient of

D Fnx)eQ"),, (10.5)

n=0

by the subspaces generated by the images of the maps

(@x®@1-1@a*) : Fp(X) 80 — P (Fu(X)2Q"),, (10.6)

n=0

induced by all the morphisms « : A(m) — A(k) in the category of simplicial sets A.
For all n there exists a natural isomorphism

(Fa(X)®Q"), ;= Ca(X)® Q. (10.7)

Then F(X),,4 has a structure of simplicial cofiltered coalgebra.
The de Rham theorem for the complex I (X) follows from Theorem 9.2 and from
the following proposition.

PROPOSITION 10.1. Let X be a simplicial set of finite type. Then for all q > 0 there
is a natural isomorphism of Qg-modules

Qug(X) =T, (X)) Vg=1. (10.8)

PRrROOF. First, we prove that the cochain complex Q*4(X) is a naturally isomor-
phic to the cochain complex Hom(7 x 4(X),Qq). Let w : Xy — QP9(A4) be a sim-
plicial map (w is a form on X). Let 0 € X;, be an n-simplex and w € Q, 4(Ay) =
Hom(QP1(Ay),Qq). Let [c®@w] € T, 4(X) be the equivalence class containing o ® w
(a current of second kind). Define a homomorphism C(w) : 7, 4(X) = Q4 by

C(w)([cew]) =w(w(o)). (10.9)
We prove that C(w) is well defined: suppose that 6 ® v € [0 ® w]. Then for any
morphism «: A(k) — A(m) in the category A there are elements n € X, and z € Q¥

such that

0ev=0cow+(as®l-10oa*)(nez)=cew+os(N)®z-—noc*(z). (10.10)

Then
C(w)([08v]) =w(w(o))+z(w(x*(n))) —ax(2)(w(n))
=w(w(0))+z(a*(w(n))) — s (2) (w(N))
=w(w(0))+ax(2) (w(N)) — &« (2) (w(n)) (10.11)
=w(w(0o))
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Thus T : QP49(X) — Hom(J 4(X),Qq4) is a homomorphism. Note that
Cdw)([oew]) =w(dw(o)) =0(w(w(0))) =0C(w)([oew]). (10.12)

Now we prove that C is injective. Suppose that w,n € QP4(X) with C(w) = C(n).
Then for all n-simplex o € X;, and w € Q 4(Ay) we have C(w)([ocew]) =C(n)([o®
w]). This is equivalent to w(w (o)) = w(n(o)) for all o. Then w (o) = n(o) for all
o.Hence w =n.

Now we prove that € is surjective. Let @ : T4 4(X) — Q4 be a morphism of Qg4-
modules. Let o € X;,, be an n-simplex. Consider the homomorphism @ (o) : Q4 4(Ay) -
Qg defined by

w(o)(w) =w(locew]). (10.13)

Thus @ (o) € Hom(Qy 4(Arn),Qq). Then there exists a unique form w (o) € Q*4(Ay)
such that

(o) (w) =w(w(o)), (10.14)

@(w(o)) = @w(o), where @ is the natural isomorphism between a module and its
dual (see [16, Theorem V.4.1]). Let «: A(n) — A(k) be a morphism in the category A.
Then [xxo®z] = [oc®x*z] for all z € Qp 4(Ax). Then

z(w(xy0)) = a*z(w (o)) = z(a* (w(0))). (10.15)
Thus the map o — w (o) is a simplicial map w : X, — QP9(A, ). Moreover,
C(w)([oew])=w(w(o)) =w(0)(w) =w(cew]), (10.16)

and C(w) = @.
Finally we apply [16, Theorem V.4.1] to conclude the proof. |
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